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ABSTRACT

Abstract. We consider the problem of estimating a p-dimensional vector yu; based on
independent variables X;,Xs and U where X; is Np(u1,02%1), Xz is Np(us,023;) and
U is x2(%1 and ¥y are known). A family of minimax estimators is proposed. Bayesian
estimators are also developed. These estimators are expressed as the sum of two shrinkage
estimators. Finally, the idea of shrinking towards an independent estimators is explored.
This idea is generalized to an abstract problem.
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1. Introduction

Imagine a situation in which two related experiments are conducted independently. In
each experiment p-dimensional valued measurements are recorded. The data is summarized
into one mean vector per experiment (X; and X, say) plus an univariate variable U. Let us
denote by p1 and pg the expectation of X; and X, respectively. Since the two experiments .
are related pg is in the vicinity of ;. Thus, not only X; and U but also X5 can be used

for estimating p;.

Assume from now on that X; and X, are normally distributed with mean vectors p;
and p2 and covariance matrices 021, and 02%2(X; ~ Np(p1,02%1), Xo ~ Np(p2,02%s)).
Assume also that U/o? has a chi-square distribution (U ~ 0%x2). The matrices ¥; and X,
are positive definite and are supposed known. Let 4 = %1(2; + )71, Y; = A(X; — X»)
and Y5 = X7 —Y7. When pu, is equal to py; the statistic (U, Y2) is sufficient. However,
if po is far apart from pq, X, is of little use in the inference. Intuitively, depending on
whether us & py (or equivalently 6, = E[Y;] = A(p1 — p2) = 0) one should use a different
estimator. A first way of approaching the estimation of y; consists in using a preliminary
test estimator (PTE). Namely, one has to test Hy : 6; = 0 against Hy : 6; # 0. This test
might depend on (Y7,U). If the test is rejected then the inference is based on (X1, U).

Otherwise, the inference is based on (Y2, U).

The lack of continuity of the PTE implies its inadmissibility. More smoothness is
needed. A second approach to the problem of estimating u; is the following. Rather
than basing the inference on (X;,U) or (Y¥2,U), according to the value of (Y7,U), we

can generalize the PTE approach by considering a convex combination of X; and Y3 de-



pending on the value of (Y1,U). In other words, g; = (1 — 8(Y1,U)) X1 + p(Y1,U)Y, =
X1 — B(Y1,U)(X:1 — Y2) with S taking values in [0, 1]. The last expression in the equal-
ities is the one proposed by Ghosh and Sinha (1988, page 213, expression 3.2). Let us
call this estimator uj. The two authors give an unbiased estimator of the risk function,

derive minimax estimators using both the frequentist and bayesian arguments and propose

estimators which dominate the PTE.

In this article, we introduce a third approach. The basic idea of this new approach
will consist of adapting the technique developed for shrinkage estimators to our problem.
Actually, p} can be rewritten as p} = (1 — B(Y1,U))Y7 + Y>. This procedure shrinks Y;
toward zero and does not affect Y,. We might think of shrinking Y, as well and considering
f1 = X2, (1-hi(Y;,U))Y;. Conditions on h; and hg under which this estimator is minimax
are given in Section 2 along with an unbiased estimator of the risk functions. In the _

2 is assumed to be known and we do not make use of the

remaining part of the paper o
variable U. Bayesian aspects of the problem are taken in consideration in Section 3.
Admissible results are also developed. In Section 4, the original problem is formulated in

terms of an abstract one. Minimax and generalized Bayes estimators are given. These

estimators generalized pJ.

2. Minimax results

Let X1,X, and U be independent, X; ~ Np(u1,02%1), Xy ~ Np(p2,0282) and U ~
o2x2. Consider the loss function given by L(p1, 2,02 f1) = (i1 — p1)' Q1 — p1)/0?. Tt
is well known that X, is a minimax estimator of y; with constant risk tr (@%1). In this

section we propose a family of minimax estimators of y;. This family generalizes the one
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proposed by Ghosh and Sinha (1988). Minimaxity is obtained by comparing an unbiased

estimate of the risk to tr (QX;). The estimate is derived by using the following identities;
a) E[(Z - 0)h(Z)] = c*E[W(Z)] if Z ~ N(8,0?),
b) E[(V —nb)h(V)] = 2bE[VR' (V)] if V ~ bx2 (2.1)
where h satisfies the conditions for integrating by parts (cf. Efron and Morris 1976).

Let us first transform (X7, X?) into (Y7,Y>) as we did in Section 1. Thus, Y; = A(X; —
X2)and Yz = X; —-Y; with 4 = £;(Z;+32) 7. Similarly, let §; = A(p1 —p2),02 = p1 —6;
and set A; = A3;,1 = 1,2. The problem is now reformulated in terms of estimating u; =
61+ 62 based on Y7,Y; and U where Y1,Y; and U are independent, Y; ~ Np(6;,A;),t = 1,2
and U ~ o2x2. Think of ji; as i3 = 6 + 6, where §; is an estimate of §; based on (v;,0)
and let §; = (1 — gi(F3)/F;)Y; where F; = (n + 2)YZ-'A1-_1Y,~/U,Z' = 1,2. Define also T; and
AasT; =Y!QY;/Y!A;'Y;,i = 1,2 and A = B2_, {2[tr(QA;) — 2T1g:( F) / Fi + 49'(F,)T; —
GHFNT/Fs + 4 (g FT (4 20} + {(464(F)ga(Bo) By + 401 ()b (Fa)/ Py — 2(n +

2)g1(F1)g2(F2)/ F1 F2 }Y{QY>.

Theorem 2.1. If the functions g¢; satisfy the regularity conditions for integrating by parts

and A is positive then [i; is minimax.

Proof. Let R* = tr(QX;) — R. Showing minimaxity is equivalent of showing that R* is
positive. Developing R* we get
R* =tr(Q%1) — E(X1 — 1) QX1 — pa)/0?

+2E{((11(F1)/ F1)Y1 + (92(F2)/ F2)Y2) Q(Y1 — 61 + Y2 — 6)} /0



~ B{(:(F)/F)Ya + (92(F2) [ F)a) Qs (F)/Fo)¥s + (9a(F) [ F)¥s)} /o
= 3 B{2(F)/F)Y/Q(Y: — 6) — (9i( F)/F)*Y;Q¥:} /o

— 2B{01(F1)gs(F) Y QY FyFa} o
=EA

and the last equality comes from the identities given in expression (2.1). ||

Actually, A is an unbiased estimator of R*. Characterizing all the functions ¢; and
g2 such that A is positive is not an easy task. In the particular case where g, is null Efron
and Morris (1976) give the solution for A;@ = I. This result can be easily generalized for
A1Q # 1. Tt gives a family of estimators slightly larger than the one proposed by Ghosh
and Sinha (1988). If we want g; and g, both positive the next theorem might be useful.
The idea of the proof consists in making positive an estimator of R* who underestimate

R*.

Before giving the theorem let us introduce some notations. If 4 is a p X p ma-
trix define chmax(A) as the largest eigenvalue of A. Let v(T;) = tr(QA;)/T; - 2,7; =

tr(QA;)/chmax(QA;) — 2 and 6;(Ty) = 4/(n +2) + 2/7:(Ty).

Theorem 2.2. If the regularity conditions for integrating by parts g; and g, are satisfied

and
a) 7,>0 i=1,2
b) 0<¢; £7;

¢) zgi(2)¥ %@ [(y;(z) — gi(2))%(®) is nondecreasing in z,% = 1,2, then 2 is minimax.
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Proof. We have
R* =2 3 B{(g:(F)/F)Y,Q(Y: - 6:)}/o*
— B{((0:(F)/F)Y: + (02(B2)/ F)Y) Q1 (F)/F)Ya + (ga(Fa)/ Fa)Ya}
>2 5 B{(g:(F)/F)Y!Q(Y: - 6;) ~ (9:(F)/ PP YIQYi} o
=2 3 B{(tr(A:Q) - 2T)(6:(F)/ Fy) - Tig(F)/F:

+ 2T3gi(F3) + 4Tigi(Fi)gi(Fi)/ (n + 2)}

2 o [T(6(T) — gi(F)HTIH 9 Fgy(F)»/ =T
Figi(F)@/wTN=1 9F; (vi(Ti) — gi(F:))%(T)

>0 |

Corollary. If the condition c¢) in Theorem 2.2 is replaced by saying that g¢; is increasing,

¢ = 1,2, then the result holds.

3. Bayesian results

Let Y7 and Y, be independent, Y1 ~ Np(61,02A1) and Yz ~ Np(62,0%A,). We want to
estimate y; = 6y 4+ 03 and the loss function is quadratic. (See Section 2 for the connection
between this problem and the original one.) For a quadratic loss the Bayes estimator
is simply the posterior mean of i, or, equivalently, the sum of the posterior means of
61 and 6,. Taking independent priors on 6; and 6, leads to an estimator of the form
fu = E[6:1|Y1] + E[62]Y3] = §; + 6, (say). Thus, our problem is reduced to the more
familiar one of estimating the mean of a multivariate normal distribution in one sample
problem. Many results exists on this subject (cf. Berger and Robert 1990 for a good

discussion). Depending on the priors we can recapture some of the estimators introduced

in Section 2 (cf. Berger 1980).



In the following we shall develop a new estimator for estimating the mean of a multi-
variate normal distribution in one sample problem. Let Y be distributed as a N,(6,0%A)
and suppose that we want to develop a prior for § when 02 and A are known. Assume that
A = cI. In many cases it is reasonable to believe that the components of § are exchange-
able. Thus, one can determine a hierarchical prior the following way. On the first stage 6 is
Np(pl,A) where 1 = (1,...,1) and A =02(p1l' + (1 — p)I),0%2 >0,-1/(p—1) < p < 1.

On the second stage a joint distribution on 62 and p is chosen.

We expressed A in terms of o2 and p for two reasons. Firstly, these parameters
represent directly the variances and the correlations. Secondly, for any vector having
exchangeable components with second moments there exists 2 > 0 and —1 /(p—1)<p<1
such that the covariance matrix is given by 02 (p11'+(1—p)I). Although this representation
has its advantages we would like to switch to another one by setting a = 62{1 4 (p—1)p}
and B = 02(1 — p). In this new representation A = aP + B(I — P) where P = (1/p)11’.
This representation makes computations simple and we can interpret it easily. Actually, o
represents the variance of 1'6/,/p and § is the variance of 7’0 for any vector 7 satisfying

n'n=1and 5’1 =0.
Let w be the joint density of («, 3). Given (a, ) we have

(o) ~(()- (7% )

so the Bayes estimator becomes

= El|z] = z — coE[(co®I + A z)(z — pl)
= ¢ - Bl(1 4+ a/eo®) " [¢]P(z — 1) — (1 + ffco®) " |al(I ~ P)(z — ud)

= o — E[(1+ a/co®) ™ [a](F — )1 - E[(1 + B/co®) " Ja](z — 71)

7



and the conditional density of (a, §) is given by
w(a,Ble) & (1+afco?) 2(1+ Bleo?)~ =D/ exp —%{p@ — WP+ afeo?) 1+

1+ 8/eo) bl )
with 7 = 1'z/p and s% = ||z — 71]|°.

Depending on the assumptions on g some simplifications are possible. Assuming

independence between a and § (w(a, 8) = wi(a)wz(B) say) we get
§ =z — hi(p(F — p)?/2c0?)(T — p)1 — hy(s?/2c0®)(z — T1)

where hy and hq are both increasing functions,

b — _[;)oo(l +t/ca?)~Pi/241)) exp —%{ai(l +t/co?) " wi(t)dt

i~ < =1,2
Jo (1 41t/co?)=pi/2 exp —{ai(1 + t/co?)1}w;(t)dt

with p; = 1,ps = p—1,a1 = p(T — p)?/2c0?, a3 = s? /2co?. In practice, by and h; can be
evaluated numerically.

We can even obtain closed expressions for h;,7 = 1,2, if we make the prior dependent

2

of the parameters ¢ and o2 through co?. In fact, if we set u; = (1 + a/co?) ™!, uy, =
p g

(1 + B/co?)~! and give density f; to u;,¢ = 1,2 where
filt) o t(mimP)/2=1=bit/2 4 (g 1)
then we get

hi(z) = mi(z + b;) (1 —~ [’% /0 Ami/21 g —{(A=1)(z+ b,-)/z}dx] 4)
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and Z [ A™/2=1exp —{(A — 1)b}dA
bm/2
(m/2)![exp(b)—ET/ 2= pi /i1]

t=0

if m is even

bm/2
I'(m/2+41)[exp(b) P[|N(0,1)|<v2b] -7~ /2 p(i+1/2) /T (i+3 /2)]

(cf. Berger 1980).

if m is odd

The last result is interesting because it leads to an admissible estimator easy to com-
pute. However, in a practical situation, ¢ will depend on the sample size so the prior will

change according to the sample size which is troublesome from a bayesian point of view.

4. Abstract results

In this section we shall extend the original problem to a more abstract one. The key

element is going to be the invariance. Let us start with two examples.

In the first example X; is Np(u,X), X is known, and X, is independent of X;. We
desire to estimate y. No further assumptions are made on the distribution of X,. We
assume that we have two estimators of p (a minimax estimator f; based on X; and
another estimator ji; based on X3). We can combine these two estimators and obtain a

minimax estimator fi by setting 2(X1,X32) = fia(X2) + 41(X1 — 32(X>)). For instance, if

1 -1
A is positive definite, 41(X1) = X; — HEHELD TIN5 + 4)71X; and (Xa) = X
then, subject to some regularity conditions (cf. Berger 1980), fi; is generalized Bayes and
minimax. Moreover, if we take ¥ = 02%; and A = 023, then we obtain u*. Intuitively, if

the risk function of f; is minimum at the origin and /i, is an accurate estimate of y then

the risk function of i will be smaller than the one of fi; for large values of p.

In our second example S; is Wishart Wj(X, n), S, is independent of S; and we desire
to estimate 3. A minimax estimator of ¥ is given by 31 where 3 depends only on S;.
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Another estimator of ¥ based on S5 is given by 3. This second estimator is always positive
definite. Write £, as £, = TT' where T is lower triangular (the Cholesky decomposition).
Define 3 as 3(S1, S2) = T2 (T~ S1 T~ )T". This new estimator is minimax again. If the
risk function of ﬁl is minimum at ¥ = I and f]g is accurate then the risk function of 3

will be smaller than the one of 33; as (X — I) becomes “large”.

Consider now an invariant problem with a group G, a sample space X, a parameter
space O, a decision space D and a loss function L. Let R be the risk function. Corre-
sponding to (g,z,0,d) € G x X X © x D denote by (§z, g0, g*d) the outcome resulting
from the transformations, on X x © x D, induced by ¢g,g € G. Assume that G is tran-
sitive on © (that is, for any 6,6y € © there is a ¢ € G such that § = gb). Given
g € G define §9 as §9(z) = ¢*8(§~'z) for all z € X'. Suppose that § is minimax and let
m = inf{R(6,6) : 6 € O} and @ = {0 € © : R(4,6) = m}. Since the problem is invariant
we have R(0,69) = R(g—'6,6) which implies that §9 is also minimax. If we happen to
know a g € G such that g~14 € Q we can replace § by §7. Usually we do not know which
g satisfies the relation g~16 € Q but we can always guess one and replace § by 69 keeping

in mind that 69 still minimax (cf. Stein 1962).

The basic idea in this section consists in replacing what is considered as an arbitrary
guess for ¢ by an estimate coming from another independent experiment. Independence

will preserve minimaxity. In fact, if M denotes the minimax risk then
R(6,6%) = Eg[R(6,67)lg] < Eg[M|g] = M

no matter what is the distribution of g. In the first example we took g = 2(X32) and in
the second example we had ¢ = T. Suppose now that § is Bayes. Is 69 Bayes also? We .
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shall answer this question by considering the case where g is fixed and then the one where

g is estimated.

Let ¢ € G and 6y € O be fixed. Since G is transitive on © assume that the prior
distribution on © is induced by a probability measure on G(P({§ : 8§ € A}) = P({g € G :
980 € A})) having density 7 with respect to a left invariant measure A on G. Denote the
corresponding Bayes risk by R(,§) where é represents the estimator. Finally, define 79

as m9(h) = (g~ 1h),g,h € G, and denote the density of X, with respect to a measure p,
by f(z;0).
Theorem 4.1. R(7,6) = R(n9,89).

Proof.

R(r,6) = / / L(h8y,8(x)) f(z; h8o)m(h)M(dh)u(dz)
= [ [ 257 60,8 (257 Rty (WA @h(de)
= [ [ £B0,576() (257 Rb)w? (A (@h(do)
_ / / L(Bbo, % (2)) f (z; Fbo)m® (WA(dh)u(dz)
~ R(r9,59) u
Therefore, if & is a Bayes estimator with respect to 7 and g is fixed then &9 is a Bayes

estimator with respect to w9.

Let us now treat the case where g is random. Let )\ be a left invariant measure on
G and take this measure as the reference measure for all of the densities define on G. As
before, decompose 6 as § = hby,8 € ©,h € G. Suppose that the density of g is r# where 8
is an unknown parameter, 8 € G, and consider a joint distribution p on (h, ) given in the
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following way. Conditionally on 3,8 € G, h has density u” and marginally, 8 as (possibly
improper) density A(87!) where A is the right hand modulus of A. Define also 79 on G

as mI(h) = [rP(g)uP(R)A(B~1g)\(dB). Notice that 7 satisfies the following property:

Property 4.1 There exists two independent random variables H; and H, on G having

densities ¥ and u? respectively such that H;'H, has density .
Theorem 4.2. R(p,8) = [ R(x9,6)A(g71)A(dg)

Proof:

R0 = [ [ [ [ £E60, 8 (0 (MAG MDA @hutdz) N do)
_ / / / L(B8o, 6(2))m? (R)A(dh)u(de) A(g~ )\ (dg)

- / R(n?,6(z))A(g™")A\(dg) .

Therefore, if 6 is a Bayes estimator with respect to 7 and there is a density r such
that property 4.1 holds then 69 is a generalized Bayes estimator with respect to p. Let
us conclude this article by applying our last result to the original problem. If we set
G =RP,6 = 0,9 = Xo,h = p1,B8 = p2 and suppose that, conditionally on 3,h is -
N(B, g1—;—’\202(21 + X2)), A having a certain distribution on [0, 1], then u} turns out to be

a generalized Bayes estimator.
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