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ABSTRACT

The Bayesian viewpoint on precise hypothesis testing is reviewed, with special em-
phasis on the conflicts with classical P-values that arise. Three methods of actually doing
the Bayesian analysis, based on minimal prior input, are presented and compared. These
recommended approaches use conjugate or noninformative priors, with the data interpreter
required only to specify the prior variance, prior credibility region, or prior density at the
null. These methods are illustrated on the problems of testing a normal mean, a binomial
proportion, and a multinomial parameter vector. For the latter problem, a particularly
efficient scheme for calculation, via Monte Carlo simulation, is developed.
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1. INTRODUCTION AND BASICS

1.1 Basics and Measures of Evidence

Suppose X having density f(z|0) is observed, with 8 being an unknown element of
the parameter space O, and that it is desired to test Hy : § = 6y versus Hy, : 6 # 6.
(It is shown in Berger and Delampady, 1987, that this is often a good approximation to
many realistic scenarios concerning testing of an imprecise hypothesis.) We consider three
measures of evidence against Hy, the classical P-value, the weighted likelihood ratio or

Bayes factor and the Bayesian posterior probability of Hy.

P-yalue. Let T(X) be a test statistic, extreme values of which are deemed to be
evidence against Hy. If X = z is observed, with corresponding ¢t = T(z), the P-value (or

observed significance level) is

(1.1) a = Py, (IT(X)| 2 |¢])-

Bayes factor. Let ¢g(6) be a continuous density on {§ # 6p}. Then the Bayes factor,

or weighted likelihood ratio of Hy to Hj, is

(1.2) B = {@l%)

mg(z) ’

where

(13) my(z) = [ FelB)g(o)d.

For a Bayesian, ¢ would be the prior density for 8, conditional on H; being true. For a
likelihoodist, ¢ might be thought of merely as some weight function to allow the computa-
tion of an average likelihood for Hy. B might then be called a “weighted likelihood ratio”
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for the two hypotheses. Its interpretation is similar to that of a usual likelihood ratio; e.g.,

a value of B = 1/10 means that H, is supported ten times as much by the data as is Hy.

Posterior probability. If a Bayesian specifies, in addition to g, the prior probability of

Hy, to be denoted by mg, then the posterior probability of Hy is
(1 — 7o) my(z) ]_1
P(Hylz) = |1+
(Hol2) [ mo  f(zl6o)

ez

(1.4)

Ezample 1. Suppose we observe X ~ N (8,02 /n), where o2 is known. Then, letting
T(X) = V/a(X — 0)/o,
one obtains the usual P-value as
o =201~ 3(]),

where @ is the standard normal cumulative distribution function (cdf).

An easy to analyze density g is the N(u,72) density. Calculation yields that

(1.6) B= 1+P‘2exp{‘% [%_"z]}’

~ where p=0/(y/nt) and n = (6 — p)/7. Note that y will often by chosen to be 6y (so as

to have a symmetric “weight function”), in which case

(L.7) B=+1tp" exp{——;- [5_572)]}

The posterior probability of Hy can be found from these formulas and (1.4), provided g

is specified.



As a specific example, suppose u = 65,7 = 0 and 75 = % For various ¢t and n, the

various measures of evidence are given in Table 1. There P stands for P(Hy|z).

TABLE 1
Measures of evidence, normal ezample
n
t e’ 1 5 10 20 50 100

B P B P B P B P B P B P
1.645 .10 .72 .42 .79 .44 89 .47 127 .56 1.86 .65 2.57 .72
1.960 .05 .54 .35 49 .33 .59 .37 .72 .42 1.08 .52 1.50 .60
2576 .01 .27 .21 .15 .13 .16 .14 .19 .16 .28 .22 .37 .27
3.291 .001 .10 .09 .03 .03 .02 .02 .03 .03 .03 .03 .05 .05

1.2 Motivation and History

The main motivation for considering this problem is that the classical P-value and the
likelihood or Bayesian answers typically disagree. This is indicated in Table 1 where, for
instance, P(Hy|z) is from 5 to 50 times larger than the P-value, a. The Bayesian analysis
here is close to that recommended by Jeffreys (1961) as a “standard” Bayesian significance
test. (Jeffreys chose a Cauchy form for the prior, but this makes a substantial difference
only when |¢| is large.) Thus, if n = 50 and ¢t = 1.960, Jeffreys would conclude that Hy has
probability .52 of being true, although the classical statistician would “reject Hy at signif-
icance level a = .05.” Admittedly, classical statisticians will warn against interpreting o
as the probability that Hy is true, but surely the classicist feels that a = .05 is reasonable
cause to doubt Hy, in marked contrast to the Bayesian conclusion. This is perhaps the
simplest problem where the Bayesian and classical statistician are in fundamental practi-

cal disagreement, and as such, the problem deserves intense study. (Our label “classical
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statistician” is admittedly ambiguous; there are statisticians who consider themselves to
be “classical,” and yet do not view P-values as meaningful measures of evidence, and there

are Bayesians who view P-values as useful measures of evidence.)

This phenomenon, of large differences between P-values and likelihood or Bayesian
measures in precise hypothesis testing, is very general, as has been documented in Ed-
wards, Lindman, and Savage (1963), Berger and Sellke (1987), Berger and Delampady
(1987), Delampady (1989a, b), Delampady and Berger (1990), and the references therein.
Indeed, it is shown in these papers that large differences typically exist for any reasonable
conditional prior ¢ on H;. When a classical answer disagrees with all sensible Bayesian
answers, the classical answer is highly suspect. Indeed, in Berger and Sellke (1987) and
Berger and Delampady (1987) it is argued that the P-value is seriously flawed in the sense
of conditioning, since it replaces the actual data by the set of all data as or more extreme
than that observed. The seemingly inevitable conclusion is that P-values must be replaced

by likelihood or Bayesian measures for precise hypothesis testing.

The viewpoint adopted here is that of seeking a “minimal” Bayesian analysis. One
of the main attractions of P-values is their simplicity, and so simple Bayesian alternatives
are sought. The two facets of Bayesian analysis that we will be concerned with are (i)

Simplicity of prior input, and (ii) Calculational simplicity.

The simplest Bayesian analyses are typically “noninformative” prior analyses. Unfor-
tunately, such analyses are usually useless for precise hypothesis testing. In Example 1,
for instance, a typical noninformative prior analysis would be done by letting the prior

variance, 72, go to infinity. From (1.6) or (1.7), however, it can be seen that then B — oo,



yielding a useless measure of evidence.

There have been efforts at deriving “automatic” priors for use in Bayesian testing
of precise hypotheses. These include the original development in Jeffreys (1961), and
extensions or alternatives in Zellner and Siow (1980) and Smith and Spiegelhalter (1980). -
These developments proceed by arguing that “if one must specify a default g for automatic
use, then a good such g is ...”. In Example 1, Jeffreys argued for a Cauchy (6y,0?) default
g, although Smith and Spiegelhalter argued for a constant default g (but a particular

constant); these default g actually often give very similar answers.

We agree that, if one must produce an automatic Bayesian significance test, then the
Jeffreys, Zellner-Siow or Smith-Spiegelhalter tests are quite satisfactory. Furthermore, we
feel that automatic use of such tests is vastly superior to automatic use of P-values, for
reasons to be made clear later. Nevertheless, we would argue that either test imposes a
particular and highly informative g on the user, and as such cannot claim to be noninfor-

mative.

In support of this claim, consider the choice of ¢ in Example 1. It could be argued
that 4 = 6p is a reasonable “noninformative” choice, but what can be done about 72?7 The
Bayes factor, B, depends strongly on 72, and we have seen that 72 = oo yields a ridiculous
answer. It seems inescapable that the user must be required to specify 72. This would be
the “minimal” prior input required in this example. Note that, intuitively, this minimal
prior input corresponds to the degree of departure from 6, that is anticipated, if H; is

true.



The “automatic” priors such as that of Jeffreys are, in essence, obtained by rather
arbitrarily (but not unreasonably) specifying a value for the “minimal” input. Jeffreys
analysis corresponds quite closely to choosing 72 = mo2/2 (see the reply to Zellner in
Berger and Delampady, 1987). While not unreasonable (it at least puts things on the right
“scale”) this choice corresponds to a quite specific prior belief. We feel that it is better to
acknowledge the necessity of 72 as an input, and require its specification. (Note that, in
reporting the result of a study, one would typically, say, graph B as a function of 72, so

that any reader could determine his own B.)

There is a substantial literature on the subject of Bayesian testing of a precise hypoth-
esis. Among the many references to analyses with particular priors, as in Example 1, are
Jeffreys (1957, 1961), Good (1958, 1965, 1967, 1983 1985, 1986), Lindley (1957, 1961, 1965,
1977), Raiffa and Schlaiffer (1961), Edwards, Lindman and Savage (1963), Smith (1965),
Zellner (1971, 1984), Dickey (1971, 1973, 1974, 1980), Lempers (1971), Leamer (1978),
Smith and Spiegelhalter (1980), Zellner and Siow (1980), Diamond and Forrester (1983)
and Gémez and de la Horra Navarro (1984). Many of these works specifically discuss the
relationship of P(Hy|z) to significance levels; other papers in which such comparisons are
made include Hildreth (1963), Pratt (1965), DeGroot (1973), Dempster (1973), Dickey
(1977), Bernardo (1980), Hill (1982), Shafer (1982), Good (1984), Berger (1986), Berger
and Sellke (1987), Casella and Berger (1987), Delampady (1989a, 1989b), Berger and

Delampady (1987), and Delampady and Berger (1990).

1.3 Overview

In this paper, we consider three “minimal input” Bayesian analyses for precise hypoth-
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esis testing. These correspond to three possible choices for classes of conditional priors, g,
on H;. The classes considered are a conjugate class, a domain restricted noninformative
class, and a multiplicative noninformative class. These classes are introduced in Section
2.1. Section 2.2 considers application of these classes to Example 1; Section 2.3 deals
with their application to the binomial problem; and Section 2.4 considers the multinomial
situation. For the latter problem, a new Monte-Carlo simulation technique is developed
to perform needed numerical integrations. Section 3 presents conclusions and additional

comments.

From now on, we will focus on the Bayes factor B, rather than P(Hp|z). The reason
is primarily our goal of “minimality”; P(Hp|z) also requires specification of 7. While
specification of my may be necessary for an individual trying to make a decision about
H,, the data influences the decision only through Bj; hence it suffices to present B as the

output of the data.

2. THE MINIMAL BAYESIAN ANALYSES

2.1 Three Classes of Priors

One can, of course, specify g in (1.2) in a completely subjective fashion, and we
certainly recommend that such be done when possible. When this cannot be done, g must

be selected from a simple class of priors. Here are three classes that have been considered:

Gc ={9-, 0 <7 <T: g, is a conjugate prior with mean 6, and standard deviation 7};

Grn = {¢ern*(0)1le,(0), 0 <r < co: 7* is a noninformative prior, le, is the indi-



cator function on a compact prior credible set ©, “centered” at 6y, and ¢, is
the normalization constant} ;

Gy = {c*(0)/7*(6y), 0 < ¢ < 00 : 7" is an improper noninformative prior, and c is
the desired density of g at 6y }.

A few words about the rationales for these three classes are in order. (Additional
discussion can be found in Section 3.) The classes G¢ and Grar are based on the idea that
the “minimal” input is a specification, in some sense, of the believed possible “distance”
of 8 from 6y under H,. For G¢, “distance from 6,” is measured by standard deviation 7;
here T is the largest (often oo) standard deviation that can be attained by a conjugate
prior with mean 6;. When 6 is a vector, as in Section 2.4, it will be more convenient to let

T stand for a covariance matrix multiplier that is related to the standard deviations.

For Grar, “distance from 6y” is measured by choice of a credible set ©, in which it
is thought that 6 is “likely” to lie (under H;). For instance, in Example 1, a natural
choice for @, is ©, = {6 : |§ — 6o| < r}. It is convenient to define “likely” by specifying
that r should be chosen so that O, is an 80% prior credible set. This choice is clearly
arbitrary, but has the advantage of roughly calibrating G¢ and Grar. Once r is chosen, it

is reasonable to select the prior to be noninformative on ©,.

The motivation for G is quite different, since it consists only of improper priors. The
class arises out of the observation that, for a fixed smooth density ¢ on H; and a fixed

P-value, the Bayes factor can be approximated for moderate to large sample sizes by

f(=|6o)
9(60) [ f(x|6)d6
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In this situation (which is not uncommon), the only feature of g that is required is g(6).
This suggests using g(6o) as the “minimal” Bayesian input; for calculational convenience,
it is often appealing to choose the prior corresponding to this input to be a noninformative
prior with the given density at 6. See Smith and Spiegelhalter (1980) for an alternative

motivation.

Although apparently the simplest of the classes of priors, subjectively choosing ¢(6y)
is not easy. Indeed, the only technique for subjectively choosing g(6y) that we are aware of
is to develop a proper subjective prior and let g(6y) be its density at 6. In the following
we will assume that one either specifies 7 from G¢ or r from Gras, in which case ¢g(6) is
either g-(6) or ¢,7*(6p). (The main reason for using G after specifying 7 or r would be

calculational simplicity.)

2.2 Application to Testing a Normal Mean

Consider the scenario of Example 1. The natural choices for the three classes of priors
are (since 7*(d) = 1 is the usual noninformative prior)
Ge = {gr = the N(y,7?) density, 0 < 7 < o0},
Grn = {gr = the Uniform (6y —r,6p + r) density, 0 <r < o0};
Gn = {g. = the constant (improper) density ¢ on (—o0, ), 0 < ¢ < oo}.

For priors in these classes, the Bayes factors are given, respectively, by
nr?\'/? 1, o?
Be(T) = (1+7) eXp{—Et /(1+m)},

Brar(r) = 2/ [ (L2 - 1l) 2 (-¥2 -1 )],

Bale) = Lo g
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recall that ¢ = \/n(T — 6y)/0, and ¢ and & stand for the standard normal density and

c.d.f., respectively.

To compare these Bayes factors, we relate 7, r, and c as follows. First, to relate 7 and r
recall the suggestion that r be chosen so that (6o —r, 6p+r) is an 80% credible set for § under
H;. If g were g = N(6o,72), the 80% credible set would be (8o — (1.28)7, 8, + (1.28)r),
so the natural relationship is r = (1.28)7. The two suggestions for ¢ given in Section 2.1
were g-(6) and g,(6), which for r = (1.28)7 can both be shown to approximately equal

¢ = 1/[(2.5)]; hence we use this choice in the following.

With the above choices of r and ¢, the Bayes factors B¢, Bras, and Bas can be written
as the following functions of 7* = \/n7/0:
Be(r) = (1+ 72 exp{~24*/(1+ 7)),
Bryr(r) = (2.56)7"¢(t)/[2((1.28)* — [¢]) — @(~(1.28)7™ — [¢])],

Bar(c) = (2.5)7*4(2).
Figures 1, 2, and 3 graph these three Bayes factors, as functions of 7*, for t = 1.645,t =

1.96, and ¢ = 2.576, respectively (corresponding to P-values of 0.10, 0.05, and 0.01.) Note
that B¢ and Bgy are very similar, and both agree with By for large 7* = \/n7 /0. For
small 7%, Bra behaves quite differently, and should not be used; recall that the motivation

for Bra was asymptotic, as n — oo.

Note also the fact that the Bayes factors tend to be much higher than the correspond-
ing P-values (except for the inappropriate Bar for small 7*). This, again, is one reason

that it is very important to develop Bayes factors in precise hypothesis testing.

Note, finally, that, for this problem, Jeffreys (1961) proposed use of Cauchy priors. As
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mentioned earlier, his results are essentially the same (except for quite large |¢|) as those
obtained by use of a A(6,mc?%/2) prior. We do not consider the class of Cauchy priors
because computation of B then requires numerical integration. Also, the Cauchy class has

no significant advantages over the classes considered here.

2.3 Application to Testing a Binomial Proportion

Suppose X ~ Binomial (n, ), so that 0 < § <1 and

F(z]6) = (Z)eza — 6", z=0,1,...,n.

Then the Bayes factor (1.2) is given by

G5 (1 — )" =

(2.1) = — .
[ 6(1 — 0)n==g(6)d6

Natural conjugate densities are Beta densities; the Beta density with mean 6p and

standard deviation 7 is (on (0, 1))

I(K,)

(2:2) 9-(0) = FGEIT(A —6)K.)

6[90 KT—l](l _ 9)[(1—00)1(-,—-—1]’

where K, = [1726p(1 — 6p) — 1] and T is the Gamma function. Only standard deviations

0 < 7 < 4/600(1 — 6p) yield proper Beta densities, so the conjugate class becomes

(2.3) G = {gr in (2.2), 0 <7 < \/6o(1—60)}.

—1
The Bayes factor for ¢, can easily be shown to be (defining II a; = 1)
i=0

N F(GOI{T)P((l — eo)K.,-)I‘(n + K-r)eg(l ; eo)n_z
(2.4) Be(m) = K T(s ¥ oK) (n =2 + (1 — B)K,)

n—1
T (K, +1)

B )| [ ()]
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To develop Grar and Gar for the binomial problem, it is necessary to select a nonin-
formative prior for §. The three common choices are 7(8) = 1, 7(8) o< §-1/2(1 — §)~1/2,

and

™) =671 (1-6)71

the last is improper and works best for our purposes, because it allows one to choose
compact sets ©, for which any 6 is the mean or median for priors in Grar. The main

disadvantage of 7* is that its use in G A requires that 0 < z < n.

One could choose a variety of different ©,. to define Grar. Here we consider
(25) O, = ([ + (65" — I [1+e~(05 — 1)),
so that
(2.6) =1/ /@ 7 (6)d0 = 1/(2r);

this follows immediately from the observation that the density of

o
(1—6o)

(2.7) ¢ = log — log

(1-9)

is 7(€) = 1 (on (—o00,00)), if 6 has density 7*(6), and that ©, transforms into ¢ € (—r,r).
In fact, this was the motivation for consideration of ©,, being as the above log odds
transformation “centers” the problem at 6, and is often thought to be a “normalizing”
transformation. (A somewhat better normalizing transformation was used to define anal-
ogous regions in Berger and Delampady (1987), but the choice here is computationally

more convenient.)
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The Bayes factors resulting from use of g. € Gnr and g, € Grx are, respectively (and

recalling that we assume 0 < z < n for Gy),

05(1 —6p)" =

2.8 Bur(e) =

2% © cho(1 — 6) f, 6G==1(1 — g)(n—2-1)dg

(2.9) Br(r) = 2r63(1 — 6)("~7)/ / 6==D(1 — g)n—=-Dgg
o,

2r8%(1 — 6,)(»—2)

(n_f_l)%;_%[ﬂ(”i) — H=+9)]

(n—z~1)
=0

where (¢, 1) is the interval in (2.5) and (’;1) = m!/[q!(m—q)!] is the usual binomial coefficient

(with () = 1).

In Section 2.1, it was suggested that r be chosen to yield an 80% prior credible set
for 8, while one suggestion for ¢ was to choose 7 for g, € G¢, and then set ¢ = g.(6p).
This could again result in putting the “minimal inputs” on a similar scale for comparison
of the corresponding Bayes factors, but there are technical difficulties in doing so. Hence
we, instead, present separate graphs of B¢(7) and Bgras(r) for three different situations,

each corresponding to three different P-values, a. The three situations are:
(i) @ =0.096, with n = 15,z = 6, and 6§y = 0.20;
(ii) @ = 0.049, with n = 50,z = 16, and 6, = 0.20;
(iii) a = 0.010, with n = 20,2 = 9, and §, = 0.20.

Figures 4 and 5§ graph B¢(7) and Bras(r), respectively, for each of these three cases. Note
that the range of possible standard deviations, 7, is 0 < 7 < 1/6(1 —6y) = 0.4. We
have not graphed Bar(c), since it is of the simple form K/c; for cases (i), (ii), and (iii),
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K is, respectively, 0.967, 1.11, and 0.229. To interpret these, note that ¢ ~ 5 would be a

reasonable value.

Figures 4 and 5 show that the classes G¢ and Grar behave very similarly. The class
Gra is quite a bit larger, so the minimum of Bras(r) is smaller than that of Bc¢(r),
but not dramatically so. As expected, all minimum Bayes factors are dramatically larger
than the corresponding P-values. Finally, it may seem surprising that the Bayes factor
corresponding to a = 0.049 is larger than that corresponding to a = 0.096, for large 7 or r.
The difference is that n = 50 in the case where a = 0.096, while n = 15 in the case where
a = 0.049; sample size does not have much effect on the minimum Bayes factor, but has a

large effect on how fast the Bayes factor increases as one moves away from this minimum.
2.4 Application to Multinomial Testing

Suppose X = (Xi,...,Xp4+1) ~ Multinomial (n,6), where the z; are nonnegative

. p+1
integers, ¥ z; =n, and
i=1

9€0=1{0b,...,0,):0< 8 <lfori=1,...,p, and éla,- <1}.
Defining 6,41 = 1 — él 8;, the resulting likelihood for 8 given z is then proportional to
(2.10) £(8) = pﬁ; LA
and the Bayes factor (1.2) for testing
Ho:0=6"=(6,...,60) vs. Hy:0#6°
is
(2.11) B = 4(6°)/ /@ £(6)9(8)d6.
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The natural conjugate densities with mean 6° are Dirichlet densities given by
+1 0__
(2.12) 9-(8) = T(r) TL 67~ /T(r6D)]

Here 7 is not the standard deviation, but is a covariance matrix multiplier in the sense

that

1
(T+1)

(2.13) Covariance (8) = (diag {6°} — 6°(8°)"),

where diag {6°} is the diagonal matrix with diagonal given by 6°. To elicit 7, one could
specify the variance of a “typical” 6;, and solve for 7. Or one could elicit the “average”

variance, U, of the 8;, and solve for 7 via
+1

(2.14) T = (pv) [1 -3 (6 )2] -1
i=1

Any 7 > 0 is possible, so

Gec = {g9- asin (2.12) : 7 > 0}.

For g,(8) in G¢, the Bayes factor can be written in the alternative forms

(7 4+ n) p+1 (69)%T(762)

2.1 B =
(2.15) e(7) I(r) =1 T(r6? + ;)
(n=1) ) (r£1) ((zi=1) J
(B /B )
~1
again adopting the convention that II a; = 1. Note that, for the common choice §° =

=0

(p +1)71(1,...,1), the Bayes factor becomes

(2.16) Be(r) =" — (T +J)

- , where m; = #{z; > j}.
B i+ ==}
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Analogously to the binomial situation, we define Grar and Gur, using formulae in

Section 2.1, with the noninformative prior
p+1
()= 1I 6] 1
=1
It will be necessary, for use of this prior with G, to assume that all z; > 0.

For gde € gNa i-e'7
+1
(2.17) go(6) = ¢ T1 (60/6)7",

the Bayes factor becomes

[(n) (p+1)
c

(2.18) Bu(c) = T (69" /T(e) -

Again, the choice ¢ = ¢g-(6p) (g- from (2.12)) is recommended and will be used in our
example.

It is not easy to define a sensible Gras, here, for which computation of the Bayes

factor is relatively easy. One possibility is to define
O,={0:&(0)e(—r,r)fori=1,...,p},

where £;() is the “centered” log odds

00

3

(-

(2.19) () =log 7 fia,-) _log

For p = 1, this reduces to the set (2.5) for the binomial situation. This would suggest
determining r by “assuming” that the ¢; are 1.i.d. so that, if O, is to have probability 0.8,

say, then P(¢; € (—r,r)) = (0.8)}/P. One could then choose r by considering a “typical”
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¢; and subjectively choosing an r to achieve this probability for (—r,r). Note that one
could have different intervals (—r;,r;) corresponding to each ¢;; the following analysis is

essentially identical for this case.

The normalization constant corresponding to 7*(8)1e,(8) is

=1/ /@ 7 (6)d6 = 1/(2r)?;

this follows, as in the binomial case, from the observation that, under the transformation
6 — £(0), the prior transforms into the constant (improper) prior 1 on RP. This completes

the specification of Gras-

For 7. € Grar, the Bayes factor can be shown to equal

(2 "I (80)"
(2.20) Bra(r) = p+1’=1
o [Eo]
T lie=1

= @r)?/ / «(E)dz,

(_r’r)p

where { = (&1,...,&p), (=n,7)? = (=-r,7) X (=1,7) X ...(~1,7), and

—_— )4
"D G

(2.21) () = [g;;H - ggee.-] o

A Monte-Carlo approximation to the integral in (2.20) (see the Appendix for discussion)

is, for r > 0,

(2r)Pm <i1£[1 T,-d,-(r)) B

(2.22) Bry(r) = — - _ - ,
2 [f@“)(r)) I +1E7(r) - Eil/n)2]
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where, fori = 1,...,p,

R ,'00 1/2
(2.23) £ =log <ufl) T,-=(.675)(i+ 1) ,

Tp+16° Ti  ZTppl
e t& o (r=&)
= mirray O maroa) A0
(2.24) ED(r) = &+ Wi (1 — Wi )78, Wiy = eilr) + di(r)Ui 55

here the {U; ;} are i.i.d. #(0,1) random variables.
For examples, we consider the three situations
(i) & =0.100,p=2,n = 13,2y =T,z = 5,z3 = 1,6° = (1,1, 1);
(ii) «=0053,p=3,n=11,2; =T,22 =23 = 24 = 1,6° = (1,1,1 1),
(i) & =0.008,p=3,n=14,21 =9,z = 3,23 =74 = 1,6° = (], 1,1, 3).

Figures 6 and 7 graph Bc from (2.15) (or (2.16)) and Bra(r) from (2.22), respectively,
for each of these three cases. We graph B¢ versus 77! instead of B¢(7) versus 7 so that
the shape is similar to other graphs. We have not graphed Bas(c) since it is of the simple

form K/¢; for cases (i), (ii), and (iii), K is, respectively, 0.469, 0.3076, and 0.0736.

3. COMMENTS AND CONCLUSIONS

It should be stressed that a “minimal” Bayesian analysis will not always be appropri-

ate. For instance, it may be the case that, under H;, there is a value 8; (or nearby region)

“that is particularly likely apriori. Then it would be appropriate to use a density g (or class

G) on 6 # 6, that is “centered” at 6;. Such situations tend to be situations requiring com-

pletely subjective Bayesian analysis, however, as opposed to the “as-objective-as-possible”
type of analysis we are considering.
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The main purpose of this paper was to illustrate and compare three approaches to

minimal Bayesian testing of precise hypotheses. Table 2 summarizes the comparison.

TABLE 2
Comparison of prior classes

Difficulty of

Calculational Input Size of
Class  Simplicity = Applicability Specification Class
exponential
Ge easy families easy moderate
RN moderate general easiest large
an easy general difficult moderate

The key calculational question is whether or not it is necessary to resort to numerical
integration, as with Ggras in the multinomial problem. For exponential families, where
conjugate priors typically exist, B¢ and Bar can usually be evaluated in closed form, while
B often requires numerical integration. Use of Gras, on the other hand, is not limited

to exponential families, as is use of G¢.

The “minimal” inputs needed to drive each of the three analyses have quite different
interpretations. The input for Grar is probably the easiest, since one needs only specify
an 80% prior credible set under H;. Specifying a prior variance, for use of Ge, is also quite
easy, though not all practitioners will be comfortable with variance. Most difficult is choice

of the constant for Gor. Indeed, only indirect methods of assessment seem to be available.

The column “size of class” reflects, to some extent, how convincing the class will be to
skeptics. The idea is that, in specifying Be(7) or Brar(r) or Ba(c), one is really specifying
an “envelope” of Bayes factors that covers also all priors that are mixtures of priors in the
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class. In particular, the indicated lower bound for the class can also be shown to be the

lower bound over all associated mixture priors.

Of the three classes considered here, mixtures of the g, € Grar are by far the most
general, typically consisting of any density that is nonincreasing, in some sense, as one
moves away from 6;. Thus Bgras(r) will typically be smaller (as a function) than, say,
Be(7) (once r and 7 are appropriately scaled). While Bgras(r) may be more convincing
to the skeptic (who views with suspicion the fact that the Bayes factors are much larger
than P-values), it may seem unreasonable to a Bayesian, since the priors g, € Grar are

less smooth than, say, the g, € Gc.

Our overall recommendation is to use G¢ and B¢ if working within the exponential
family and if the notion of variance is a comfortable one for those who will be interpreting
B¢. Otherwise, use of Grar and Bry is indicated. We recommend against use of G and
By, because of difficulty of interpretation and inaccuracies when only small departures

from 6y are expected.

Finally, it should be mentioned that a Bayes factor is seldom sufficient as an inference.
Typically, one must also produce a “confidence” or “credible” set for 8, given that H; is
true. (The Bayes factor provides the evidence against Hy, and the credible set indicates
how large a departure from 6y to expect, if indeed H; is true.) There is much to be said
for abandoning G¢ and Gr . at this point, and simply using a noninformative prior, 7*(9),
to derive the credible set under H;. Such would be the “minimal input” Bayesian credible

set.
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It might seem contradictory to be recommending different priors for Bayes factors and
credible sets, but recall that we are excluding the possibility of a completely subjective
analysis. The “minimal-input” needed for Bayes factors is not the same as that needed for
credible sets, and may in fact be misleading for the latter. For instance, specification of
gr € Gra will typically give much the same Bayes factor as specification of g, € G¢, but
the two can easily result in very different credible sets. Rather than trying to assess which
of these is more reasonable for credible sets, one can often do as well or better by simply

using a credible set for a noninformative prior.
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APPENDIX

That Bras(r) in (2.22) is a Monte-Carlo approximation to Bras(r) follows directly |
from the observation that the fgj)(r) in (2.24) are independent random variables with

density
(4.1) gi(6P (M) =1/ |rdi(r)(1 + 1) - &il/m)?]

so that the expression in (2.22) is the usual Monte-Carlo approximation with importance
p
function IT g¢:(-) (cf. Berger, 1985, for discussion). The reason for choosing this importance
i=1
function is that it is easily computable, easy to generate random variables from, has fat

tails, and mimics the likelihood function on the domain of integration.

In elaboration of this last point, note that the usual “observed likelihood” approxima-
tion to £(¢) is proportional to a Np(f, ¥) density, where £ = (£, ... ,ép) with the §; defined

in (2.23), and

T = diag {:ci’ i}-}- - (1),

1 " Tp Tp+1
with diag { } denoting a diagonal matrix with the given diagonal entries, and (1) denoting

the p X p matrix of all ones. Here £ is the m.l.e. of £(£), and ¥ is the inverse of the observed

information corresponding to £(¢) (cf. Berger, 1985). Because fatter tails than normal are
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desirable for an importance function, we consider, for ¢;, the importance function

1
2i(1 + [& — &l /)2

(4.2) g: (&) =

with quartiles chosen to match the normal density (hence the choice of 7; in (2.23)). For

simplicity, we consider the &; to be independent in this new importance function.

The final alteration needed arises because the domain of integration is ¢; € (—r,r),7 =
1,...,p. One of the pleasant features of ¢} in (A.2) is that the conditional density obtained
by conditioning on §; € (—r,r) becomes the also simple (A.1). Hence the densities in (A.1)
define the actual importance function used. Note that, if one attempted to incorporate
into the importance function the dependence among the original ¢; (or that in the N,(£,¥)
approximation), the ability to transform the importance function to have range precisely

equal to the domain of integration would be lost.
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Figure 1. Bayes factors as a function of 7* = y/n7 /o when ¢ = 1.645 (P-value=0.10).



0 |
2
o |
2
o
5
[3]
[
L.
3
Py
[
om
[To]
g B
n
o |
o

o -
N -
A -
o —
0 —
2

Figure 2. Bayes factors as a function of 7* = /n7/o when t = 1.96 (P-value=0.05).
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Figure 3. Bayes factors as a function of 7* = v/n7 /0o when ¢ = 2.576 (P-value=0.01).
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Figure 4. Bayes factors B.(7) corresponding to the P-values a = 0.096, o = 0.049,
and « = 0.010.
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Figure 5. Bayes factors B,,(r) corresponding to the P-values o = 0.096, o = 0.049,
and o = 0.010.
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Figure 6. Bayes factors B,, graphed versus 77!

a = 0.10,a = 0.053, and o = 0.008.
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