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Abstract

We consider the problem of robustness in hierarchical Bayes models. We consider a
random vector X = (X1,...,X,)?, the X; being independently distributed N(6;,02) (o2
known), while the 6; are thought to be exchangeable, modelled as i.i.d. N(u,72). The
hyperparameter p is given a noninformative prior distribution M(x) = 1 and 72 is assumed
to be independent of x having a distribution G(72) lying in a certain class of distributions
G. For several §, including e~contamination classes and density ratio classes we determine
the range of the posterior mean of 8; as G ranges over §.
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1. INTRODUCTION
1.1 The problem

In order to perform a Bayesian Analysis specification of a prior distribution is needed,
but sometimes people can not specify more than a class of priors arising the problem of
robustness with respect to this class. Roughly speaking, a class of priors will be robust
when Bayesian Analysis for each prior in the class leads to similar results. The problem
of robustness with respect to the prior elicitation process have been extensively treated by
a lot of statisticians, for a large review of the subject see Berger (1987). Some discussion
of the different approaches to the selection of a suitable § can be also seen in Berger
and Berliner (1986), Moreno and Cano (1988), Moreno and Pericchi (1988) and Walley
and Pericchi (1988). However, just a few has been done with respect to robustness in
the hierarchical Bayes scenario, we can mention Berger and Berliner (1986) and Moreno
and Pericchi (1990); the first paper is mainly related with choosing the type II maximum
likelihood prior from a class of hierarchical priors while the second one is related to Normal
Testing Hypothesis and Likelihood Sets and the uncertainty on the prior is modelled just

by e-contamination classes and in a different way than we do.

Hierarchical Bayes elicitation processes are very convenient because they provide a
frame in which a prior can be picked up in several stages allowing the use of structural and
subjective prior information and yielding to an elicited prior that would be very hard to be
admitted from direct elicitation. In the hierarchical Bayes scenario we consider the Normal
Case of Exchangeable Means. We have independent random variables X;,7 = 1,...,p;
distributed as N(0;,0%) (62 known), the 0; being random variables i.i.d. as N{u,72) (this
is our structural knowledge) and in a second stage we have to specify our subjective beliefs
about the hyperparameters p and 72. However, it is somewhat difficult to subjectively
specify second stage prior, so we will specify some classes instead. Along this paper u
will be assumed to have a noninformative prior M(x) = 1 whereas 72 will be supposed to
have a density G(r2) belonging to some class §, being our goal to find out robustness with

respect to this class.



The choice M(x) = 1 shrinks the posterior mean of 0; to T and it is argued in Berger
(1982) that it can be important to use subjective information G(r2) about the amount of
shrinkage. One could similarly allow for a more general subjective prior on y, but it seems
to be somewhat less important than utilization of information about 72; anyhow the u
known case is handled in a similar way to the studied one yielding similar results and the

same is expected in other intermediate cases.

One attractive property of the sort of estimators being used here, from a frequentist
viewpoint, is that they are minimax, see Berger and Chen (1987) and Berger and Robert

(1988).
1.2 Formulas and Notations

The posterior mean of §; will be noted as uf (x), being x = (z1,...,z,)t the observed
random vector. Accordingly to Berger (1985) we have
2 f—
Groy _ G(r2 o0?(z; — T)
u€(x) = z; — EG(T/%) [m] , (1.1)

where,

exp {55857 |

2
G(r/x)a (02 + 72)(p-1)/2

G(r?). (1.2)

2 P
In (1.2) T = (Z :1:,-) /p and s = Y (z; — Z)2. In order to ensure that (1.2) defines a
i=1 i=1

proper density we will suppose that G(72) is bounded and p > 4 if we need it.

Let m(x/G) denote the marginal density in this hierarchical model. Standard calcu-

lations lead us to
m(x/G) = / m(x/r2)G(r?)dr?, (1.3)
where m(x/72), the marginal density under the hierarchical prior 8; ~ N(p, 72) and N(p) =

1 is given by

exp {————( s 2)}
2y 2(02+41
m(x/7%) = @M)P72(o% + 12)@-DI7E (1.4)

For priors of the form G = (1 — €)Go + £¢ computations give
m(x/G) = (1 — e)m(x/Go) + em(x/q), (1.5)
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and

G(r?/x) = A(X)Go(r?/x) + (1 — A(x))g(7% /%), (1.6) .
where
_ (1—¢)m(x/Go)
A(X) - m(x/G’) ] (17)
so the posterior mean is written as
pe (%) = A)pg™ (x) + (1 = Ax))uf (). (1.8)

2. ARBITRARY AND UNIMODAL DISTRIBUTIONS

In a first step one may often be interested in checking if there will be robustness with
respect to some general classes of distributions. In this section we choose § to be the class

Ga of all possible distributions and the class Gy of unimodal distributions.

The G4 class was used firstly by Edwards et al. (1963) and the important fact about it
is that when robustness is present with respect to this class you should be very comfortable
with your inference whatever the true prior is. The Gy class is a first step in modelling

prior uncertainty.
2.1 The G4 case

By using (1.1) and (1.2) we have that

et
o2 (:B,‘ - x) { (0_2{+T22()(':L)2/)2} G(Tz)de

Glo) — )
pi (%) = { =i g —— (2.1)
Of (o2 +72)(»-1D7/2 G(r?)dr
A standard result due to Sivaganesan and Berger (1987) yields
sup [inf|lu (x) = sup [inf] {z- M} (2.2)
GegA & - r2>% ' ot +12 |’ .

Now the problem is reduced to find out sup [inf](0? + 72)~! that is (02)~1[0]. So the
2>0
interval in which pf (x) is ranging is (%, z;) or (z;,Z) depending on the sign of (z; — ).
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As a specific example, let p = 7, 02 = 100, Z = 121, s? = 762 and z7 = 115. In this
case S (x) will be in the interval (115,121).

2.2 The Gy case

In this situation we choose § to be the class

all unimodal distributions with
gU = . (2.1)
a fixed mode 73 > 0.

Each G in Gy can be represented as a mixture of uniform densities in the following way

G(r?) =/ 21 dF(t), ifr? <72

0
oo
G(r?) = / L 5 dF(t), ifr? > ¢,
t—15

72

(o0
where F(t) is some distribution function with [ dF(t) = 1.

)

Using this representation (2.1) yields after a few algebraic calculations

exp 2(o 2
-3 f r2—t (f (0’2{-}—1'2()(:’11)/)2}‘1 2) dF(t)
G

B (X) =i — ’
f To_t (j} exP{ 2(02+r2)}dr2> dF( )

(o2 +r2)(P-1D/2

(2.4)

being the functions involved in (2.4) defined by continuity when necessary. Easily is derived

that
2
o%(z; — ) _Tfexp{ . )}d1'2

(o2 +72)(p+0)/3
sup [inf]ud (x) = suplinf] { z; — - - . (2.5)
GeGy >0 fo exp{—m}d R
(o2 +r2)P-D/2 T

Now the problem is derived to find out

dr?

}gexp{-;r,a%r)}

(0'2+1'2)(P+1)/2

sup|inf] <
t>0 1‘0 exp{ m—}

2
(0-2+1-2)(p—1)/2 dT

t



that is (see Lemma A1 of the Appendix for the proof)

Al e -t}

2
(02 472)(p+1)/2 dr

0[3]

72 [0c0] 52
0 exP{——Q—Z(U +'2)}d’l‘2
(0'2+r2)(l’—1)/2

0[73]

So the interval in which u§(x) is ranging is

2
3 exp{—%} T exP{——z(,z'+r2) } 9
2( ) g‘ (02“22()("1”/)2 dr? 2( )Tg (o2 472)(p+1)/2 dr
r;,—0°(z; — T T;—0°(z;— T
T t Tg exp{—_2(” ‘:_,. ) } ) ’ TOGXP{_2(,23.T§) }dT2
f (0-2+1-2)(p—1)/2 dT 1_2 (a—2+1-2)(p——1)/2
o

By taking 72 = 9 in the previous example, that will be considered all along this paper, we
find out that u$(x) is in the interval (117.47, 120.74). All we needed to reach this result

was to evaluate numerically the integrals appearing in the above interval when 7& = 9.

3. e-CONTAMINATION CLASSES

Along this section we will consider classes of the form
Ge = {G, such that G = (1 —¢)Go + ¢, g € Q}. (38.1)

These classes have been extensively studied in Sivaganesan and Berger (1987) and they
mean some uncertainty in an elicited prior Go, being reflected in € the amount of proba-
bilistic uncertainty in Gp and being @ a class of allowable contaminations. For each prior
G in G we can reach the following formula for & (x) by using the formulas in subsection

1.2

0 exp S L — .\ Pexp —%—
A + i { (02{+r§()1i-:;)2/)2} q(‘rz)d’r2 - 0'2(131 - z) { (0'2{+1'22()(ZII)2/)2} q(Tz)dTZ

00 exp 82
b+ ol ooyan

where,
o0

82
_l—g [P {~setm )

B= € /(02+'r2)(10-1)/2
0

Go(r?)dr?, (3.3)



and
[ 0]

(1 - € ex 2(o2412
A=z;B—0*(z; - (0_2 ) (p+1)/2} Go(r?)dr?. (3.4)

(0

3.1 Choosing Q as all possible distributions

In this case we will denote §. as §2. From (3.2) it is followed that

.e"P{—m’fzIr)} exP{ ;(‘;th)}

z = —0’2(:1: —:B) 21 72)(p+1)/2
sup [influf (x) = sup[lnf] L (eF4)irm O - (o2 r2)ter DR (3.5)
Gegt exp{ 58 }

B+ (=6
Numerical optimization provides us a way to find out the above sup|inf]. Going on with
the example in subsections (2.1) and (2.2), for which we take € = 0.1 and
exp {55424

(100 + 72)68 °
we get that pu$(x) is in the interval (120.00, 120.26) being u?" (x) = 120.18. We did this

Go(r?)a (3.6)

election of Go because it leads to feasible computational calculations, it is unimodal being
its mode 78 = 9 our guessed one and it is very suitable to represent relative uncertainty -

as it is showed by some of its quantiles

9 25
/G’o('rz)drz = 0.30, /Go('rz)d'rz = 0.48,
0 9
/G’o(r2)d7'2 = 0.22.
25

3.2 Choosing Q as all unimodal distributions

In this case we will denote §. as §U, and Q in (3.1) will be the class of unimodal
distributions with some fixed mode 7Z. From (3.2) and using the representation of each

q € Q as a mixture of uniform densities is followed that

72 . & _—s% 0-2( i —T%) =82
® 4 o [ Ti€XPY 352 4,9) EiTE) OXP 2(a2+12) 9
A+ '({ t—12 { (o2 +72)(p-1)/2 - (o2 +72)(pF1)/2 dr dF(t)

ui (%) =

e exp —_— e
B+ of t_l,g (f (,,L,Z‘)';it;f}z} dr2> dF(t)



where G = (1 — €)Go + €q and B and A are defined in (3.3) and (3.4) respectively. So

t xp{ —s2 } 2( E)exp{ —s? }
z;ie 2(c2+12) O\Ti— 2(02+12)
A+ 1 f 2( + ) _ 2( + ) de
t—‘rg A (0-2+1-2)(p—1)/2 (02+T2)(P+1)/2
T
o

Sup linflu”(x) = suplinf] )
o2 472
¢ B + t——lrg f (a"‘3+1':;()(1:1)/)2 dT2

2
To

We can reach the above sup[inf] by doing numerical optimization. As an illustration
we go on with our example taking the same Gy as in the previous subsection and 72 = 9,
so the class G7 will be contained in the class §y. Now u$(x) is in the interval (120.04,

120.23).

4. DENSITY RATIO CLASSES

Along this section § is denoted as gpr and defined as

G such that L(Tz) < aG’(‘r2) < U(Tz),
Yor = { } , (4.1)

for some a > 0

where L and U are specified nonnegative functions. This class, introduced by DeRobertis
and Hartigan (1981), can be viewed as specifying ranges for the ratios of the prior density
between any two points: when L(r?) = 1 and U(r2) = k Gpgr has all priors with the
density ratio between any two points lying in the interval (k=1, %), being this class a good
representation of prior uncertainty. Because of (1.2) we can view our model as having just
the parameter 72, G being the prior and

82
R izl
p(T ) - (0_2 +7-2)(P—1)/2 ]

(4.2)

the likelihood. In that we are looking for

2 1
sup [inf ,Gx = sup [inf {:c-—o2 z-—EEG(T/X)[ ]}, 4.3
Jup [nuf () = sup finf] o — 0% (s~ Tl @)

our problem is reduced to find out

(o [inf {EGW/x) [b(ﬁ)]} , (4.4)
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where b(72) = (0% +7%)~!. According to DeRobertis and Hartigan (1981) we get the above

sup and inf as the unique roots of the two following equations

(6(72) — e)p(r?)U(7%)dr® + / (6(7®) — e)p(r?) L(r?)dr? = 0, (4.5)
b(r?)<c b(72)>c

and

/ (6(r2) — e)p(r2)L(r2)dr? + / (6(r?) — )p(P2)U(2)dr2 =0.  (4.6)
b(r2)<c b(r2)>c

These equations can be solved easily by using numerical computation. We did it for
L(r?) = 1 and U(r?) = k and reached the intervals appearing in table 1 in the next section.

Note that for k =1 Gpr = {G*:G*(7%) = 1} being u§ (x) = 117.58.

All calculations needed along this paper have been done using the package Mathemat-

ica.

5. CONCLUSIONS

Conclusions can be in a certain sense independent of the z; being observed in that
for the G4 class the interval reached will always be (z;,Z) and when using any other class
this interval will be relatively reduced accordingly to figures contained in table 1. Results

we have obtained are summarized in the following table

CLASS INTERVAL

Ga (115.00 121.00)
Su (117.47 120.74)
a (120.00 120.26)
4 (120.04 120.23)

Gpr, k=2 (117.18 118.02)
Gpr,k =6  (116.61 118.72)
Gpr,k =10 (116.39 119.03)

Table 1. Ranges for the posterior mean
under several classes of priors.

From table 1 we can see that a robust inference is achieved for each class but G4,

so if you are comfortable thinking of any of them as a reasonable respresentation of prior
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uncertainty you could model using it, getting a robust inference. In addition a few specific
comments are in order, if you feel that the true prior is close to a specified one, say Go,
you should model through G2 or GY (does not matter how Gy is contaminated) and you
will get a very robust inference. Modelling through Gy a robust inference is reached again
although the rate of robustness achieved will be lower and depend on the assessed 72, the
nearer 7¢ is from o? the bigger rate of robustness will be achieved, so if you feel that Gy
is a reasonable way to represent prior uncertainty you might model through it although if
you could feel comfortable shrinking Gy to Qg a very bigger rate of robustness would be
achieved. Eventually, Gpr classes are very convenient to represent vague prior knowledge

and robustness is achieved again using these classes, mainly if & < 6.
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APPENDIX
Lemma Al

Let k > 0, ¢ > 3/2 and 7¢ > 0 be real numbers, then

2 75 [0o] k

0 oxpf— —k_ eXp{ — T4z

f _(_Il_)-il-ﬁldz 0[{2] (1+z)7+1 dz
sup|inf] t2 = 2[0 ]
20 Bt} O el

] —agayedz 0[f,] aFe)e 92

Proof.

For the sup part we consider the set C of all C' such that the function f(¢) defined as

2
To

fit) =cC / Mdz - ffi{jk—”-}dz (A.1)

(14 z)e (14 z)3t+!

is nonnegative if ¢ < 72 and nonpositive if ¢ > r2. Obviously inf C is the sup we want.

By derivating (A.1) we get

]

f'(t)z_[c— 1+t] (1+t)e °

then f/(0) = —exp{—k}(C — 1) > 0 and f’(00) = —C < 0, being f'(t) = 0 in just one

point, say t*. In order to satisfy C € C, t* must lie in the interval (0,72) so C > —1

472>
and also f(0) > 0 is needed so
3
expy — o=
f (1+z)lq+1 dz
Cz= . (A.3)
? exp{— &
of e dr
2
f Ginafl 9%
Then C = 2; is the small number in C and so the sup we are looking for. For
S UFna 9%
4]

the inf part an analogous argument is followed.
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