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ABSTRACT

In this paper, our main objective is two-fold, namely, (1) to review available results
for logistic distributions, and (2) to provide a selective overview of ranking and selection
methodology in order to serve as an introduction to the general reader and also to indicate
the potential for further investigations in the logistic case. In Section 2, we discuss two
basic formulations of ranking and selection problems; these are the subset formulation
and the indifference zone formulation. We also mention some modifications and types of
procedures relevant to subsequent discussions. The next four sections (3 through 6) deal
with procedures for selecting the population with the largest mean from several logistic
populations with a common known variance. Of these, all but Section 6 discuss single-
stage procedures using the basic subset (Section 3), the indifference zone (Section 4),
and the restricted subset (Section 5) formulations. Section 6 is concerned with a two-
stage procedure using the indifference zone formulation in which the first stage involves a
subset approach to eliminate inferior populations. Logistic distribution has been used to
model quantal response in experiments involving quantitative treatment factors; a selection
problem that arises in this context is discussed in Section 7. The next section describes
procedures for selecting the population having the largest quantile of a given order from
distributions that belong to a restricted family defined by tail-ordering with respect to a
known distribution G, including special results for logistic G. Finally, we conclude with a
brief discussion on future directions for investigations relating to logistic distributions.

Key Words and Phrases: Logistic distributions; subset selection; indifference zone for-
mulation; restricted subset; single-stage and two-stage procedures; quantal response; tail-
ordering.
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1. INTRODUCTION

Problems of statistical inference that are now known as ranking and selection problems
first came under systematic investigation by statistical researchers in the early 1950’s. The
classical techniques for testing homogeneity hypotheses were found inadequate to serve, in
many practical situations, the experimenter’s real purpose which is often to rank several
competing populations (treatments, systems, etc.) or to select the best ambng them. The
attempts to formulate the decision problem to answer such realistic goals set the stage for
the development of the ranking and selection theory.

During the last forty years, the ranking and selection literature has steadily grown
with developments dealing with various aspects of the theory and applications. An im-
portant part of these developments is the study of ranking and selection problems for
specific parametric families of distributions including, of course, logistic distributions. It is
interesting to note that until recently there has not been much done in the case of logistic
distributions. In this paper, our main objective is two-fold, namely, (1) to review available
results for logistic distributions, and (2) to provide a selective overview of ranking and
selection methodology in order to serve as an introduction to the general reader and also
to indicate the potential for further investigations in the logistic case.

In Section 2, we discuss two basic formulations of ranking and selection problems; these
are the subset formulation and the indifference zone formulation. We also mention some
modifications and types of procedures relevant to subsequent discussions. The next four
sections (3 through 6) deal with procedures for selecting the population with the largest
mean from several logistic populations with a common known variance. Of these, all but
Section 6 discuss single-stage procedures using the basic subset (Section 3), the indifference
zone (Section 4), and the restricted subset (Section 5) formulations. Section 6 is concerned

with a two-stage procedure using the indifference zone formulation in which the first stage



involves a subset approach to eliminate inferior populations. Logistic distribution has been
used to model quantal response in experiments involving quantitative treatment factors;
a selection problem that arises in this context is discussed in Section 7. The next section
describes procedures for selecting the population having the largest quantile of a given
order from distributions that belong to a restricted family defined by tail-ordering with
respect to a known distribution G, including special results for logistic G. Finally, we
conclude with a brief discussion on future directions for investigations relating to logistic

distributions.

2. RANKING AND SELECTION FORMULATIONS

Ranking and selection problems have generally been studied by using either the indif-
ference zone approach of Bechhofer (1954) or the so-called subset selection approach due
mainly to Gupta (1956). In the former approach the number of populations to be selected
is pre-determined, while in the latter it is random. Suppose there are k (> 2) popula-
tions my,my,... , Tk, where m; is characterized by the distribution function Fp, and 6; is
a real-valued parameter taking a value in the set ©, : = 1,2,... , k. The 6; are assumed
to be unknown. Let Oy < g <... < 0x) denote the ordered §; and =(;) denote the
population associated with f;, ¢ = 1,2,... ,k. The populations are ranked according to
their §-values. To be specific, we define 7(;y to be better than miy if ¢ < 7, that is, if
617 < ;). It is assumed that there is no prior information regarding the true pairing of
the ordered and unordered 4;.

Let us consider the basic problem of selecting the best population, namely, the one
associated with the largest 6;. In the indifference zone approach, the goal is to select one
of the k populations and claim it to be the best. Let Q = {ﬁlﬁ = (61,...,6k), 0; € O,

t = 1,...,k} be the parameter space and Qs = {6|6(6x},0[5—1]) > 6* > 0}, where



6(6[x), Ojk—1]) is an appropriate measure of the separation between the best population (k)
and the next best 7(;_1). A correct selection (C'S) occurs whenever the selected population
is the best population. Let P(C'S|R) denote the probability of a correct selection (PCS)

using the rule R. For a rule R to be valid, it is required that
P(CS|R) > P* whenever 6 € Qg , (2.1)

The constants 6* and P*(1/k < P* < 1) are specified in advance by the experimenter. The
statistical problem is to define a selection rule which typically has three parts: sampling
rule, stopping rule for sampling, and decision rule. For a rule based on a single sample of
fixed size n from each population, the design aspect of the experiment is to determine the
minimum sample size n for which (2.1) is satisfied. The region 25+« of the parameter space
(1 is called the preference zone. The complement of Qs+ is the indifference zone so called
because there is no requirement on the PC'S when 8 lies in it.

In the subset selection approach for selecting the best population, the goal is to select
a nonempty subset of the k¥ populations so that the best population is included in the
selected subset with a minimum guaranteed probability P*(1/k < P* < 1). In other

words, any valid rule R should satisfy the condition:
P(CS|R) = P* for any § € Q. (2.2)

Here, selection of any subset that includes the best population results in a correct selection.
In case of a tie for the best population, it is assumed that one of the contenders is tagged as
the best. It should be noted that there is no indifference zone in the above formulation. The
size of the selected subset S, denoted by ||, is not specified in advance, but is determined
by the data themselves. The expected subset size E(|S|) and the expected number of non-
best populations (which is equal to E(]S|) — PC'S) are natural performance characteristics

of a valid rule.



The probability requirements (2.1) and (2.2) are known as the P*-condition. An
important step in obtaining constant(s) associated with a proposed rule R so that the
P*-condition is satisfied is to evaluate the infimum of the PCS over § or Qs+« depending
on the approach. The configuration of [ for which this infimum is attained is called the
least favorable configuration (LFC).

There are several variations and generalizations of the basic goal in both indifference
zone and subset selection formulations. These are discussed in detail in Gupta and Pancha-
pakesan (1979). One such generalization to be discussed later in Section 5 is the restricted
subset selection formulation of Santner (1975). The goal in this formulation is to select
a nonempty subset of the k£ populations that contains the best but whose size does not
exceed a specified number m (1 < m < k). It is required that the PCS be at least P*
whenever ,Q € s+. This formulation combines the features of the indifference zone and
subset selection formulations discussed earlier.

Besides being a goal in itself, selecting a subset containing the best can serve as a
first-stage screening in a two-stage procedure designed to select one population as the
best. Tamhane and Bechhofer (1977, 1979) have employed this technique for selecting
the population with the largest mean from k normal populations with unknown means
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and a common known variance o2, using the indifference zone approach. We will discuss

(Section 6) a similar procedure for logistic populations. It is interesting to note that, when

the common variance o2

is unknown in the above normal case, a two-stage procedure is

necessary in order to meet the P*-condition. |
Families of distributions can be defined through partial ordering relation with respect

to a known distribution. Such families have been called restricted families of distributions.

Partial ordering such as convex ordering, star shape ordering and tail ordering have been

considered in the literature. These families are of great importance in reliability theory.



Well-known families such as IFR (increasing failure rate) and IFFRA (increasing failure
rate average) distributions are examples of such families. Selection procedures for such
restricted families have been considered by a few authors. A review of these and other
procedures applicable to reliability models is given by Gupta and Panchapakesan (1988).
We will discuss (Section 8) a procedure for selection from a family of distributions which
are tail-ordered with respect to a logistic distribution.

As we have pointed out earlier, our objective here is to provide a selective overview of
ranking and selection procedures. Several aspects of the theory and related problems have
been dealt with in the books by Bechhofer, Kiefer and Sobel (1968), Biiringer, Martin
and Schriever (1980), Gibbons, Olkin and Sobel (1977), Gupta and Huang (1981), and
Gupta and Panchapakesan (1979). The last authors have given a comprehensive survey of
developments in the theory with an extensive bibliography. A categorical bibliography is
provided by Dudewicz and Koo (1982). Recently, Gupta and Panchapakesan (1985) have
given a review and assessment of subset selection procedures.

In the succeeding sections, we discuss specific selection procedures relating to logistic

distributions.

3. SINGLE-STAGE (UNRESTRICTED) SUBSET SELECTION
OF THE POPULATION WITH THE LARGEST MEAN

Let m,... ,m be k (> 2) independent logistic populations L(p;,02), i = 1,2,... ,k,
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where the means p; are unknown and the common variance o2 is assumed to be known.

The distribution function associated with m; (1 <4 < k) is:

1
1+ exp{—7(z — p;)/oV/3}

F(z; pi,0) = —00 < z < 00. (3.1)



We assume, without loss of generality, that ¢ = 1. The population with the largest
i is the best. Let X; .., denote the median of a random sample of odd size n =2m — 1
from m;, 2 =1,... ,k. Lorenzen and McDonald (1981) proposed the rule

R, : Select 7; if and only if X; . > max X . — dy (3.2)
1<j<k

where d; = dy(k,m, P*) is the smallest positive constant for which the P*-condition is
satisfied.

For convenience, let pup; < ... < pypxy denote the ordered ; (we continue with the
notation of Section 2 for the ranked parameters). Let X(;) ;. denote the sample median
from the population associated with uf;;, ¢ = 1,... ,k. Then the PCS for the rule R; is
given by .

P(CS|R1 = Pr{Xu),mn = X(),mn—d1, j=1,...,k—1} (3.3)

Letting fim:n(ym) and Fp,.n(ym) denote the pdf and the cdf, respectively, of the median
of a random sample of size n = 2m — 1 from the standard logistic distribution L(0,1), we
can write (3.3) as

oo k-1

P(CS|Ry) = / H F(ym + pir) — £} + 91) fren(Ym )Y (3.4)

— oo j=1

It is now easy to see that the infimum of the PCS over the parameter space  is attained

when all the p; are equal. Thus the constant dy = dy(k, m, P*) is given by

/_oo F:z—nl(ym + d; )fm:n(ym)dym = P*. (35)

Lorenzen and McDonald (1981) have tabulated the dy-values for £ = 2(1)10, m = 1(1)10,
and P* = 0.75,0.90, 0.95, 0.99. |



Alternatively, one can define the following procedure R; based on the sample means

X i=1,... k.

Ry : Select 7; if and only if X; > max Yj —ds (3.6)
1<5<k

where dy = da(k,n,P*) is the smallest positive constant for which the P*-condition is
satisfied. Let g,(u) and G,(u) denote the pdf and the cdf, respectively, of U = @
where X is the mean of a random sample of since n from L(y,0?). Assuming still 0 = 1,

the PC'S for the rule R; is given by

oo k—1

PCSIR) = [ TT Galos+ viads + s — g ))on(w)du. (3.7)

The infimum of the PCS over  is attained when the u; are equal and the constant
dy = da(k,n, P*) is given by

/—00 GE=1(u + v/ndy)gn(u)du = P*. (3.8)

Lorenzen and McDonald (1981) have considered this rule R in order to study the efficiency
of Ry relative to Ry; however, they considered only asymptotic (n — oo) case using conver-
gence to normality. Recently, Han (1987) has studied the rule R; and has provided tables
of values of A = /nd, for k = 2(1)10, n = 1(1)10 and P* = 0.75,0.90,0.95,0.975, 0.99;
he used the Edgeworth series expansions to the order O(n=3) for G(u) and g,(u), the
Gauss-Hermite quadrature with sixty nodes for evaluation of the integral, and a modified
regular falsi algorithm for solving non-linear equations.

For comparing the rules R; and Ry, Han (1987) considered (1) E(|S]), the expected
subset size, (2) E(|S|) — PCS, which is the expected number of non-best populations
selected, and (3) E(T'), where T is the sum of the ranks of the selected populations. His

tables include also the comparison of the expected proportion of populations included in
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- the selected subset but this is only E(|S]|)/k. In order to compare R; and R in terms
of the above performance characteristics, Han (1987) considered two customary types of
configurations of the means: (1) the slippage configuration, ppy = ... = ppr_1 = py — 6,
6 > 0, and (2) the equally spaced configuration, py) = p+ (1 —1)6,1=1,... ,k 6§ > 0.
His tables of values of the performance characteristics range over £ = 2(1)5,10; n = 3;
é+/m = 0.5(0.5)3.0,4, 5 (for both configurations); and P* = 0.90. His tables for the ratio of
the corresponding performance characteristics of R; and R, cover k = 4; n = 3,5; §\/n =
1.5,3.0; and P* = 0.90,0.95. The tables indicate as one would expect that the means
procedure R; performs better than the medians procedure R;, the advantage increasing
with n.

Lorenzen and McDonald (1981) studied the efficiency of R; relative to R, for large
samples under a slippage configuration described earlier. Let ny and n, denote the asymp-
totic sample sizes required by R; and R,, respectively, to satisfy the P*-condition and to

make E(|S|) — PCS = e > 0. The asymptotic efficiency of R; relative to R; is defined by
ARE(Rs,R;;6) = lilrgx(nz/nl). (3.9)

Lorenzen and McDonald (1981) have shown that ARE(R;, Ry;6) = n2/12 = 0.822. Thus,
under a slippage configuration, asymptotically the means procedure requires about 82% of
the sample size required by the median procedure to achieve the same expected number
of non-best populations in the selected subset. However, the situation can dramatically
change in favor of the medians procedure, as Lorenzen and McDonald have shown, when
sampling is contaminated in the sense that =; is logistic with mean 6; and variance a +
(1 — a)v®. The savings gained by the medians procedure becomes immense as v — oco.
Lorenzen and McDonald (1981) have also compared the medians procedure R; with

a rank-sum procedure R3. Let T; denote the sum of the ranks of the observations from m;



in the pooled sample obtained from samples of size n from each population (the smallest

observation is assigned rank 1 and the largest rank kn). The rule Rj is defined as follows:
Rj3 : Select m; if and only if T; > max T; — ds (3.10)
1<5<k

where d3 is the smallest positive integer so that the P*-condition is satisfied. This rule R;
has been studied by Gupta and McDonald (1970) for location and scale pmaﬁeter families.
Lorenzen and McDonald (1981) have studied the asymptotic efficiency of Rj; relative to
R, under slippage and equal spacing configurations, using Monte Carlo simulations when
k > 2. Based on their study, the rank-sum procedure outperforms the median procedure
when the means are roughly in a slippage configuration, while the reverse is true when the

means are equally spaced.

" Properties of Rules R; and R,

The rules Ry and R, possess properties considered desirable in a subset selection rule.
We discuss these properties below.

(1) Unbiasedness. A rule R is said to be unbiased if for all ¢ € Q and j < k,
P(m(xy is selected by R) > P(m(;) is selected by R).

(2) Monotonicity. A rule R is said to be monotone if for K €Qandi<y,
P(7(;) is selected by R) > P(m;) is selected by R).

Obviously, monotonicity implies unbiasedness.

(3) Strong Monotonicity. A rule R is said to be strongly monotone in w(; if P(n;

is selected by R) is increasing in pj;; when all other components of K are fixed and is

decreasing in p(;) (7 # ¢) when all other components of H are fixed.



(4) Consistency. A rule R(n) [based on common sample size n] is said to be consistent
with respect to Q' C Q if 1{1;1? P(CS|R(n)) —» 1 as n — oo.

Finally, for the rules R; and R, the supremum of E(|S]) over Q is attained when the
s are equal. This follows (see Gupta (1965) and Gupta and Panchapakesan (1972)) from
the fact that y; is a location parameter in the distributions of X; p., and X; (1 < i < k),
and that these distributions have the monotone likelihood ratio (M LR) prbperty. Conse-

quently, this supremum is equal to kP*.

4. SINGLE-STAGE INDIFFERENCE ZONE SELECTION OF
THE POPULATION WITH THE LARGEST MEAN
We have k logistic distributions as described in Section 3. Under the indifference
zone formulation we select one of the k£ populations so that the PCS > P* whenever
K€ Qs = {£ : ppy — pr—1y = 6* > 0}. We will consider two procedures R} and R}
which are, respectively, the counterparts of R; and R, discussed in the previous section.
The sampling schemes are same as earlier.

First, we define R} based on medians as follows.
R} : Select the population that yields the largest Xim:n- (4.1)

It is easy to see that

oo k=1
P(CSIR&) = H me(ym + 1 ,U'[j])fm:n(ym)dym- (42)
—o0 iy
Obviously, the infimum of P(CS|R}) over Qs+ is attained when B = --r = Pr-1) =

px] — 6*. Thus we need to determine the minimum odd sample size n for which

/oo Frlrcz—nl(ym + 6%) frnin(Ym)dym > P*. (4.3)

-—00
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A table of n values satisfying (4.3) for selected values of k£, §* and P* is not available.

Alternatively, we can define a rule based on sample means, namely,

R, : Select the population that yields the largest X;. (4.4)
In this case,
oo k-1 :
P(CSIRy) = | ] Gnlu+ vilup — #y)gn(w)du (4.5)
—o0 ji1
and the infimum of the PCS in (4.5) is attained when ppy = ... = pp-1) = pp — §*

Thus the minimum sample size n required to meet the P*-condition is given by
oo
/ G*1(u 4 v/né*)gn(w)du > P*. (4.6)
—o0
Han (1987) has studied the rule R} and has tabulated, using the Edgeworth series expan-
sions to the order of O(n~2) for G,,(u) and g, (u), the values of 7 for which (4.6) is satisfied
with equality of both sides. The required values of n are obtained by rounding up # to the
next higher integer. His table ranges over k = 2(1)5,10,15; é* = 0.1,0.5,1.0,2.0,4.0; and
P* =0.75,0.90,0.95,0.99.

One should naturally compare the minimum sample sizes required by R} and R},
and also compare the performance of the two procedures for various typical parametric
configurations. This has not yet been done.

Recently, van der Laan (1989) has considered the rule R} with n = 1, in which
case G, in (4.6) is the standardized logistic c.d.f. He has tabulated the values of 6* for
k = 2(1)10, 25, 50 and P* = 0.65, 0.75, 0.90, 0.95, 0.99, 0.999 and éompared these with
the corresponding values in the normal case available in Bechhofer (1954). However, it
should be noted that, in the case of n = 1, the equations (4.6) and (3.5) are the same. So
the values of 6* for £ = 2(1)10, and P* = 0.75, 0.90, 0.95, 0.99 are readily available in
Lorenzen and McDonald (1981).
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5. SINGLE-STAGE RESTRICTED SUBSET SELECTION

OF THE POPULATION WITH THE LARGEST MEAN
In Section 2, we referred to the restricted subset selection formulation of Santner
(1975). The goal here is to select a subset of the k¥ populations whose size does not
exceed m (1 < m < k — 1) and which includes the population with largest mean ;.
As we mentioned earlier, in this formulation, we introduce a preference zone Qs = { K

Bk} — Mir—1] = 6* > 0}. We want to define a rule R for which
P(CS|R) > P* whenever ke Qse. (5.1)

We note that for m = 1, this becomes the indifference zone formulation of Bechhofer
(1954). If we allow m = k (unrestricted) and §* = 0, we will get the usual subset selection
formulation.

Now, for the problem at hand, Han (1987) investigated the following rule R; based

on the sample means X;.

R, : Select 7; if and only if X; > max {fk_m_f.l:k,fk:k — (LLTU} (5.2)
‘ n

where the minimum required sample size n and dy = dy(k,n, P*) are to be determined so
that (5.1) is satisfied. We leave out the expression for P(C'S|Ry) for any ¢ € Q in order
to avoid further notations. It can be shown without much difficulty [see Han (1987)] that
the infimum of P(CS|R,) over Q- is attained when 4 € Q= {Elppy = - = ppe—1) =
k) — 6%} . Also, P(CS|Ry) is constant over Q.. Assuming that the common o = 1,

k

inf P(CS|Ry)= ) (’“ ; 1) /_ ” G (t + 6v/n){Gn(t + dg + 6*/7)

1 EQ
s

(5.3)

i=k—m

— Gt + 6*vn) Y 1g,(2)dt.
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The minimum sample size n required to satisfy the P*-condition in (5.1) has been tabulated
by Hahn (1987) for P* = 0.90; k¥ = 5 with m = 2(1)4; k = 10 with m = 2(1)5; dy =
0.4,0.7,1.3,1.6 and 6 = 0.5,1.0,2.0 [thé range is for §/c if ¢ is not unity]. Han (1987) has
further tables regarding some performance characteristics which are not discussed here.

The rule R, is strongly monotone in m(;; and so is monotone and unbiased. Han
(1987) has shown that R, is consistent with respect to Qs+. This implies rthat, for given
P*, k, m, and 6* one can meet the P*-condition by choosing n sufficiently large. Also,
not surprisingly, it turns out that, for given 6*, k, m, and n, the P*-condition can be met
only for P* < Pf = P{(6*,k,m,n) < 1. The supremum of E(|S|) over (2 is attained when
the p; are equal. Since we have two constants n and d4 defining the rule R,, these can
be chosen such that %ﬁf P(CS|Ry) > P* and s1(12p E(|S||R4) = 1 + € for a specified e. Han
(1987) has some tables for choosing n and dy for € = 0.01 and selected values of k, m, P*,
and é/0.

6. AN ELIMINATION TYPE TWO-STAGE SELECTION PROCEDURE
FOR THE POPULATION WITH THE LARGEST MEAN

As before, we assume that the k logistic populations are L(u;,02),¢ =1,... ,k, where
the common variance o? is known. We want to select the population with the largest
p; using the indifference zone formulation. As we mentioned in Section 2, we can use a
two-stage procedure which screens out bad populations (those with small values of y;) by
means of a subset selection rule. Such procedures for normal populations with common
known variance were studied initially by Cohen (1959) and Alam (1970) whose results
were mostly for the case of & = 2 populations. Tamhane and Bechhofer (1977, 1979)
have studied the problem in depth for £ > 2. Recently, Gupta and Han (1990) have

investigated a similar procedure for logistic populations. This procedure Rs involves the
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design constants (n;,n2, k), where h is a positive constant, and n, and n, are the sample
sizes in the two stages. These constants, depending on &, 6* and P*, are chosen so that
the P*-condition is satisfied and they possess a certain minimax property.

Procedure Rs: At Stage 1, take n; independent observations from each of the & pop-

ulations and compute the sample means 7?), t=1,...,k. Determine the subset of I of
{1,...,k} where
I= {ilfgl) > max j(_g-l) — ho [/ /n1}. (6.1)
1<;<k

Let Iy = {m;|¢ € I'}. If II; consists of only one population, stop sampling and select as best
the population that yielded the largest 721). If II; consists of more than one population,
proceed to Stage 2.

At Stage 2, take no additional observations from each population in II; and compute
the cumulative sample means X; based on (n; + ny) observations. Select as the best the
population that yielded the largest X;.

There are an infinite number of choices of (n1,n2, k) for which the P*-condition (5.1)
is satisfied. Let |I| denote the cardinality of the set I in (6.1) and

5—{0 if |T] =1 (62)
L) i ) > 1. '

Then the total sample size required is given by

Gupta and Han (1990) have adopted an unrestricted minimax criterion to make a

choice of (n1,n2, k). In other words, for given k, §* and P*, in order to choose (n,ns, h)

minimize sup E(T|Rs) subject to inf P(CS|Rs)> P*. (6.4)
1 EQ 1 E€Qge
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Gupta and Han (1990) have shown that the supremum of E(T|Rs) over § is attained when
the p; are equal. The LFC for the PCS is a slippage configuration; this follows from the
result of Bhandari and Chaudhuri (1988) for two-stage selection for the largest population
mean when the sample mean has the M LR property. However, the exact evaluation of
the PCS under the LFC for the rule Rs is complicated. Gupta and Han (1990) have
considered a lower bound to P(C'S|Rs) for which the infimum over s« is easily obtained.
Using this, a conservative solution can be obtained for the minimization problem in (6.4).

In other words, a conservative solution for (ny, ny, k) is obtained by minimizing
kny + ng /°° [Gﬁ:l(x +h) — Gﬁl_l(:c — )] gny (z)da (6.5)

—oo .

subject to

[ Gk e Vo + g @dox [ Gl a8 AT o) (2 2 P

- - (6.6)
where G,(z) and g,(z) are so defined earlier in the case of the rule R, in Section 3. Let
(1,72, k) be the solution to the minimization of (6.5) subject to (6.6) when n; and nj are

allowed to be continuous. Then one can use the approximate design constants
ny = [ﬁ'l + 1]’ Ny = [ﬁZ + 1]’ h = ha

where [m] denotes the largest integer < m. Gupta and Han (1990) have tabulated
(fi1,72,h) and E(T|Rs) for k = 2(1)5,10,15; P* = 0.75,0.90,0.95,0.99 and 6*/c =
0.1,0.5,1.0,2.0,4.0; here, the tabulated values of E(T|Rs) are the values of the expres-
sion in (6.5).

The performance of the two-stage procedure Rs can be compared with that of the
single-stage procedure R), defined by (4.4). Let 7 be the solution of (4.6) with equal-

ity. Gupta and Han (1990) considered E(T|Rs5)/k# as the measure of relative efficiency
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(RE). If RE < 1, then Rj is better than R),. They have tabulated the values of RE for
k = 2(1)5,10,15 and P* = 0.75,0.90,0.95,0.99 in the cases of the slippage configuration
(ty ..., ¢, b + 6) and the equally spaced configuration (g,p +6,... ,u + (k — 1)8) when
6/c = 0.1,0.5,1.0,2.0,4.0. All the tabulated values of RE are equal to 1 in a very few
cases and less than 1 otherwise, thus showing Rs to be more efficient. The effectiveness of
Rs increases as k increases.

The rule Rs employs the usual subset selection procedure for eliminating bad popu-
lations at the first stage. The size of the selected subset I defined in (6.1) can be k. One
can use a restricted subset selection procedure of the type discussed in Section 5 in order
to restrict the size of I. Such a two-stage procedure has been investigated by Han (1987)

but it will not be discussed here.

7. SELECTION OF THE LOGISTIC QUANTAL RESPONSE
WITH THE SMALLEST gq-QUANTILE (ED100q)

Consider an experiment in which the treatment factor is quantitative. Each exper-
imental unit is administered a certain “dose” of the treatment to which the unit either
responds (a success) or does not respond (a failure). Such experiments are well-known in
biological applications as quantal response assays or sensitivity experiments. The proba-
bility of response is some unknown function of the dose level z and, denoted by p(z), is
called the quantal response curve. It is reasonable, in many applications, to assume that
p(z) is nondecreasing in z, right-continuous with p(—oo) = 0 and p(co) = 1. The smallest
dose level that induces a response with probability ¢ (0 < ¢ < 1) is called the 100q percent
effective dose (ED100q) and is denoted here by u(9).
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In a selection problem, we are comparing several different quantitative treatments with
unknown associated quantal response curves in order to select the best (to be suitably de-
fined) curve. In a nonparametric set-up, this problem involves subtle difficulties. These
have been discussed by Tamhane (1986) who have given an excellent survey of the liter-
ature on quantal response curves. He has discussed problems of estimation and multiple
comparisons with a view toward the application to the selection problem.r Towards this
end, he has also considered two parametric models of which the logistic model is one. We
discuss below his formulation of and solution to the problem of selecting the best quantal
Tesponse curve.

Let 71,... ,m; be k populations where m; has the associated quantal response curve

pi(z) given by
1

1+ exp{—(a; + Bz)}’

pi(z) = e=1,...,k, (7.1)

and the common value of § is assumed to be known. The ED100q of 7; is given by

ul? = [log(quq) - a,-] /B. (7.2)

The quantity log{q/(1—q)} is referred to as the logit transform of . The goal is to select the
population associated with the smallest ygq) . This goal is meaningful when we have several
drugs available for a certain ailment and we want to select the drug that induces a specified
success rate ¢ at the lowest dose level. Since all populations have a common f3, the problem
is equivalent to selecting the population associated with the largest a;. Consistent with our
earlier notations, the ordered «; are denoted by ap) £ ap) < ... < apg). Tamhane (1986)
has adopted the indifference zone approach taking Qs« = {a =(a1,...,0x)lop —opp—q 2
B6*} . The P*-condition is to be satisfied whenever a € (s«

Tamhane (1986) proposed a single-stage procedure based on n independent observa-

tions from each population, those from ; being taken at equispaced dose levels 1, 4o,
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cosTim With 25541 — 25 =di (1 <1<k, 1< j <m—1). Let ;; denote the number of

successes for population 7; at does level z;; and let p;; = r;;/n. The maximum likelihood

j=1 J
pi; = pi(zi;) given by (7.1). The rule proposed by Tamhane (1986) is

estimator (MLE) é; of a; (1 < ¢ < k) is obtained by solving > p;; = Pij, Where
=1

Rg : Select the population that yields the largest &;. - (7.3)

An exact solution for the minimum sample size n required in order to meet the P*-condition
is not available. Tamhane (1986) has obtained a large sample (m — oo, n — 00) solution
using the fact that, when dy = ... = dy = d, &; has asymptotically a normal distribution
with mean «; and variance #d/n. Based on the known results of Bechhofer (1954) for the

problem of selecting the largest normal mean when the populations have a common known

n = <(6i %> (7.4)

where (a) denotes the smallest integer > a and ¢ = ¢(k, P*) is given by

variance, the solution is given by

/ " 5 1(g + 0)dd(z) = P*,

and @ is the standard normal c.d.f. The values of ¢ (or a known multiple of it) have
been tabulated by Bechhofer (1954), Gupta (1963), Milton (1963), and Gupta, Nagel and
Panchapakesan (1973).

Tamhane (1986) has also considered a weighted least squares estimator o} of «; ‘to be
used in the rule Rg in the place of &;. However, in this case also the exact solution is not
available. Asymptotically (m — oo n — o0), af has the same distribution as &; and so a
large sample solution is again given by (7.4).

Under the logistic model (7.1), the quantal response curves p;(z) for different a;’s do

not intersect. In this case, one can take observations from all populations at the same dose
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level zy. The populations can then be considered to be Bernoulli with success probabilities
pi(zo), 2 = 1,... , k. The selection problem then reduces to the selection of the Bernoulli
population associated with the largest success probability. Many procedures are available
in the literature for this classical Bernoulli selection problem. A review of these procedures
and a complete bibliography have been given by Bechhofer and Kulkarni (1982), who have
themselves made significant contributions to this problem. However, the main obstacle in
using any of these procedures to our problem at hand is, as pointed out by Tamhane (1986),
the specific choice of 4. With a hapless choice of zg, it may turn out that ,u[(g]) — u[(lq]) < 6,
ie. a ¢ Qs+, thus making it impossible to satisfy the P*-condition.

If we adopt the subset selection approach, then the problem of the specific choice of
zo discussed above will not arise. In this case one can use the procedures available for the

classical Bernoulli subset selection. For details of such procedures, the reader is referred

to Gupta and Panchapakesan (1979, Chapter 13).

8. SELECTION FROM A FAMILY OF DISTRIBUTIONS PARTIALLY ORDERED
WITH RESPECT TO A LOGISTIC DISTRIBUTION

As we mentioned earlier in Section 2, selection procedures for families of distributions
which are partially ordered with respect to a known distribution have been considered in
the literature. These procedures are of importance in reliability contexts and a review of
these is provided by Gupta and Panchapakesan (1988).

Barlow and Gupta (1969) considered among other things the selection of the popula-
tion with the largest median (assumed to be stochastically larger than the other popula-
tions) from a set of continuous distributions Fj, ¢ = 1,... , k, which have lighter tails than
a specified continuous distribution G with G(0) = 1/2. The F; and G are assumed to have

the real line as their support. The definition of F; having a lighter tail than G used by
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Barlow and Gupta (1969) implies that F; centered at its median A; is tail-ordered with
respect to G; in other words, G Fy(z + A;) — = is nondecreasing in z. The procedure of
Barlow and Gupta (1969) has been shown by Gupta and Panchapakesan (1974) to work
for this wider class defined by tail-ordering. In fact, Gupta and Panchapakesan have also
shown a generalized version of this by considering tail-ordering of F; and G when both
are centered at their respective a-quantiles. Formally stated, for 0 < « < 1, F; is said
to be a-quantile tail-ordered with respect to G (F; t<a G) if G F(z + &in) — ¢ — 1o is
nondecreasing in = on the support of F;, where {;, and 7, are the (unique) a-quantiles of
F; and G, respectively. It can be shown (Gupta and Panchapakesan (1974), Lemma 3.1)
that

Pla+1, SY <b+1n,) S Pla+bia < Xi <b+ &g (8.1)

for every a < 0 < b, where X; and Y have distributions F; and G, respectively.

Now, for the discussion of the selection problem, let ny,...,7; be k populations
with associated absolutely continuous distributions F; having unique a-quantile £4;, i =
1,... ,k, for a specified 0 < @ < 1. Let G be a specified absolutely continuous distribution
G with a-quantile 7,. We assume that the F; are a-quantile tail-ordered with respect to
G. It is also assumed that there is one population among the F; that is stochastically
larger than the remaining ones; consequently, this particular F;, denoted by Fx), will have
the largest a-quantile and is the best population. Qur goal is to select the best population
using the subset approach.

Let X;1,...,X;, be n independent observations from 7; and Xi j:n denote the jth
order statistic of the sample from m;, ¢ = 1,... ,k, where j < (n + 1)ae < j + 1. Then,
for selecting the population with the largest a-quantile, Gupta and Panchapakesan (1974)

proposed the following rule.

Rz : Select m; if and only if X; ., > aX Trjin — D (8.2)
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where D = D(k,P*,n,j) is the smallest positive integer for which the P*-condition is
satisfied whatever the k-tuple {F},..., Fi} be.
Since F(y) is stochastically larger than any other F;
inf PCSIRr) = [ Flgh (64 Dy (D) (83)

where f(1) ;. is the density associated with Fiz) ;.,. Now, since the partial ordering < is
[0 4
preserved by the order statistics, we have Fy) j.n t< Gj:.n, where G ., is the distribution of
a
the jth order statistic in a random sample of size n from G. As a consequence of this,

oo

/ F(’;;}jm(t+D)f(,c),jm(t)dtz / GY.H(t + D)gjin(t)dt (8.4)

—00 —_

where g;., is the density associated with Gj.,. Thus the constant D = D(k, P* n,j)

satisfying the P*-condition is given by
o0
/ G5 1t + D)gjin(t)dt = P*. (8.5)

The values of D have been tabulated by Gupta and Panchapakesan (1974) for k =
2(1)10, n = 5(2)15, j = 1(1)n and P* = 0.75,0.90,0.95,0.99 when G is chosen to be
the logistic distribution F*(z) = [1 4 exp(—2)]™}, —00 < z < 0o, which is L(0,72/3). In
the particular case of the median (i.e. @ =1/2 and j = (n + 1)/2), the equation (8.5) is
same as (3.5) for the rule R; of Lorenzen and McDonald (1981) in Section 3, except that
we now have F},, in the place of F}., (which is L(0,1)). Thus the constants d; and D of
the rules R; and Ry are related by: Dy = dyw/ V3.

The infimum of P(CS|R7) in (8.3) can be evaluated asymptotically as n — oo with

J/n — a using the asymptotic normality of the sample quantile (under the assumptions
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that the densities fix) and g are differentiable in the neighborhood of their respective a-
quantiles and that the densities do not vanish at their a-quantiles). Then, corresponding

to (8.5), we get

/°° 2" [z + Dg(na){n/a(1 — a)}'1¢(z)de = P* (8.6)

— oo

where & and ¢ denote the standard normal c.d.f. and density.

When G is taken to be L(0,7%/3), g(n4) = (1 — @) and an approximate value of D
is given by
/ " 81z + D{na(l - a)}/?|¢(a)dz = P* (8.7)

The D-value satisfying (8.7) can be obtained from the tables of Gupta, Nagel and Pan-
chapakesan (1973); in other words, D = H[2/na(l — &)]'/?, where H is the table value

corresponding to p = 0.5.

It is relevant to note that the left-hand side of (8.5) can be written as P[Y}; > max Y,.—
D}, where the Y; are i.i.d. having the distribution function G jin. Further, since E)—> 0, it
can be written as P[1 <1E1<zaic_l(Yr —Y:) < D). Thus D given by (8.5) is the 100P*% point
of the distribution of the maximum of the correlated differences Y; — Yz, i=1,... ,k — 1.

A similar probability of interest is P[lrgfgck %’: < a], a > 1, where the W; are 1.1.d. having
the distribution of the jth order statist—ic_in a random sample of size n from a distribution
of G of a continuous non-negative random variable. Such a probability concerning the
maximum of correlated ratios arises in the problem of selecting in terms of a-quantiles from
k distributions F; of non-negative random variables which are star-shaped with respect to
G. This has been investigated by Barlow and Gupta (1969). When G is exponential,
the F; become IFRA distributions and the values of ¢ = a™! have been tabulated by
Barlow, Gupta and Panchapakesan (1969). When G is the half-normal, the F; belong to

a subclass of IFRA distributions because the half-normal is IFRA (actually it is IFR
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which implies IFFRA) and the star-ordering is transitive. In this case, the values of ¢ =
a~! have been tabulated by Gupta and Panchapakesan (1975). Another application of
immediate interest is to consider the case where G is the half-logistic distribution, i.e.
G(z) = {2/(1 + exp(—z))} — 1, z > 0. Since G is [FR, it is also IFRA. Thus our F;’s
belong to yet another subclass of IFFRA distributions. In this case, tables of a are not

available.

9. CONCLUDING REMARKS

In our selective overview of the ranking and selection theory in Section 2, we have
confined ourselves to the basic formulations and some modifications that were relevant to
the review of the procedures that have been investigated in the case of logistic popula-
tions. Our comments in the present section are meant to indicate the scope for further
investigations.

For the problem of selecting the population with the largest mean y; using single-stage
samples, we have assumed the variances to be equal and known and considered equal sample
sizes. Procedures based on unequal sample sizes are not trivial extensions. Further, the
case of unknown variances (known to be equal or not) are important in practice. Also, as
we have mentioned earlier, when the variances are unknown (even if they are known to be
equal), a single-stage procedure that guarantees the P*-condition does not exist under the
indifference zone formulation. These problems involve questions relating to distribution
theory, determination of the LF'C, and computations for implementation.

There are many aspects of the ranking problem that have been studied in the literature
such as selecting good populations (which are “close” to the best), selecting populations
that are bettexj than a standard or a control, estimation of the actual PCS, estimation

after selection (such as estimating the mean of the selected population), and confidence
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interval for the difference between the selected mean and the largest mean. For selecting
the populations better than a standard or a control, we may have prior knowledge of the
ordering of the experimental populations even though we may not know the values of the
parameter of interest. In this case, the procedures have to exhibit an isotonic behavior.
Some of the above aspects are of current interest relative to selection problems in general.
For discussions of these developments and related references, see Gupta and Pancha,pakesa,n
(1979, 1985). A few additional recent references that might be of interest are Gupta and
Liang (1987, 1990), Gupta and Sohn (1990), Gupta and Panchapakesan (1990), and Liang
and Panchapakesan (1990).

Gupta and Sohn (1990) have considered subset selection from Tukey’s (symmetric)
lambda distributions in terms of their location parameters, assuming that they all have
known common scale and shape parameters. The lambda family of distributions was sug-
gested by Tukey (1960, 1962) as a wide class of symmetric distributions. Later, Ramberg
and Schmeiser (1972, 1974) generalized this family so as to include both symmetric and
asymmetric distributions. The practical usefulness of this family is highlighted by the fact
that it has a simple form for the inverse of the c.d.f. and it can be used to approximate
a wide class of densities ranging from the uniform to very heavy tailed ones, of course,
including the logistic [see also Joiner and Rosenblatt (1971)]. Gupta and Sohn (1990)
investigated a subset selection rule based on sample medians similar to the rule R; in Sec-
tion 3. Based on approximation to the logistic distribution by proper choices of the scale
and shape parameters, they have calculated the constants for the rule Ry of Lorenzen and
MecDonald (1981) when k = 2,5,7; m = 2,5,7,9; and P* = 0.90,0.95. In 13 out of the
24 cases, the d-values, corrected to three decimal places, agree. In the remaining cases,
the approximate value using the lambda distribution is one unit more in the third place.

A similar comparison can be made in the case of the rule Ry of Han (1987) described in
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Section 3. Sohn (1985) has verified computationally that the approximation to the c.d.f.
of the sample mean of a logistic distribution by using the lambda distribution is as good
as that of Goel (1975) who derived the c.d.f. as a series by the method of characteristic
functions.

Finally, the use of lambda distribution in approximating a wide class of densities has
significant implications in developing versatile software packages for selection and ranking
problems. Further, this aspect can be useful in other inference problems related to the

logistic distribution.
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