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Abstract

The exact distribution of the sample mean from a double exponential(Laplace) model is
derived. A classical subset selection procedure based on the sample mean for selecting the
population associated with the largest location parameter of £ double exponential(Laplace) dis-
tributions is studied. For the case when a non-informative prior is introduced into the problem,
the relation between the classical Maximum-Type Procedure Rule R™** and the so-called Bayes-
P* subset selection procedure rule is studied. An improved bound for the guarantee probability
of a correct selection for the classical subset selection rule R™2* that relates the rule R™2* to the
selected subset size (notice that the subset selection rule R™** may select all the populations)

is studied and some improved rules of the type R™** are provided.

1 Imntroduction

Suppose we have k double exponential populations IIy, IIy, - - -, II, where each II; is characterized
by the location parameter 6;, 7 = 1,2,---,k. The parameters ;,60,,---,0; are assumed to be
unknown. Let X; be the observable random variable from II; with probability density function

|z — 6;]
o

f(z;0;,0) = %ewp{— }, —oo<z,0; <00, 0>0, (1)
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where o, is a common known value for all ¢ = 1,2,---, k, so that without loss of generality, we can
assume that o = 1. The ranked parameters are denoted by ;) < 03} < - - < ), and it is assumed
that the correct pairing of the ordered 6};)’s and the unordered 6;’s is unknown.

In this paper, we are mainly interested in the subset selection procedures. First, we assume that
there is no prior information about the parameters. Then we study the case where 6;’s are inde-

pendently distributed, and each 6; has a non-informative prior.

2 Distribution of the Sample Mean

In connection with the selection procedures based on the sample means, we first derive the distri-
bution of the sample mean.

Let X;; be a random sample from ¢th population ¢ = 1,2,---,k, 7=1,2,--.,n,i.e.
Xij ~ f(z]6;,1) = -ewp{—lw — 0i[}.
Hence
1
Uij = Xij — 6; ~ f(2]0,1) = Sesp{—|z]}. (2)

From the characteristic function of U; = }_ U;;, we can derive the following lemma
Lemma 2.1(Weida (1935)) Suppose U; = Y 7_; U;;, where U;; has density (2), then the density

function of U; is given by the following formula

n—1 dn—l e—du
p(u) = -2_27” ((nl) 1)! z}’“ din—1 {(1 + zt)”}lt_' 1’ (3)

where u > 0 and
p(u) = p(—u) for u<0. o
Let s = —3t, then (3) becomes

1 dn—l
pv) = (n—l)'ds" ey s)"}ls__l

2"(n —DIE E nim=i"
= ey Sy, @
=t "



where

e = 2%(n-1)!,
(n+j—-2)!

=i = GoDmopr TR (5)

Therefore the density function of X; = Y7 X;;/n is

n -
fallz = 6i]) = e ™% " ay o jle — 6777, —oc0 <z < 00, (6)
i=1
where @ n—j = 2" IVl ujfCn, §=1,2,---,m.
To obtain the coefficients {c,;}, ¢ = 0,1,2,---,n ~ 1, n = 2,3,.--, it is helpful to rewrite the
formula (5) as
(2n—-i-2)!

i = n—i = Dlilgn—i-1° (7)

Note that
2n—1—-2)(2n—-1—3
Con-1=1, ¢Cn;= ( 2(n —)(z _ 1) )Cn—l,i- (8)

In particular
€n0 = Cn1y  Cn1 = (20— 3)cn-1,1-
In Table 1, we have provided the values of {¢,} and-{¢,;} for n = 2(1)10; ¢ = 1(1)n - 1.

To find the cdf of X;, let us first find the cdf of U;. Integrating the density function (4) of U;, we

have

U
P(u) = / p)dt  (u>0)

o0 n . . '

= 1-et S dnnod nj
e Z o w7, (9)

Jj=1
where {an n—;} satisfy:

Gnn—j = Cppn—j + (n -7+ 1)an,n—j+1 j=12,---,n, Ann = 0. (10)

Again we have
Unp-1 =1, @nn-2=(n-1)(n+2)/2.
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Hence the cdf of X; is given by,

. . n—j o
e—lz—4il Dy “—"-"—c-'”"—lx — 6;|n3, z <0

F.(z|6;) = (11)

—n|z—6;| g™ Snn— nnd n—j .
I-e 37y 22—z — 6;]" 77, otherwise.

In Table 2, we provide the values of {¢,} and {an;} for n = 2(1)10; i = 1(1)n - 1.

Example: If we want to obtain the density and the cumulative distribution function of the sample
mean of size n=4 from a double exponential model, checking the column n = 4 from both Table 1

and Table 2, we can easily see that
fallz - 6)) = 5166—4Iw—0f|(44|z — 0> + 6 x 4%z — 6;]% + 15 x 42|z — 6;] + 15 x 4),

and

aee~5=01(43)z — 6,3 + 9 x 42|z — 6;]* + 33 x 4|z — 6;| + 48), z < 6;,

Fy(z]6;) =
1- 591—66_4|z_0‘|(43|$ —0;1> 4+ 9 x 42|z — 6;]% + 33 x 4|z — 6;] + 48), otherwise.

To compare the percentage points of the sample mean and the sample median, let

X, — X(zy— 6
Xn—0 and Z;:L—-.
o o

Z, =

Since the cdf of Z;; for odd number n is much easier to derive (see Gupta and Leong 1979), we
will only provide the comparison of the percentage points of Z, and Z} for n = 3,5,---,21(Table
3). The percentage points for the distribution of the sample mean Z, when n = 2,4,---,20 are

provided in a separate table(Table 4).

3 Using the Sample Mean to Select the Largest Location Pa-

rameter

If we assume that no prior information about the parameter § = (61,62, - - -, ;) is available, then we
usually will use either the classical subset selection approach or the indifference zone formulation in
our ranking and selection problem. In the following, we only study the subset selection approach.
(A) Formulation of the Problem: The the classical Maximum-Type Approach for any location
type problem have been well studied, so we would not give too many details, but simply state some

interesting results without any proof.



For selecting the population associated with the largest location parameter with a correct selec-
tion(CS) probability at least P*(1/k < P* < 1) from k double exponential populations, where we
have a sample mean X; of size n from each II; i = 1,2, .-, k, the Classical Maximum-Type Subset

Selection Rule (R™2*) proposed by Gupta(1956) is defined as follows:

R™2 . Select II;, iff: X;> max X;~d/+/n for some d(> 0),
<i<

where d(> 0) is the smallest value satisfying:

/ ¥ P+ d/y/R) fu(u)du > P*.

The usual condition of P(C'S|R™2*) > P* is guaranteed by the following theorem:
Theorem 3.1

o0
inf Py(CS|R™™) = inf Py(CS|R™>) = / F¥Y(u 4 d//m) fu(u)du,
ge ~ e —oc0
where 0 D Qo={0 : =0 =---=0;, —00<b; <00, t=1,2,---,k }.

(B) Table of Necessary Constants For R™2*: for given k, n, and some particular values of

P*, the constants d/+/n = d(k,n, P*) which satisfy

Pr= [ B et iy fa(u)d,

are given in Table 5.

(C) Asymptotic Results for the Procedure R™**: For large n, we can certainly use the normal

distribution to approximate the infimum of Pp(CS|R™2*). Since
inf P(CS|E™) = inf Fy(CSIR™),

it suffices to consider the case where # € 0y, now we have

X, -0

On

— N(0> 1)’

where 02 = 2/n, so the probability of the following event



iS, a.symptotica.]ly, the same as that of
Zr. > max Z; — d 2
k Z 1<;<k 7 /_\/_,

where Z;, j =1,2,-.+,k are i.i.d. standard normal variables, thus

1R

jaf P(CSIR™) = Py(Z 2 max Z; - df v2)

= / ¥+ 1(u + d/v2)dB(w). | (12)

On the other hand, if we use the sample median in the subset selection procedure defined the subset

selection rule RM2%.  as follows( see Gupta and Leong (1979)),

mazx
median *

Select II;, if and only if: Yz > max Y; — dmedian,
1<5<k
where Y; is the sample median of population II;. Then, we will have, asymptotically,

. max ~ > . — .
élelg P.Q(CSIRmedzan - P_G_(Zk - 112‘7-32{]‘: ZJ dmedza.n)

/ &5 (u + dmedian)dB(w).
-0

Thus, in order to have the same probability of a correct selection for both selection rules based on

the different statistics, we must have, for large n,
d~ \/idmedian- (13)

(D) Sensitivity of the Assumption of Double Exponential: Suppose we have k& populations
Iy, 105, - - -, I, where II; is characterized by a location parameter §;. If we do not know whether
these k populations have normal, logistic, or double exponential distributions, then selecting the
population associated with the largest location parameter becomes a problem, because the real
distribution of the populations is unknown. We will show that the double exponential distribution
model provides a safeguard as explained below.

If the sample size n is large, we know that the infimum of Py(CS|R™2*) for the double exponential
populations is approximately given by (12). On the other hand, for the normal means problem, we

have
inf Py(CS|RR™) = / &5 (u + dy)d®(u),
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because

Zy 2 112_?5)(k Z; — dN/\/T_l <~
ViZi—0) > max a(Zi— ) dw,
1<y<k
and \/n(Z; — 0) ~ N(0,1). Similarly, for the logistic distribution model, we have
inf Po(CS|RE™) = / &5 (u + dp)d®(u),
therefore,

d ~ \/idN ~ \/id[,.

It is clear from the above that the d-values for the double exponential provide conservative bounds

for the other two models, if n is large.

When 7 is small, for instance, for n = 10, k£ = 10, we have the following:

P*-value
0.75 0.90 0.95 0.99
d |3.1971 4.2510 4.9063 6.1968
dr, | 2.2639 2.9925 3.4390 4.3029
dy | 2.2637 2.9829 3.4182 4.2456

dy-value excerpted from Bechhofer(1954)
dr-value excerpted from Han(1987 Ph.D. Thesis)

From this we again see that the d-values for the double exponential provide conservative bounds

for the normal and logistic models for the problem of selecting the unknown location parameter.

4 Selection Using a Non-informative Prior

In the Classical Maximum-Type Subset Selection Procedure, it is easy to notice that the selected
subset size |s| is a random variable which is not fixed in advance.
In general, for any location or scale parameter situation, Gupta(1965) proved that:

(1) The procedure of the above type is monotone, and



(2) If the distribution F(z, ) possesses a density f(z,#) having a monotone likelihood ratio (MLR)
in z, then E(}s|) is maximized when #; = 3 = - - - = 0 and the maximum is kP*.

So, in the worst case, the expected proportion in the selected subset is equal to P*. Furthermore,
it may select populations such that, depending on the unknown sample X, we may get an actual
P(CS) much larger than P*.

In this section, we will regard the likelihood function of 6; as the distribution of 8; given X. It is
the same as saying that based on the distribution of a statistic (in our case it is fhe sample mean
and the sample median), we assume that, independently, each ©; has a non-informative prior,

i=1,2,--,k.

4.1 Bayes Selection Procedure

In the following, we will consider a more general case, we assume

Xi~ f(|lz - 6i),

i.e. the density of X; given ©; = 6; is symmetric about 6;(for the case where f(.) is not symmetrical,

we have obtained some results which will be available later), and
0, ~I(0)=1, i=1,2,---,k.

Now, we will make decisions based on the posterior distributions of 9|X.

From a Bayes perspective, in order to select the population associated with the largest parameter
f[x) with a guaranteed posterior probability of a correct selection to be at least P*(1/k < P* < 1)
(the so-called PP*-condition, see Gupta and Yang(1985)), we should consider the following events

A; = {0; is the largest |[ X =z}, ¢=1,2,---,k.
Now, using the non-informative prior, we have
OilX =z~ f(lz:i - 6i]), i=1,2,--+,k.
Let p;(z) be the probability of event A;, then

pi(z) = P(b; is the largest |z)

P(az > oj,Vj, ] # 1 Iﬁ)
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= P(B,' - > 0_7' —-T;— (mi - :l:j),Vj, J # i |§)
[ TP+ G- o) f(w)du,

T g

where F(.) is the cdf of f(.).
Lemma 4.1: (1) The posterior probability p;(z) depends only on the differences z; — z;, ¢,j =
1,2,-+,k, j # i,

(2) pi(z) is non-increasing in z;, j # 4, keeping other components of z fixed and it is non-
decreasing in z;, keeping other components of z fixed.

(3) pi(z) > p;j(z) if and only if z; > z;.
Proof: The proof is straightforward and hence omitted. |
Theorem 4.1: For any fixed subset S of the whole populations IIy, I, - - - , IIx, let PP(CS|S, z)
denote the posterior probability of a correct selection for the subset S(i.e. the subset S contains
the best population) given a random sample z, then

(1) PP(CS|S,z) is non-increasing in z;, if j ¢ S, keeping other components of z fixed, and

(2) PP(CS|S,z) is non-decreasing in z;, if ¢ € S, keeping other components of z fixed.
Proof: Since

PP(CS|S,z) = Y pi(z)
1€S

= 1-Y pi(z)- (14)

igS

Now, p;(z) is non-increasing in z;, if j ¢ S for all # € S, so PP(CS|S,z) is non-increasing in
zj, 7 ¢ S by first part of equation (14).

On the other hand, the second part of equation (14) and the fact that p;(z) is non-increasing in
z;,if ¢ € S for all j ¢ S imply that PP(CS|S,z) is non-decreasing in z;, ¢ € §. O
From the Bayesian analysis, we know that the Bayes Decision Rule (RP) will select the ¢ populations
which associated with the ¢ largest values of p;(z) values (i.e. the Bayes set s = {Mggy -y Mipmggg}
), where the integer t(> 1) satisfies

k
> pmlE) 2 P,

m=k—t+1

and

k
Y. Pm(2) < P
m=k—-t42



where ppyj(2) < ppj(z) < -+ - < ppj(z) are the ordered values of p;(z)’s, and sB is the subset selected
by the Bayes selection rule RZ.

4.2 A Lower Bound on the PP(CS) for the Subset Selection Rule R™*

Under the Maximum-Type Subset Selection Rule R™2* defined in the previous section, we know
that the larger the value z; is, the larger the chance that the corresponding population II; will be
selected.
Under the rule R™2*, we will pick the population II; if its x; value is larger than z[y) — d, and reject
IT; if z; < z[y) — d. Thus the following observations:
Observations: For the Maximum-Type Subset Selection Rule R™2*, we know at least the following
two facts

(1) R™** will always pick population IIfy, i-e. the population associated with the largest value
T{k]

(2) AL IL; not being selected by R™** must has its z; value less than zf) — d.
Theorem 4.2: If the subset selection rule R™2* selects 7 populations(i.e. select population
k), - -+ Mik—i41), where IIj;) is the population associated with the jth largest value z[;}), under the

classical selection procedure, then

PP(CS|R™*,z) > PP(CS|R™*,z ¢ X,)

(1P, (15)

P* +

where Xo = {z: zy—-d=gzp_y=---=2p }.

Remark 4.2: A similar result for the normal model has been given in Gupta and Yang (1985).
Here, we will give a probabilistic proof of the above theorem.

Proof: The first part of the inequality [i.e. PP(CS|R™*,z) > PP(CS|R™*,z € Ap)] follows

from the above observations and Theorem 4.1.

When g € &p, we know that pyy(z) > ppr-13(z) = - - - = ppj(z), and
@ = [ T] Fut (o - ap)fud
T gk
= / "I Fu + d) f(u)du
T j#k

- /_ * P (w4 d) f(u)du = P,

10



since 3" pi(z) = 1, so ppy(z) = ppy(z) = -+ = pp—1)(2) = 7=7(1 — P*) and |spmax| = %, hence the

result follows. O

Since PP(CS|R™* z) > P* and it is strictly larger than P*, once we pick more than one popu-
lation, we certainly can find a better subset selection rule by simply utilizing the lower bound on

PP(CS|R™~, ).

4.3 Some New Selection Procedures

First, let us consider the following selection procedure:
Let Azp) = 2 — T—q fori=1,2,.--,k - 1, where z[y) < z[g) < -+ < 7y are the ordered values
of z;’s. then, we compute the following k — 1 numbers:
400
Py = /_ Pt Aag)dF(w). (16)
Since 0 < Az < - -- < Az[g_yj, therefore

0 Py < Py <+ < Phoy(< 1)

Next, we compute:

* * i—1 *
Qi =Fp + k_——l(l - Py)- 17)

Lemma 4.2: For values of Az}, where 0 < Az < --- < Az(;_q), We have
0< Q) < < Q-y(< 1) (18)

Proof: Actually, we have

Qn=1- :_:%(1 - F)
S0 Q’(i) is increasing in %, because k — ¢ is decreasing in ¢ and 1 — P(*i) is decreasing in Az, (thus in
t); hence the result. O
Now, we propose the following subset selection rule R;:
For any preassigned guarantee probability P*(1/k < P* < 1), if there exists the smallest Q,(kio)
which satisfies Q’("Z.o) > P*, then the subset selection rule R; is

Ry: Select Il;;y iff:  j > do. (19)

11



The subset selection rule R; will take s = {II(x), - -+, (x_j,4+1)} as our selected subset.
otherwise, R; will select all populations.
Remark 4.3: To implement the procedure R;, we examine the posterior probabilities at the
following k — 1 stages:
Stage 1. pull all k¥ — 2 values of z[;, i = 1,2,---,k — 2 to the point T(k-1], and check if

k - 1 K %
- P s1-F
if the above holds, we select s = {H[k]} and terminate the process, if not, we go to

Stage 2. pull all k¥ — 2 values of zf;, i #k—2, i=1,2,---,k — 1 to the point T[r_g), check if

k-2 * *
T Fe) 1= P

if it holds, we select s = {II[s}, II[;_qj} and terminate the process, if not, we go to Stage 3, and so
on, until we can find an ¢ such that

k—1
k-1

(1—P6))S1_P*7

and then we select s = {IIfy), I[k_y), -+, I[x_;41)}; If there does not exist such an ¢, we select all
populations.

For other subset selection rules Ry, -, Rg_1, we give the following remark:

Remark 4.4: Note that in the Process of deriving the subset selection rule R, we divided the
data into two groups, and put only one value (i.e. z[) into the first group. Now we can develop
it in two directions.

(a) By putting more z[;)’s into the first group, we can actually replace in) by QZ‘;’S as follows:

*ok k—1i ok
Q6 = omzx, (1~ pm -1 Him),
where
oo 1 k—m—1 :
P:’Tm) = / FE (u - (ﬂi[k—m] - z[k—i]))dF - (u), m=0,1,---,i—1,
—00
is the posterior probability of py)(z) = -+ = pr—m—1)(z), when we pull [, - -+, Z[t—m+1] tO Z{k—m)

and T(k_m-1],* "+, T[] tO T[k—q].

When m = 0, we have



which is the value we used in the rule R;.

(b) We can also divide the data into 3,4,---,k groups. Let R be the rule for the case of 3
groups, - -+, and Ri—y be the rule for the case of k£ groups. then in the case of k¥ groups, the subset
selection rule and the previous rule RP are identical. Later, it will be shown that Ry can be as

good as RP and it is easier to implement from the computational viewpoint.

4.4 Properties of Subset Selection Rule

We can easily prove the following;:

Proposition 4.1: The subset selection rule R; is better than rule R™#*, in the sense that

(a) PP(CS|R;) > P*, because PP(CS|R;) > Qfi,)» 2nd

(b) s1 C spmax, because P(",;.o) < P*.

Proposition 4.2: (a) The subset selection rule Ry and R? will take the same action, if zpy) = - -+ =
Z[k-1] < T[x], or when the subset selection rule R; selects all populations in its selected subset.
(b) The subset selection rule R;, R® and R™** will take the same action, if the subset selection
rule R; selects only one population.

Proposition 4.3: The subset selection rule R; possesses the advantage of the rule R™®X, because
the forms of the involved integration for P(’:-) and P* are identical.

Remark 4.5: The selection rule R; is like a modified rule of R™2*, where, it like that the population
associated with the largest statistic possesses the probability P* of a correct selection, and the

remaining |s| — 1 populations in s have the P(CS) at laest equal to l,%'__—ll(l - P*).

5 An Example for Comparsion of the Several Subset Selection

Rules

A data set of exponential random numbers generated by a statistical package G6-RVP designed by
H.Rubin and C.Hinkle at Purdue University was given in Gupta and Leong’s paper(1979), where
9 observations for each of 5 sets of double exponential random numbers with location parameters

0; equal to 0,2.5,3.4,—2.0,—0.65 were taken.
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I, I, II3 114 IIs
-3.4839 -0.9839 -0.0839 -5.4839 -4.1339
-2.6762 -0.1762 0.7238 -4.6762 -3.3262
-0.3129 2.1871 3.0871 -2.3129 -0.9629
-0.2264 2.2736 3.1736 -2.2264 -0.8764
-0.1761  2.3239 3.2239 -2.1761 -0.8261
0.1462 2.6462 3.5462 -1.8538 -0.5038
0.3033 2.8033 3.7033 -1.6967 -0.3467
1.6160 4.1160 5.0160 -0.3840 0.9660
5.6924 8.1924 9.0924 3.6924 5.0424
To see how each subset selection rule performs, let
z; = the sample mean of II; and g; = sample median of II;,

then

z = (z1,...,5) = (0.0980,2.5980, 3.4980, —1.9020, —0.5520)',

y=(y1,...,95) = (-0.1761,2.3239,3.2239, —2.1761, —0.8261) .

Hence the difference of z;’s and y;’s are Azz; = Ayss = 0.90, Azs; = Aysy = 3.40,
A2735 = Ay35 = 405, A:L‘34 = Ay34 = 5.40.
(a) Now, we have the following:

PP(CS|R,z) for R=RB, Ry, Ri(i > 2)

when one population is picked

using mean | using median
RBor Ri(i>2)| 0.9131 0.9380
R™** or Ry 0.7700 0.8292

where, in the case of the sample mean, the integration for R is

P = / Fo(u +0.9) X Fo(u+ 3.4) x Fy(u + 4.05) x Fy(u + 5.4)dFo(w).

The integration for R, is

P = / Fy(u +0.9) x F3(u + 3.4)dFo(u).

14



Also, the integration for R; or R™2* is

P = / Fy(u + 0.9)dFo(u),

where Fy(.) is the cdf of the sample mean of size 9.

The same applies to the case of the sample median. Note that the rule R, is as good as RB.

(b) In the case where two populations are taken, we have the probability one for all selection rules,
because

00

Gi(u + 3.4)dGy(u) ~ 1,

/ ' Fi(u + 3.4)dFo(u) ~ /

where G4(.) is the cdf of the sample median of size 9(see Gupta and Leong (1979)).
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Table 1: Table of {c,} and {c,;} for n=2,3,---,10
| " sample size n

i 2345 ] 6| 7 8 9 10

¢, ||4(16]|96 | 768 | 7680 | 92160 | 1290240 | 20643840 | 371589120
cho 1] 3 | 15105 | 945 | 10395 | 135135 | 2027025 | 34459425
cpa f 1| 3 115105 | 945 | 10395 | 135135 | 2027025 | 34459425
Cn,2 116 | 45 | 420 | 4725 62370 945945 16216200
Cn,3 1 | 10 | 105 | 1260 17325 270270 4729725
Cn4 1 15 210 3150 51975 945945
Cn5 1 21 378 6930 135135
Cn,6 1 28 630 13860
Cnt 1 36 990
Cn,8 1 45
Cn9 1
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Table 2:

Table of {c¢,} and {a,;} for n=2,3,---,10

" sample size n |
ani |23 ]a]5 | 6| 7 8 9 10 |
e, ||4]16 |96 | 768 | 7680 | 92160 | 1290240 | 20643840 | 371589120
ano || 2| 8 |48 | 384 | 3840 | 46080 | 645120 | 10321920 | 185794560
an1 || 1| 5 | 33279 | 2895 | 35685 [ 509985 | 8294895 | 151335135
an2 1|9 | 87 | 975 | 12645 | 187425 | 3133935 | 58437855
an3 1] 14 | 185 | 2640 41685 729330 14073885
Qn 4 1 20 345 6090 114765 2336040
Gn5 1 27 588 12558 278019
tn 1 35 938 23814
tn,7 1 44 1422
an,8 1 54
Gn9 1
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Table 3:

1) Upper 100(1 — a) Percentage Points {, of Z,(Top Entry);

2) Ay =&, — &, where £ is the Upper 100(1 — a) Percentage Points of

Z»(Bottom Entry).

sample size n

3

5

7

9

11

13

15

17

19

21

0.750

0.6050
-.0825

0.6321
-.1102

0.6440
-.1249

0.6507
-.1343

0.6550
-.1409

0.6580
-.1459

0.6602
-.1499

0.6619
-.1531

0.6632
-.1557

0.6643
-.1579

0.900

1.2221
-.0739

1.2432
-.1259

1.2532
-.1591

1.2590
-.1823

1.2629
-.1995

1.2656
-.2129

1.2676
-.2237

1.2692
-.2326

1.2704
-.2401

1.2715
-.2467

0.950

1.6372
-.0369

1.6385
-.1025

1.6395
-.1484

1.6402
-.1815

1.6408
-.2066

1.6412
-.2264

1.6416
-.2426

1.6419
-.2560

1.6422
-.2675

1.6424
-.2774

0.975

2.0284
.0144

2.0026
-.0632

1.9905
-.1210

1.9836
-.1637

1.9794
-.1967

1.9763
-.2229

1.9740
-.2443

1.9724
-.2623

1.9711
-.2778

1.9699
-.2910

0.990

2.5214
.0976

2.4524
0055

2.4194
-.0683

2.3999
-.1236

2.3871
-.1666

2.3782
-.2014

2.3715
-.2298

2.3663
-.2539

2.3621
-.2741

2.3590
-.2923

0.995

2.8821
.1684

2.7759
.0659

2.7246
-.0195

2.6941
-.0842

2.6746
-.1355

2.6599
-.1758

2.6495
-.2099

2.6410
-.2387

2.6343
-.2625

2.6294
-.2844

Table 4:

Upper 100(1 — a) Percentage Points £, of Z, for even values of

sample size n

10

12

14

16

18

20

0.750

0.5731

0.6218

0.6390

0.6478

0.6531

0.6566

0.6592

0.6611

0.6626

0.6638

0.900

1.1986

1.2350

1.2489

1.2564

1.2611

1.2643

1.2667

1.2685

1.2698

1.2710

0.950

1.6359

1.6379

1.6390

1.6399

1.6405

1.6411

1.6415

1.6418

1.6420

1.6423

0.975

2.0563

2.0125

1.9955

1.9867

1.9814

1.9777

1.9751

1.9733

1.9717

1.9705

0.990

2.5958

2.4792

2.4335

2.4084

2.3929

2.3822

2.3746

2.3688

2.3642

2.3605

0.995

2.9944

2.8174

2.7466

2.7075

2.6831

2.6666

2.6544

2.6453

2.6379

2.6318
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Table 5:

Values of d//n = d(n,k,P*) for n,k=2,3,---,10

number of Populations k

4

5 6 7 8

10

0.75
1{0.90
0.95
0.99

1.1462
2.3972
3.2716
5.1910

1.7849
3.0504
3.9322
5.8612

2.1575
3.4336
4.3197
6.2549

2.4258 | 2.6365 | 2.8104 | 2.9584
3.7083 | 3.9234 | 4.1002 | 4.2503
4.5971 | 4.8138 | 4.9917 | 5.1427
6.5350 | 6.7538 | 6.9333 | 7.0853

3.0874
4.3809
5.2739

7.2180°

3.2015
4.4964
5.3899
7.3343

0.75
210.90
0.95
0.99

0.9580
1.7893
2.3470
3.5237

1.3575
2.1966
2.7550
3.9287

1.6011
2.4393
2.9962
4.1660

1.7756 | 1.9110 | 2.0214 | 2.1144
2.6118 | 2.7452 | 2.8539 | 2.9454
3.1670 | 3.2992 | 3.4069 | 3.4975
4.3337 | 4.4634 | 4.5696 | 4.6582

2.1947
3.0244
3.5758
4.7351

2.2653
3.0939
3.6447
4.8032

0.75
31090
0.95
0.99

0.7379
1.4421
1.8926
2.8096

1.1187
1.7960
2.2339
3.1318

1.3251
1.9924
2.4250
3.3142

1.4666 | 1.5740 | 1.6605 | 1.7328
2.1281 | 2.2316 | 2.3152 | 2.3853
2.5576 | 2.6591 | 2.7410 | 2.8098
3.4417 | 3.5394 | 3.6189 | 3.6855

1.7949
2.4455
2.8690
3.7427

1.8493
2.4983
2.9209
3.7932

0.75
410.90
0.95
0.99

0.6478
1.2564
1.6399
2.4086

0.9796
1.5601
1.9298
2.6774

1.1575
1.7268
2.0909
2.8290

1.2784 | 1.3696 | 1.4428 | 1.5037
1.8414 | 1.9283 | 1.9983 | 2.0567
2.2020 | 2.2866 | 2.3548 | 2.4119
2.9344 | 3.0150 | 3.0802 | 3.1351

1.5558
2.1068
2.4608
3.1820

1.6013
2.1507
2.5038
3.2234

0.75
510.90
0.95
0.99

0.5842
1.1280
1.4673
2.1401

0.8821
1.3980
1.7236
2.3752

1.0407
1.5454
1.8650
2.5071

1.1480 | 1.2286 | 1.2931 | 1.3466
1.6462 | 1.7224 | 1.7836 | 1.8346
1.9623 | 2.0362 | 2.0956 | 2.1452
2.5983 | 2.6682 | 2.7246 | 2.7719

1.3923
1.8783
2.1877
2.8121

1.4322
1.9165
2.2249
2.8477
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Table 5 (continued)

0.75
0.90
0.95
0.99

0.5361
1.0320
1.3396
1.9453

0.8088
1.2777
1.5718
2.1533

0.9532
1.4110
1.6992
2.2734

1.0507
1.5022
1.7864
2.3555

1.1237
1.5707
1.8530
2.4170

1.1819
1.6256
1.9058
2.4668

1.2301
1.6714
1.9504
2.5078

1.2713
1.7106
1.9885
2.5430

1.3072
1.7450
2.0215
2.5752

0.75
0.90
0.95
0.99

0.4983
0.9575
1.2408
1.7952

0.7514
1.1843
1.4542
1.9874

0.8850
1.3071
1.5713
2.0951

0.9748
1.3906
1.6513
2.1694

1.0420
1.4535
1.7119
2.2258

1.0955
1.5038
1.7605
2.2714

1.1397
1.5457
1.8010
2.3095

1.1775
1.5814
1.8356
2.3423

1.2103
1.6126
1.8658
2.3708

0.75
0.90
0.95
0.99

0.4675
0.8969
1.1609
1.6750

0.7045
1.1086
1.3596
1.8530

0.8295
1.2230
1.4683
1.9526

0.9132
1.3006
1.5426
2.0211

0.9758
1.3590
1.5987
2.0731

1.0255
1.4057
1.6436
2.1152

1.0666
1.4444
1.6810
2.1504

1.1017
1.4775
1.7130
2.1804

1.1321
1.5064
1.7410
2.2068

0.75
0.90
0.95
0.99

0.4419
0.8468
1.0950
1.5764

0.6658
1.0461
1.2816
1.7430

0.7835
1.1535
1.3835
1.8358

0.8623
1.2263
1.4530
1.8997

0.9210
1.2811
1.5055
1.9482

0.9677
1.3248
1.5475
1.9874

1.0063
1.3610
1.5825
2.0200

1.0391
1.3920
1.6123
2.0480

1.0676
1.4189
1.6384
2.0726

10

0.75
0.90
0.95
0.99

0.0015
0.7512
1.0141
1.4865

0.5712
0.9761
1.2070
1.6476

0.7179
1.0869
1.3078
1.7362

0.8051
1.1593
1.3752
1.7968

0.8665
1.2126
1.4255
1.8428

0.9135
1.2547
1.4655
1.8796

0.9516
1.2893
1.4986
1.9103

0.9835
1.3188
1.5269
1.9365

1.0110
1.3443
1.5515
1.9596

20
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