Testing Independence with Additional Information
by
Francois Perron
Université de Montréal and Purdue University

Technical Report # 90-24C

Department of Statistics
Purdue University

May, 1990



TESTING INDEPENDENCE WITH ADDITIONAL INFORMATION
by

Francois Perron
Université de Montréal and Purdue University

ABSTRACT

Summary. Let X = (X7 : j = 1,...,n) be n row vectors of dimension p indepen-
dently and identically distributed multinormal. For each j, X J is partitioned as X7 =
(X{,X3,X3) where p; is the dimension of X} with p; = 1,p; + p2 + ps = p. In addition,
consider Yij ,i=1,2,7 =1,...,n; where the vectors Y are independent and distributed as
X}. We treat here the problem of testing independence between X; and X3 knowing that
X{ and X} are uncorrelated. A locally best invariant test is proposed for this problem.

Key words: Invariance, group, orbits, maximal invariant.

Résumé. A partir de vecteurs aléatoires lignes indépendants entre eux (X7 : j = 1,...,n)
distribués selon une loi multinormale de dimension p on cherche & tester s’il y a indépen-
dance ou non entre la premiére composante et les p3 derniéres composantes des vecteurs X7
sachant que la premiére composante est indépendante des p; composantes suivantes. Pour
cela, on partitionne tous les vecteurs X7 en sous-vecteurs (X7 = X7, XJ, XJ) de dimensions
p1 = 1,ps,ps respectivement. Dans ce probléme on suppose qu’il existe également des
vecteurs (Y : ¢ =1,2,j =1,...,n;) dont les distributions en loi sont les mémes que celles
des marginales X} de X!. Ces vecteurs forment l'information additionnelle. Dans cet
article, on trouve un test localement le plus puissant pour ce probléme.
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1. Introduction

Consider a random vector in R? having a multivariate normal distribution with mean
0 and covariance ¥ (X positive definite). Decompose this vector into three subvectors of
dimensions p; = 1,p2 and p3. Assuming that the first subvector is independent of the
second subvector we wish to test whether the first subvector is independent of the third
subvector or not. Partitioning ¥ in an appropriate way, the problem corresponds to testing

Hy : X3 = 0 versus Hy : 13 # 0 with

Y1 0 X3
Y= 0 X X3
Y31 Y32 Xas

where X;; is a p; X p; matrix ¢,7 = 1,2,3.

In order to test this hypothesis a sample consisting of three random matrices (X, Y1, Y2)
of dimensions n X p, ny X p; and ng X ps respectively is observed. It is assumed that X,Y;
and Y, are mutually independent and distributed as N(0,1, ® ¥), N(0,I,, ® ¥11) and
N(0,I,, ® X32) respectively. In other words, the row vectors of X are independent and
identically distributed N,(0,X) and, similarly, the row vectors of Y; are independent and
identically distributed N(0,X;;),z = 1,2. The matrix X is partitioned as X = (X;X2.Xj3)
where X; is n X p;,4 = 1,2,3. Let S;; = X} X; and Wy = V!V, k = 1,2,i,5 = 1,2,3.
The matrices S, Wy, Wy are independent Wishart and they form a sufficient statistic. The

couple (Wy, W) is what we call the additional information.

In practice, additional information appears in many circumstances. It occurs in sample
surveys when two types of questionnaires (one partial and the other one complete) are
distributed. It may also occur when we combine data obtained from different experiments.
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The likelihood ratio test for testing Hy versus H; is given by rejecting Hy if and only

if R is large where

S13.25539531.2/Pa

R= 511.2/(71 — Pz)

and Sijx = Sij — SikSiy Skj This test does not take into account the additional infor-
mation. When no additional information is available the locally best invariant test (Giri

1979) is given by rejecting Hp if and only if ¢, is large where

—(R-1) (SII'ZI(;TZP?)).

The purpose of this article is to find the locally best invariant test when additional infor-
mation is available. It is expected that this test will make use of (W7, W2). For instance,
consider the following related problem where p; > 1,p; = 0 and W3 is Wp3(233,n3). In
this case the locally best invariant test (Eaton and Kariya 1983) consists in rejecting Hy

if and only if ¢4 is large where

P2 = (ntm)(n+ na)tr((sn + W1)_1513(533 + Ws)_1531)
pips
(n + n;)

i=173 pl

—ir ((Sn + W) lszz)
Notice how the statistic o makes use of (Wy, Ws).

The invariance context is introduced in Section 2 and the locally bets invariant test
is given. Computations are reported in Section 3. Throughout this text the multiplicative
group of p X p non-singular matrices is denoted by G¢(p). The subgroups of orthogonal ma-
trices and lower triangular matrices with positive elements on the diagonal are respectively

denoted by O(p) and T'(p).



2. Imvariance context

Let S, W;, W, be independently distributed Wishart with parameters (p, £, n), (p1, 11,
ni1) and (p2,X22,n2) respectively. Let Pg be the probability measure associated with

(S, W1, Ws) when ¥ is the parameter and let G be the group of transformations given by

gu 0 O ,
G=qg=| 0 g2 0 ]:g€Gup),gii € Ge(p;)fori=1,2,3
0 g32 ¢33

Corresponding to g € G the transformations on the sufficient statistic (S, Wi, W;) and the

parameter ¥ are given by

(S, W17 W2) — g(‘s, W17W2) = (gsgtag%1W17g22W2g§2)’

Y —s ¢gBgt

and a maximal invariant in the parameter space is given by p where p(X) = X135 23_31.2231
Il
The power function of any invariant test is constant on each orbit of the parameter

space so there is no loss of generality in working on a class of representatives instead of

working on the original parameter space. Let
-1

1 0 6D
A= 0 I o (2.1)
§D 0 I

with D' = (0,...,0,1). The set {A(6) : 6 € [0,1)} consists in a class of representatives
for the orbits of the parameter space and p(A(6)) = §2. The last inequality indicates a

bijection between the class of representatives and the range of p.

Define P6I as the restriction of Py(4) over the class of all measurable sets which are

invariant. According to Theorem 1 Section 3

dpPr (n+n1) (n—p2)

~ pn s 511.2/(”"1’2)
d_Pf{(S,Wl,Wz)—(l—é )21+ + (R_l)(&

1+ Wi)/(n+n1)

5 5 +0(6%)].



Therefore, the locally best invariant test is given by rejecting Hy if and only if ¢ is large

where

1) 511.2/(71 —Pz)
(S11+ W)/ (n+n1)

o3 = (R —

The statistic 3 is the product of two factors. The first factor is equivalent to the
likelihood ratio statistic. It essentially measures the multiple correlation between X, and
X3 after removing the effect of X;. The second factor is a ratio of two estimators of
Y11. The additional information is used to get an improved estimator in the denominator.
(Giri’s test has nqy = 0 and W; = 0.) The second factor provides a measure of orthogonality
between X; and the columns of X,. The fact that this test is locally most powerful suggests
that, as X1 becomes more nearly orthogonal to the columns of X5, the first factor becomes

more effective in detecting near-zero correlation.

A comment on the fact that the test does not involve Y; : Giri’s test uses X only
through the projection matrix X(X}X>2)~1 X{, which contains no information about ¥y5.

Thus it is not surprising that additional information about X, is ignored.

3. Computations

In this section, we derive expression (2.2). Using Wijsman’s representation theorem

(ref. Wijsman 1967)
r(6, S, Wl, Wz)
7'(0, S, Wl ’ Wz)

ar]
4Pl

(S, W1, W,) =
with

(6,8, W1, Wy) = /G F(3(S, W, W2) A(6))A(dg)
where ) is a left invariant measure on G and f(-|5) is the density function of (S, Wi, Ws)
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with respect to an invariant measure ;1 when the parameter is . The measures A and p

are unique up to a multiplicative factor. Let
3
A(dg) = lgasgss|™?*/* [ | Ae:(dois)
i=1

and

#(d(S, W1, W2)) = pp(dS)pp, (W1 )1tp, (dW2)

where A\ (dh) = |hh?|~9/2dh is a left invariant measure on the space of all ¢ x ¢ matrices

and p,(dW) = |[W|~(a+1)/2 . 1;[ . dw;; is an invariant measure on the space of all ¢ x ¢
1<:i<5<¢

positive definite matrices. The joint density of (S, Wi, W) with respect to the measure u
is given by

2
(S, W1, W3 |2) = K574 8|2 [ |2 Wil /2

i=1
1 -1 2 ~1
exp ——2-{tr()3 S)+ '21 tr(Z; Wi}
1=
where K is a normalization constant independent of X.
Theorem 1.

arf
dP!

(n+n1)
2
S11.2/(n — pa)

(S11 + W)/ (n + n1)

(S,Wl,Wz):(1—62)n/2 1+ +(n—2p2){R—1}

+ 0(8%)
Proof. First, begin with
f(3(S, W1, W2|A(8)) = K (1L — &) /2|S " 2wy 2 | Wy 2/

(gf1)(n+n1)/2|922952 |(n+n’)/2 |9339§3|n/2

1
exp —5{(511 + (1 = 6%)W1)g3y + tr(g22(S22 + Wa)gsy) + tr(gss Sazgls)

+ tr(g32.5229%2) + 2tr(gs2 S23933) + 26911 D% 932521 + 26g11 D% 933531 }.
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Introducing the variable transformation

haz = [ga2 + 933532555 + 5D9115125{21]5;42
hii = giiVi, Vi = (S11 + W1)Y2, Vo = (Sp2 + W2)Y/2, V3 = $312

Mdg) = |S22|—P3/2)\(dh).
We get
r(5, S, Wl,Wz) = K(l _ 62)n/2|S|n/2|522|_p3/2V1_(n+n1)|V2|_("+n2)

[Val =W /2 | w212 /G(hil)<"+"1>/2|hzzh;2|<"+”2>/2|hsahésI(""P”/Z
1
exp —§{hfl + tr(hazhgy) + tr(hashys) + tr(hazhs,)

+ 28D has Vil Sa15V hay — 62R2, 81,V 2 (Ry + Z)}A(dR)
with Z = 51“11W1 and R, = 51252_21521/511.

Integrating over hgs, hg2 and developing the exponential for § close to zero we find

(8,8, Wi, Wa) = (1 — 62)™2p(S, Wy, W)
1
{/G( )/G( )[1—Dth33V3_1531.2V1_1h115+5((Dth33Vg_1531.2)2+
¢(P1 t(Ps
1
S11(Ry + 2))82V 23 ](h3y) ") 2| haghls (" =P2) /2 exp —5{"31 + tr(hsah3s)}

)‘p1(dh11)’\pa(dh33) + Q(67 S, Wi, Wz)}
where Q(8, S, W1, W) = O(6%) uniformly in (S, Wi, W2) (can be proven).
Next, decompose Gy(p) as a product space Ge(p) = T(p) X O(p) where g = to,
g € Ge(p),t € T(p) and o € O(p). According to this decomposition the left invariant
measure A, is decomposed as A,(dg) = 7,(dt) X vp(do) where 7, is a left invariant measure
on T(p) and v, is a left invariant probability measure on O(p). Moreover, corresponding

to v, the following identities (James 1954).

/ tr(AO)v,(dO) = 0,/ tr2(AO)v,(dO) = tr(AAY)/p, A(p x p)
O(p) O(p)
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are used to obtain
7'(6, S, Wl,Wz) = (1 —52)”/2b(5, Wl,Wz){ /
T(p1) Y T(pa)
1
[1+ §(DthsT§3DR2/P3 +Z + Ry)(1 + Z2) T T4 82T ™ | Tas |72

1
exp "'2'{T121 + tr(Ts3 T53)} 7 (dT11)7ps (dT33) + O(8°)}.

Finally, recognizing the Bartlett decomposition of a Wishart distribution (ref. Giri

1977) we obtain

(6,8, Wi, Wa)/r(0, S, Wy, Wy) = (1 — 62)"/?

1
{1+ EE{DtUlDRQ/]h +Z + R}U(1+ Z2)716% + 0(6%)}
(n+m)
21+ 2)

— (1 _ 62)11/2{1 + (n -;nl) + (TL —2p2)(R_ 1)(51;5'13[//_57;/(_7117—2*_)711) + 0(53)}

=(1—8)"/2{1+ u ;3p2)R2 + Z + R1}6 + O(8%)}

where Uy is Wp,(n — pa,I) and U; is X%_,_m with Ry, = 5'13_25;%_;2531,2/511 and R =

(n — p2)R2/p3(1 — Ry). Q.E.D.
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