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1. INTRODUCTION

2
Let Zy, Loy Ly be a random sample of size n from the logistic L(O,g—) population

g1+
with probability density function

*

f(z) = e %/(1+e7)?, w<z<a, (1.1)

and cumulative distribution function

F(z) = 1/(1 + 67, w<z< o (12)

)

Let Z1:n ¢ Z2:11 ¢

sample in increasing order of magnitude. Then the density function of Z... (1<ign) is

/. denote the order statistics obtained by arranging the above

given by | |
() = Dy {F*(Zi)}l_l{1-F*(zi)}n_1f*(zi),

—m<Zi<m, (1.3)
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and the joint density function of Zi-n and Zj'n (1<i<j<n) is given by

* ! * i1 x * H-1 * n—j
nl) = e F @) {FEF @) )

f(a)f (2), -o<z<s<o. (14)

J J
Let us now denote the single moments E(Zli(:n) by a’;gi) for 1<i<n, k>1, and the product
moments E(Zi:nzj:n) by a:;,j:n for 1<i<j<n. For convenience, let us also denote E(Zi:n)
by a’;:n and E(Z?:n) by a?,i:n for 1<i<n. Further, let us denote Cov(Zi:n,Zj:n) by ﬂ’: o
Order statistics Z;.  and their moments have been studied in great detail by several
authors including Birnbaum and Dudman (1963), Gupta and Shah (1965), Tarter and
Clark (1965), Shah (1966, 1970), Gupta et al. (1967), Malik (1980), George and Rousseau
(1987), and Balakrishnan and Malik (1990). Birnbaum and Dudman (1963) derived
explicit expression for the cumulants of order statistics and tabulated the means and
standard deviations for sample sizes up to ten and for some large sample sizes as well.
They then summarized these quantities in graphs to facilitate interpolation to other
sample sizes. Gupta and Shah (1965) derived exact expressions for the moments of order
statistics in terms of Bernoulli and Stirling numbers of first kind and used them to
tabulate the first four moments for sample sizes up to ten. They also expressed the
cumulants in terms of polygamma functions, as was originally pointed out by Plackett
(1958). It should be mentioned here that Plackett (1958) used these explicit expressions
of the moments of logistic order statistics to develop a method of approximating the
moments of order statistics from an arbitrary continuous distribution. Distribution of the
sample range has been studied by Gupta and Shah (1965) who also provided a short table
of its percentage points for n=2 and 3. By generalizing this result, Malik (1980) derived

the exact formula for the cumulative distribution function of the rth quasi-Tange, viz.,



Zn—r:n—Zr+1:n

reproduced some of the results of Gupta and Shah (1965) and then studied the

for r=0, 1,...., [E%I-] In an independent study, Tarter and Clark (1965)

distribution of the sample median in detail. George and Rousseau (1987) recently

examined the distribution of the sample midrange, viz., (Z +Zn'n) /2, and established

1m
several relationships in distribution between the midrange and sample median of the
logistic and Laplace random variables. A series expression for the covariance of two order
statistics has been provided by both Gupta and Shah (1965) and Tarter and Clark (1965).
Shah (1966) tabulated the covariances for sample sizes up to ten and Gupta, Qureishi and
Shah (1967) extended this table for sample sizes up to twenty five. It should be
mentioned here, however, that by means of some recurrence formulas Kjelsberg (1962)
had already derived exact numerical results for the covariances from samples of size five
or less.

* *
By using the fact that f (z) and F (z) given in Eqgs. (1.1) and (1.2) satisfy the

relation

f(z) = F*(z){l—F*(z)}, (L5)

Shah (1966, 1970) established several recurrence relations satisfied by the single and the
product moments of order statistics. Recently, Balakrishnan and Malik (1990) prepared
tables of means, variances and covariances for sample sizes up to fifty by applying these
relations in a simple and systematic recursive way. Some of the results in the references
cited above have also been summarized in a review article by Malik (1985).

The truncated logistic distribution plays a role in a variety of applications, as has
been mentioned by Kjelsberg (1962). Order statistics and their moments from a general
truncated logistic distribution have been studied by Tarter (1966). He derived exact and

explicit expressions for the means, variances and covariances of order statistics in terms



of a finite series involving logarithms and dilogarithms of the constants of truncation. By
following the lines of Shah (1966, 1970), Balakrishnan and Joshi (1983 a,b) established
several recurrence relations satisfied by the single and the product moments of order
statistics from a symmetrically truncated logistic distribution. Then, Balakrishnan and
Kocherlakota (1986) generalized these results to the doubly truncated logistic distribution
and displayed that these recurrence relations could be used systematically in order to
evaluate the means, variances and covariances of all order statistics for all sample sizes.

In this paper we present a detailed discussion of order statistics from the logistic
distribution and some of their properties. In Section 2 we give the percentage points and
modes of order statistics. In Section 3 we derive exact and explicit expressions for the
single and the product moments of order statistics. These work in terms of gamma
function and its successive derivatives. In Section 4 we present some recurrence relations
satisfied by the single and the product moments of order statistics which would enable
one to compute the means, variances and covariances in a simple recursive way. The
distribution function of the sample range, as derived by Gupta and Shah (1965), is
presented in Section 5 and the distribution of the rth quasi-range derived by Malik
(1980) is also given here for the sake of completeness. In Section 6 we give some relations
between moments for the case of the doubly truncated logistic distribution that are due
to Balakrishnan and Kocherlakota (1986). In Section 7 we present details of tables that
are available in this context. Finally, in Section 8 we describe Plackett’s (1958) method
of approximating the moments of order statistics from an arbitrary continuous

distribution by using the moments of logistic order statistics.

2. PERCENTAGE POINTS AND MODES

The distribution function of Z,, is given by

¥y, (2) = 1—{1—F*(z1)}n . (2.1)



From (2.1) we obtain the 100« percentage point of Z,., tobe
1 1/n
“n(e) T Zn{l—(l—a) /n} - fn(1-a) / , 0<a<l. (2.2)

Next, the distribution function of Z_ ., is given by

* * n
F, (2) = {F (zn)} . (2.3)
From (2.3) we obtain the 100a percentage point of Z,., tobe

n:n(a) ~ z“(‘)‘l/n) - m(l—al/n), 0<a<l. (2.4)

Similarly, the distribution function of Zi' n (2<i<n-1) is given by

F:;:n(zi) = IF*(z )(i,n—i+1)
F*(zi) . .
| e e

Now, let B (i,n-i+1) denote the 100a percentage point of the Beta(i,n-i+1) distribution.

From (2.5) we then have the 100« percentage point of Z;.  (2¢i<n-1) to be

Zin(a) = {0 Bolin-i+1) — &{1-B (in-i+1)}, 0<a<l. (2.6)



By using the symmetric relation satisfied by the incomplete beta functions, we observe
from Eqs. (2.2), (2.4) and (2.6) that the 100« percentage point of Z;. is simply the

negative of 100(1-a) percentage point of Z While the percentage points of Zy.0

n—i+1:n’
and Z . may be obtained easily from (2.2) and (2.4), respectively, the percentage points
of Z,. for 2<i<n—1 may be obtained from (2.6) either by using the extensive tables of
incomplete beta function prepared by Karl Pearson (1934) and Pearson and Hartley
(1970) or by using the algorithm given by Cran, Martin and Thomas (1977). Gupta and
Shah (1965) have tabulated some percentage points of all order statistics for sample sizes
up to 10 and some selected order statistics for sample sizes up to 25.

Next, by differentiating the density function of Z,. in (1.3) with respect to z; and

using the relation in (1.5), we get

dfjiélil(Zi) i {F*(zi)}i—l{l“F*(Zi)}n_i [i*(n+1)F*(zi)] :

(2.7)

Upon equating (2.7) to zero and solving for z;, we obtain the mode of Z,  (1<i<n) to be

m?:n = Kn{i/(n—i+1)} = fn (p;/q;) » (2.8)

where p.=1-q,=i /(n+1). Due to the symmetry of the logistic distribution, we observe

once again that the mode of Z; s simply negative of the mode of Z . 4l



3. MOMENTS AND CUMULANTS

From (1.3) we have the moment generating function of Z.  (1<i<n) to be
* A
M. (1) = E{e 1.n}

o (n-i+1 ) z+tz

[11]
1
= B{{,n4+1) J —Z\0+1
_ (4e ™)

= B(i+t,n—i+1-t)/B(i,n-i+1)
F(i+t) ['(n—+1-
_ _[(Tl_)l i), (3.1)
where B(.,.) and I'(.) are the usual complete beta and gamma functions, respectively. An
*
alternate expression of Mi'n(t) involving Bernoulli numbers and Stirling numbers of first

kind has been given by Gupta and Shah (1965). From the expression of the moment

generating function in (3.1), we obtain the following:
* . .
a;..= B(Z, ) = ¥(i) — Yn-i+1), (3.2)

* 2
o= Bz ) = () + w(a41) + {90) - i), 89)

and
ﬂ:,i:n = Var(Z;. ) = ¢’ (i) + ¢’ (n-i+1) , (3.4)
where
Wo) = &) = T
and

¥ (@) = 5 i) = Tl )



are the digamma and trigamma functions, respectively. Thus, from Egs. (3.2) — (3.4),
one may compute the means and variances of order statistics either by using the
extensive tables of digamma and trigamma functions prepared by Davis (1935) and
Abramowitz and Stegun (1965) or by using the algorithms given by Bernardo (1976) and
Schneider (1978). Gupta and Shah (1965) have given exact expressions for the first four
moments of order statistics for sample sizes up to 10 and the values of mean and variance
have been tabulated recently by Balakrishnan and Malik (1990) for sample sizes up to 50.
We may note here that the moment generating function in (3.1) may be used to obtain
higher order single moments also by involving polygamma functions.

From (3.1) we get the cumulant generating function of Z;. (1<i<n) to be

Kin() = &M,
= fn T(i+t) + fn T(n-i+1-t) — fn (i) ~fn T(n-i+1). (3.5)

From (3.5) we obtain the k" cumulant of Z;.,, (1<i<n) to be

k k
*(k d . d .
£ (n) = djt(_ {n T(i+t) t=0+ :1?‘— /n T'(n-+1-t) o
= D) + 0¥ pEDaoir), (3.6)
where
k
lb(k-l)(z) = _Qk_ {nl(z) for k=1,2,...,
Z
and

6 =9 =13



It is clear from (3.6) that for k=1,2,...,

*(2k-1) _  *(2k-1)

Kim = Rplit1l:n (3.7)
and

*(2k) _ ¥(2k) ,

Kin - 'in—i+1:n' (3'8)

These may also be observed simply by using the symmetry of the logistic distribution.

By applying the series expansions for (z) and ¢(k_1)(z) given by

w =1 e

and

0]

10y — (R L
( (2) (=1)%( 1)£Zlm 22

we obtain from (3.6) that for n—i+1>i

K::n = F"T(Ill) =~ {_}_ + _i%i_ ot n—1—1 } (3.9)
and

W kg T —L sy L)

P {Zl @ir " ZZI (¢rni)" G

The above formulae for the first four cumulants were originally given by Plackett (1958).

From (3.9) we get
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which was also given by Gumbel (1958). The exact and explicit expression for the
cumulants of logistic order statistics given in Egs. (3.9) and (3.10) will later be used in
Section 8 for developing some series approximations for the moments of order statistics
from an arbitrary continuous distribution.

From the joint density of Z;. = and Zj:n (1<i<j¢n) in (1.4), we have the joint

moment generating function of Zi-n and Z iin to be

* Z +t2Z
_ jin
M; ialbpte) = E{ }

Z- .
) tiz.+toz. (& 1-1
e 117727 {F (Zi)}

B (1—1)'(J—1—1)'(D—J)' J

-

{F*(zj) - F*(zi)}j—i_l {I—F*(zj)}n_j

* *
f(z)f (zj) dz; dzj. (3.11)
Making the transformations
N N |
u=F (z) = = and v=F (Zj) = —
1+e 1+e J
and thence, noting that
Gi_u 5i_ v
e = 13 and e v= I—_V ’
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we can rewrite Eq. (3.11) as
1

N v 4 2
_ n! u v
Mi,j:n(tl’t2) = E-DIE-Dng)! J J ty to
0 0 (1-u) (1-v)

ol (v—u)j_ -1 (l—v)n—j du dv.

-t
By expanding (1-u) 1 a5 an infinite series in powers of u, we obtain

. " (t1+£-1)("') 1y
M; jnity) = OO ) J J
=0 0
t,+i-1+4 . t n—j-
ul (v—u)-]_1 -1 2(1 -v) 2 du dv,
where

)@ =1 if £=0
= t (b 1) (8 +61) if &1.

By noting that

v by +Hi-1+¢ L
J u (v-u)! du=v B(t;+i+4,j),
0

we may rewrite Eq. (3.12) as

(3.12)
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* St +e-1)("’)
M; n(tpta) G—_lmii?rjf(i?j)TZ TB('“ +H+6jH)

1 . .

R Tha?e ! n—j—t
Jv 1772 (1-v) 2 4y
0

(t1+£- 1

- (1—1)'(3—1—1)'(11-1)' 2 BliyHi+hH)

B(j+t;+to+fn—jt,+1)

(O p

(t1+£ AN T( 4+

T FF

I'(n+1) 2
F(1)I‘(n—_]+1)

T(t; +to+j+£) T (n-j+1-t,)

T I35, +7) (3.13)

From the above expression for the joint moment generating function of Zi-n and Zj-n

can obtain the product moments as follows:

(k.,k,)  k, k Pale

sk kg) Ky Ky o *

@ iin = B2y, 25 Kk M; n(tysto) o
ol oty 1=tg=

(3.14)
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The case k1=k2=1 is of particular importance and, in this case, we get

a:,j:n = 9 (j) + {¢(i) - ¢(n+1)} {¢(j) - ¢(n_j+1)}

[11]

1 21)(0 |
+] g (v - v} (3.15)

=1

Shah (1966) tabulated the covariances of order statistics for sample sizes up to ten
while Gupta, Qureishi and Shah (1967) extended up to 25. Recently, Balakrishnan and
Malik (1990) provided tables of means, variances and covariances for sample sizes 50 and
less. It should also be mentioned here that Balakrishnan and Leung (1988 a,b) derived
series expressions similar to the ones given in Egs. (3.2)—(3.4) and (83.15) for the single
and the product moments of order statistics from a generalized logistic distribution and

provided tables of means, variances and covariances for sample sizes up to 15.

4. RECURRENCE RELATIONS FOR MOMENTS

In this section we shall present some recurrence relations satisfied by the single and
the product moments that were established by Shah (1966, 1970) and show that one may
evaluate these moments for all order statistics from all sample sizes in a simple and

systematic recursive manner.

Relation 4.1: For n>1 and k=0,1,2,...,

*(k+1) _ *(k+1) k+l *(k)
o+l = %o __n_al$n (4.1)

*
with algg) = 1 for n=1,2,.....
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Proof. From (1.3) we have for n>1 and k>0

a® oy T ~ {l—F*(z)}n_l £'(z) da. (4.2)

—m

By using the relation (1.5) in Eq. (4.2), we get
* b * * n
k k
algn) =n Jz F (z) {l—F (z)} dz
-
which, upon integrating by parts, yields

- [n T At () {I—F*(z)}n_lf*(z) dz

_ T A+l {I—F*(z)}n £ () dz]

_ n [ *k+1 *(k+1
- m{algn ) - a1$n+1)} '

The recurrence relation in (4.1) is obtained by rewriting the above equation.

Relation 4.2: For 1<i<n and k=0,1,2,.....,

*(k+1) _  *k+1) , (k+1)(n+1) *(k)
%41:n+1 = %indl T OT(naF1) % (4.3)
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Proof. From (1.3) we have for 1<i<n and k>0

a,:(i(l) - 1_1n¥ n-1)! T zk {F*(z)}i_l{l_F*(z)}n_i f*(z)dz .

(4.4)

By using the relation (1.5) in Eq. (4.4), we get

i:n 1—-1)!(n)!

P GO N T 25 {F*(z)}i {1-1?*(z)}n_i4rl dz

which, upon integrating by parts, yields

= R B O B R
i T K+l {F*(z)}i_l {l—F*(z)}n—H-l ffz)dz]

_ i(nd+1) [ *(k+1) _ o (k+1)
“ (k+1)(n+1 i+1:n+1 i:n+l |~

The recurrence relation in (4.3) follows by rewriting the above equation.

With the values of aI({) (j=1,2,...,k) known, one may be able to use Relations 4.1
and 4.2 in a simple recursive way to compute the first k single moments of all order
statistics from all sample sizes. Thus, for example, by starting with the values of

* *
alg)=0 and alg)=7r2/3, one may employ Relations 4.1 and 4.2 to evaluate the first
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two single moments and, thence, the variances of all order statistics from all sample sizes
in a simple and systematic recursive process. These computations may be checked by

using the identities (David, 1981, p. 39; Arnold and Balakrishnan, 1989, p. 6)

} &) = e @, 12, )

i=1
see also Balakrishnan and Malik (1986).
Relation 4.3: For 1<i<n-1,
* _ *2) nt1 * ¥2) 1 ¢
% i+l:m+1 = %:n+l * a1 +T|ai J+1n %0 " 03 Ymf . (4.6)

Proof. For 1<i<n-1, we may write from (1.4) that

a’ik:n = E(Zi:n Z(i)+1:n)
T -1 4
- an n—-1)! le {F (21)} f(z)) K(z,) dz, (4.7)
where
T Y A
Koy = [ 1)) £ey) as, (48)
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By using the relation (1.5) in Eq. (4.8) and integrating by parts, we get

o) = i) e )

+ (n-) T 2 {1-1?*(z2)}n_i_1  (z,) da,
2|

_ (n-i+1) T 2 {I—F*(zz)}n_i { (2y) da,y -
|

Upon substituting the above expression of K(z,) in (4.7) and simplifying the resulting

equation, we get

* . *(2) | (nd) (nddl) K2
Ay = - ()a D) + & 2211(L111)1+ b 2))
L\ i) (neidl) *
+ (n_l)ai,i+1:n e Zl)lilf)” ) % i+ln+1’

The recurrence relation in (4.6) follows by rewriting the above equation.

Relation 4.4: For 1<i<n—1,

* _ *(2) Il+11 * * *(2)
¥ 4+1,i+2n+1 = %4241 T THT {T %41nt Yt T ai+1:n}- (4.9)
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Proof. For 1<i<n-1, we may write from (1.4) that

a,;+1:n = E(Z(i):n Zi+1:n)
o r -1 :
= i J 2, {I—F (z2)} £ (2,) K(z) dzs,
(4.10)
where
220w Ni-l 4
K(zy) = J {F (zl)} £'(z,) dz; . (4.11)

By using the relation (1.5) in Eq. (4.11) and integrating by parts, we get

K(z,) = zz{F*(zz)}i —zz{F*(zz)}i+1

—i Tzzl {F*(zl)}i—1 f*(zl) dz,

+ (i+1) T2z1 {F*(zl)}i £ (3,) dz,

Upon substituting the above expression of K(z,) in (4.10) and simplifying the resulting

equation, we get

*_ox(9)  i(i+l) *(2)
®41n 1% 410 T nF % £92:n+41

. * i(i+41) *
10501 T rD) %i+Lit2n+l
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The recurrence relation in (4.9) is obtained by rewriting the above equation.

In particular, by setting i=n—1 in Relation 4.4 we get for n>2

R *(2) ntlf 1 * * _a*(2)}, (4.12)

% ontlntl = %tlin+l T T 1a1 %n T %-Lnm T %un

It should be mentioned here that the recurrence relations in (4.6) and (4.12) are

sufficient for the evaluation of all the product moments of order statistics from all sample
2
* *
sizes. By starting with the result that a; 5.4=0a;.;=0 (Govindarajulu, 1963; Joshi, 1971),
,2: :
the recurrence relations in (4.6) and (4.12) will enable one to compute all the immediate

*
upper—diagonal product moments L
b

*
recursive way. All the remaining product moments, viz., a; jn for 1<i<j<n and j-i>2,
J:

™ (1<i<n-1) for all sample sizes in a simple

may be determined systematically by employing the well-known recurrence relation

(David, 1981, p. 48; Arnold and Balakrishnan, 1989, p.10)

E * * *
(-1)ay s + (H)oy_y g + (04 1)eg g 0 =005 590

(4.13)

that is true for any arbitrary distribution. These computations may then be checked by

using the identity (David, 1981, p. 39; Arnold and Balakrishnan, 1989, p. 10)
n—1 n . .
_ (M, 72 .
L) 4= Gyt (4.14)

i=1 j=i+1

see also Balakrishnan and Malik (1986).
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By proceeding on similar lines, we may also establish the following recurrence

relations.

Relation 4.5: For 1<i<j<n and ji>2,

* * n+l [ * * 1 *
% jn+l = % j1m+1 T n—j +§|ai,j:n ~ % 1m T n=j+1 ai:n}'

(4.15)
Relation 4.6: For 1<i<j<n and j-i>2,
* _ X n+l1f1 * * *
Y 4+1,j+1m+1 = %42+ 1n+1 T IFIT Y0 T % jn T ai+1,j:n}' (4.16)

It should be pointed out here that one may employ Relations 4.5 and 4.6 to
determine all the product moments other than the immediate upper—diagonal product

*
moments, viz., a; jin for 1<i<j<n and j-i>2, instead of the recurrence relation in (4.13).

5.  DISTRIBUTIONS OF SOME SYSTEMATIC STATISTICS

In this section we first present the distribution of the sample range as derived by
Gupta and Shah (1965). Then, we give the expression of the distribution of the 0
quasi-range derived by Malik (1980).

Let us denote the sample range Zn: 0= %10 by W, . The cumulative distribution

function of W_ can be written down as (David, 1981, p. 12)

Pr(W_¢w) =1 {F*(z+w) - F*(z)}n—l £(z) dz, 0<w<a. (5.1)

d s
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* x -1
Expanding the term {F (z4+w) - F (z)} binomially, we get from (5.1) that

n—1
Pr(W, <w) =n ) (-1)¥ (*F))
k=0

{F*(z+w)}n—1_k {F*(z)}k f'(2) dz

d—s

n—1

=1 Y ()N
k=0

—Z

€
— dz. (5.2)
(1+e—We—Z)11—1 k (1+e—Z)k+§

é—,e

By substituting u=1/(1+e e >

) in the integral in (5.2), we get
n—l1
k »n-1 k+1
Pr(W_cw) =n } (-)¥ () e (kHDW Apo(W), 0cw<a,  (5.3)
k=0

where, with a = e "~1,

1
—k—2
Ak,n(w) =J (1+au) du
0

n—1
= o [ (D ) + I 0 ) ]+ 4l
L#k+1

= e [ G 2 D el Y]

l#k+1
(5.4)
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In the expression of Ak,n(w) in (5.4), (i;__%) should be set to zero if k>n—2. By
substituting the expression of Ay (w) in (5.4) into Eq. (5.3), we derive the cumulative

distribution function of the sample range W_ as

—1 ,
n— k n— w
Pe(Wyew) = S5 2(—1 e[k Gp welkHD)

+ 2 _1) n—1 1 {e—lw _ e—(k+1)w}], 0<w<o,

iZ—E—li
l#k+1
(5.5)
In particular, for n=2 and 3, we obtain from (5.5) that
—2w
Pr(W<w) = {1 — &2V _oye” }/(l—e % (5.6)

and

Pr(Wa<w) = {1+9e‘“’—9e 2V _e 3V _gwe (146" )}/(1-e‘“’)3. (5.7)

Gupta and Shah (1965) tabulated the probability integrals of the range for n=2 and 3
from (5.6) and (5.7), repsectively.
By differentiating the distribution function of the sample range in (5.5) with respect

to w, we derive the density function of the sample range WIl as
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—1

2
Ty (w) = (———m 20(—1) ) 0¥ G welkH v

+ Z 0 O e ™ - )]

{=0
L#k+1
n—l1
T, 2 O ([ E0* @D I arnyw)
- (—1) (% )m)_{ge—lw (k1) (kLW }],ng<m,
lﬁk-?—l

(5.8)
where, as before, (11::%) should be set to zero if k>n-2.
Proceeding exactly on similar lines, Malik (1980) derived the cumulative

distribution function of the r*! quasi-range W=7 -Z

n-r:n~ “r+lmn (r=0,1,.. ’[ ]) to be

21k
1 I (nd) |n-2r+k-1

Pr(Wn,ISW) =2 ﬁ%—_}zjr 2
k=0

j=0

(__1)j [n—2§+k—1] e—(r+j+1)w

t—k (4] [r—k]

2 /4

(_1)r+j [n—r+k+ e—1] w

-w\n-T+k+¢ +ij+1
imp (1) T
n—r+k+£-1 .
S Tl e Pl
m m—r—j_]_ ’
m=0
m#r+j+1

0<w<a, (5.9)
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where [n_:ilj(if_l] should be set to zero if j>n-2r+k+£-2. The distribution function of

the sample range in (5.8) may be derived as a special case from (5.9) by setting r=0.

6. RESULTS FOR TRUNCATED DISTRIBUTIONS

In this section we start with order statistics from a doubly truncated logistic
distribution and present the results of Balakrishnan and Joshi (1983 a) and Balakrishnan
and Kocherlakota (1986). In addition to generalizing the relations given in Section 4,
these results will enable one fo evaluate the single and the product moments of all order

statistics from all sample sizes in a simple recursive manner.
*

Let Zl:n

* *
5Z2_n5 ..... Szn-n be order statistics from a random sample of size n from a

doubly truncated logistic distribution with probability density function

1 —Z

e
—_— Q<z<P
*% i P —Q ’ —Zy\2 ! 1
f (z)= (1+e ™) (6.1)
0 ,otherwise
and cumulative distribution function
%%k 1 1
F (z) = =) { - Q}, Q¢z¢Py, (6.2)

(1+e7%)

where Q and 1-P are the proportions of truncation on the left and the right of the

standard logistic density function in (1.1). Under this notation,

Q,=tn [I%Q] , P =fn [l—fp] , (6.3)
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and let

— Q.E%‘Q‘Ql Py= Rélq‘jﬂ. (6.4)

From (6.1) and (6.2) we observe the relations

) = (2QF (2) - (P-QF )} + Qy (6.5)
@) = @-DOF @)} -(P-Qf-F @} +P,  (66)
and
2 = (@P-)F @{1F @)} + (P+Q-D{-F () + Py
(6.7)

Let us now denote the smgle moments E( ) by o ( ) (1<i<n,k>1) and the product

*k

moments E(Z. J ) by a (1¢i<j¢n). For convenience, let us also use o; . for
** iy *

a; . (1) and % in for a; :1(12). Then, these moments satisfy the following recurrence

i,jmn

relations.
Relation 6.1: For k=0,1,2,...,

**(k+1) Qi P%.I [Pz{PlfH’QkH} +(2P—1){ (k+1) Qk+1}

- (k+1)ay 9] (6.8)
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Proof. For k>0, let us consider

Upon using (6.6) in the above equation and then integrating by parts, we get
(k) _ 1 ¥H(k+1) ~k+1 ¥ (k+1) ~k+1
.1 = m[(zp‘l){"‘lzl —Qp - (PR Qg }

+ P2{P11‘+1— Q11‘+1}] : (6.9)

The recurrence relation in (6.8) follows by rewriting Eq. (6.9).

Relation 6.2: For k=0,1,2,....,

a;*:‘gkﬂ) _ P11c+1 _ PIQJ[Qz{Pll(H _ Q11<+1} N (1_2Q){P11<+1 _ a’;j‘gkﬂ)}

- (k+1)aif§k)] : (6.10)

Proof. For k>0, let us consider
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Upon using (6.5) in the above equation and then integrating by parts, we get

1= ol -}« cafet )

_(P-Q){Pll‘“- a;’fgk“)}] . - (6.11)

The recurrence relation in (6.10) is obtained by rewriting Eq. (6.11).

Relation 6.3: For n>2 and k=0,1,2,...,

I*I(l_lf_-i-l) Qk+1 P1:? [Pz{ I*I(IE+1) Qk+1} + (2P— 1){ (k+1) Qk+1}

_k_E_laI*;gk)] . (6.12)

Proof. For n>2 and k>0, let us consider

Upon using (6.6) in the above equation and then integrating by parts, we get

20 e -Gk« {9 -

—(P—Q){a1 1(1 +J{1) Qk“}] : (6.13)
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The recurrence relation in (6.12) follows by rewriting Eq. (6.13).

Relation 6.4: For k=0,1,2,....,
B (k+1)_ *(k+1), 3 k+1  #%(kt1)] , 2P=1f **(k+1) (k41
%.3 =%4.3 ‘trgPefl 1 +_2—{“2:2 — o3 )}

_k+1 **(k)]

Proof. For k>0, let us consider

1 *% Kk
= 2J X F (z) £ (z)d=z
<

Upon using (6.6) in the above equation and then integrating by parts, we get

a (k) _

S0 - e[ 0 - ) o - o)

+ 2P2{Pk+1 aifgk“)}] . (6.15)

The recurrence relation in (6.14) is obtained by rewriting Eq. (6.15).

Relation 6.5: For n>3 and k=0,1,2,....,

P,
SO ¥ (k+1) |, n+tl *(k+1) _ **(k+1)] , 2P-1
%+l = %+l +Pj.);[_f{2n— Y :n-1 }+ n

I e
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Proof. For n>3 and k>0, let us consider
** (k) P1 k ** N—2 44
o —nn—l)Jz F { 1-F (z)} £ (z) dz .
Q

Upon using (6.6) in the above equation and then integrating by parts, we get

o) = | -0{eg: Y - o {4V - (P-Qigie] e 13T - e 14T

**(k+1) **(k+1)
+ P2{a2:n -ay., }] : (6.17)
The recurrence relation in (6.16) follows by rewriting Eq. (6.17).

Relation 6.6: For 2<i<n—-1 and k=0,1,2,....,

(k1) nl [k+1 ol () _ Py {a**(k+1) **(1;+1%}

1+1 n+1" i{2P-1) [n—1+1 n—1+1 i:n-1 i _1:n—

- ﬁ{(n+1)(P+Q—1) - i(2P—1)} o (K+1)

+ (P+Q—1)a:i§]f:1)] : (6.18)
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Proof. For 2<i<n—-1 and k>0, let us consider

o 39 = o lj)1 k@) @) e
% :n 1-1)'(n—1 .le z z z)az -

Upon using (6.7) in the above equation and then integrating by parts, we get

JHHK) _ 1 [i(n—i+1) (2P_1){ % (k1) a**(k+1)}

®.n “k+1 | n+l 1+1 n+l i:n+1
(n-i+1) (n-i+2), _ ¥*(k+1) **(k+1)
— a1 (P+Q-119% .11 '~ %i:n1
**(k+1) **(k+1)
+upyfa (T - o T(ALY (6.19)

If we now use the well-known relation (David, 1981, p. 46; Arnold and Balakrishnan,
1989, p. 6)

s e = el - oY)

in (6.19) and simplify the resulting equation, we derive the recurrence relation in (6.18).
Relation 6.7: For n>2 and k=0,1,2,....,

¥*¥(k+1) _  n+l **(k) k+1  **(k+1)
%+1:n41 = n{2P-0) [(k+1)an:n —oP\Pr - an—l:n—l}

ﬁ{(n+1)(P+Q—l)—n(2P 1)} o 1(1_1:4{1)

+ (P+Q-1)a, {FH1)] . (6.20)
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Proof. For n>2 and k>0, let us consider

**(k) = nj')lzk { z)}n-—1 f**(z) dz .
9

Upon using (6.7) in the above equation and then integrating by parts, we get

(k) 1 k¥ (k1) F¥(k+1)
aIl:I(l )_k-i-_l[ (2P- 1){ %41:n4+1 7 %n:nt 1

2 k+1 **(k+1
+ arr(P+Q- 1){ % I(H-T ) an—gz-x*;—%}

+ an{Pll‘+1 - a**(l,{+1%}] . (6.21)

If we now use the well-known relation (David, 1981, p. 46; Arnold and Balakrishnan,
1989, p. 6)

DA | BN M R )

in (6.21) and simplify the resulting equation, we derive the recurrence relation in (6.20).
By starting with the values of a’;fgj) (j=1,2,....,k), one can employ Relations
6.1 — 6.7 in a simple and systematic recursive way to compute the first k single moments
of all order statistics from all sample sizes for any choice of Q and P.
We may also establish the following recurrence relations satisfied by the product

moments of order statistics.
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Relation 6.8: We have

*k _ **(2) 3 **(1) **(2)
@ 93= 0.3 t 7(P7§)'[2P2{P10‘1:1 -

e - g7 - o]

Proof. Let us start with

k% 1

0‘1:5 ) E(Z 1 9 Ly, 2)

Pl **
- 2J 2, f (2,) K(z;) day,
Q
where

P1 *k

K(z,) = J f (z,) dz, .
21

Upon using (6.6) in (6.24) and integrating by parts, we get

P
K(z,) = (2P-1) { Jl 2 f (29) dzy - 2, {1 _ F**(zl)}]
%1

P

Jl {-F (2)} "(2,) da, —z{

Z1

o>

+ Py (Py —2z)

(6.22)

(6.23)

(6.24)

(1)}}
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Upon substituting the above expression of K(z,) in (6.23) and simplifying the resulting

equation, we derive the recurrence relation in (6.22).

Relation 6.9: We have

*% k% 2 k% 1 %k 2 k% 1
233‘“3:(’,) 7(?3;7)[ - 2{"‘1:£)‘Q1“1:£ )}
B (1‘2Q){°‘;T52) - attzzz}] - (6.25)
Proof. Let us start with
oy = (20 Zyp)
P
1
zJ 2 P*(2,) K(zy) dzo, (6.26)
Q
where
Z
2
K(z) = J £4(z,) da, . (6.27)
Q

Upon using (6.5) in (6.27) and integrating by parts, we get
A
*% 2 4x
K(z9) = (1—2Q){z2 F(z9) - J z. £ (z) dzl}
Q

~ (P-Q) [zz{F**(z2)}2 - 2i2ZI Fo(z) 1 (2) dzl]
1

+ Q2 (zz—QI)-
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Upon substituting the above expression of K(z,) in (6.26) and simplifying the resulting

equation, we derive the recurrence relation in (6.25).

Relation 6.10: For 1<i{n-2,

*ok _ *x(2) n+1 n *k **(9)
% i+lm+1 = %:in+l + (n=+1 H%:Qj[n_—f P2{0‘i J+1n-1 "~ ai:n—l}

Y RO SR ) B

Proof. For 1<i<n-2, let us consider

**(1) _ * *0
% .n - E(Zi:n Zi+1:n)

S N T
= (0= £ 7) {F (21)} £ (z) K(zy) dzy,
1

(6.29)

where

r el e
K(z,) =J1{1—F**(z2)}n ¥ (2,) dzy - (6.30)
%
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Upon using (6.6) in (6.30) and integrating by parts, we get

P - *k n—i
K(z1)=(2P—1)[(n—i)J1z2 {1-F"‘*(z2)}]1 o, (29) dzy — 7, {l—F (zl)} ]

1
Pl *% D= gk *k n-i+1
- (P-Q) [(n—i+1)J Zq {l—F (zz)} f (z9) dzg — 2 {1—F (Zl)} ]
%
Py P 0 S e m-icl
+P2[(n—i—1)J 2 {l—F (z2)} £ (2g) dzy - 2, {l—F (zl)} ]

1

Upon substituting the above expression of K(z;) in (6.29) and simplifying the resulting

equation, we derive the recurrence relation in (6.28).

Relation 6.11: For n22,

% 0)) n+1 *x(1) *x(2)
%-1,n:n+1 ~ %n-1:n+1 + £i P—eﬂ[np2{Plan—1:n—1 B an—l:n—l}
** +%(2) *%(1)
+ (2P—1){an—1,n:n B n—l:n} - an—l:n] ' (6.31)

Proof. For n>2, let us consider

an—gl)l = E(Z;—lzn Zn(:)n)
B *k N2 s
=n(n—1)J 2, {F (zl)} £ (2,) K(z,) day, (6.32)
Q

1
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where

P11
K(z,) =J £ (a,) dz, . (6.33)
7y

Upon using (6.6) in (6.33) and integrating by parts, we get

P
K(z,) = (2P—1)[ lez £ (2,) dag - 2, {I—F**(zl)} ]
%

P1 *% ** ** 2
_(P—Q)[2J z, {l—F (22)} £ (2) dzy ~ 2, {1_F (Zl)} ]
%1

+ P, (P; - 2).

Upon substituting the above expression of K(z,) in (6.32) and simplifying the resulting

equation, we derive the recurrence relation in (6.31).

Relation 6.12: For n>2,

*k _ **(2) n+1 **(1) **(2) **(1)
% 3n+1 = %+l T M[%:n ~ Q91 :n1 - Q1“1:11-1}

@iy ow
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Proof. For n>2, let us start with

ay s = (2 Zy)

Py, |
= 2J 2o 1 (2,) K(z,) dzo, (6.35)
Q
where

T2 4x

K(zg) = J £ (2,) da, - (6.36)
Q

Upon using (6.5) in (6.36) and integrating by parts, we get

%%k z2 Sk ok
K(zq) = Qqzy=Q)) + (1—2Q){z2 F(z,) -£ 2, f (2) dzl}
1

- (P-Q) [z2 {F**(zz)}2 - 2T2z1 F**(Zl) f**(zl) dzl] .
Q

Upon substituting the above expression of K(z,) in (6.35) and simplifying the resulting

equation, we derive the recurrence relation in (6.34).
Relation 6.13: For 2<i<{n-1,

a** **(2) 4 n+1 1 **(1) HQ2 a**(z)
i+1,i+2:n+1 % +2:n+1 1+ — %4+1:n "1 | % —11n—1

B (1—2Q){a=::_§21)1 & 1+1 n}] . (6.37)
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Proof. For 2<i<n-1, let us consider

T:gll)l = E(Z 1+1 n)
F1 ok -1 44 '
= i 2, {1—F (z2)} £ (2,) K(z,) dz,
1
(6.38)
where
220 x -1 xx
K(z,) =J {F (zl)} £ (2,) da, . (6.39)
Q

Upon using (6.5) in (6.39) and integrating by parts, we get

221 {F**(zl)}i_2 f**(zl) dzl]
1

K(zy) = Qy7, {F**(z2)}i_1 - (1)

N

+ (1-2Q) [22 {F**(zz)}i - 1(JZ2Z1 {F (zl)}i—1 f**(zl) dzl]
1

_(P—Q)[zz {F**(zz)} —(1+1)T2z1 {F (2, }f**(zl) dzl].
Q

Upon substituting the above expression of K(z,) in (6.38) and simplifying the resulting

equation, we derive the recurrence relation in (6.37).



-39 -

In particular, by setting i=n-1 in (6.37), we obtain the recurrence relation

*% *% (9 *% (1 ﬂQ2 *%(9 *%
% n+lm+l = n+§ I)1+1 + iPQi[_—f O 1(1 ) - ﬁ'—f{an—g 1)1 1 n—2,n—1:n—1}
2 .
—(1—2Q){ "(2)_ n—1nn}] , n33. (6.40)
**2

It should be mentioned here that by starting with the result that al 9.9=0].]
(Govindarajulu, 1963; Joshi, 1971), one may employ Relations 6.8 — 6.13 to compute all
the immediate upper—diagonal product moments, viz., a:nfi +1n (1<i<n-1), in a simple
recursive way for all sample sizes. As mentioned earlier in Section 4, this is sufficient for
the evaluation of all the product moments as the remaining product moments, viz., a*TJ -
for 1<i<j<n and j22, may be determined by using the recurrence relation in (4.13).
However, for the sake of completeness we present here some more recurrence relations

satisfied by the general product moments. These results may be established by following

exactly the same steps as used in proving Relations 6.8 — 6.13.

Relation 6.14: For 1<i<n-2,

*% ok n+1 (1) *%
% nn+l = % ,n-1:n41 t 2 P:Ji[ {Plai n-17 % ,n—l:n—l}
+@-]a —a —a () (6.41)
i,n:n i,n-1:n i:n ) ’
Relation 6.15: For 1<i<j<n-1 and j+>2,
a** _ ** + n+1 nP2 f *%k **
i,jn+l1 — ,_]-1 n+1 T (n—j+2)(P-Q)[n—) +1l i,jn-1" & ,j-1:n—-1

+ (2P- 1){ 1*_]n :Tj—l:n} - n—}+1 **(1)] . (6.42)
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Relation 6.16: For 3<j<n,

" B1 L) g £ (1)
%,ji+ln+1 = 3 .]+1 nt1 T 2( PZJF[ - nQ2{0{1,j-—1:n—1 - Qlaj—l:n—l}

- 0-20){ g, - o )| 4y

Relation 6.17: For 2<i<j<n and ji>2,

* ¥ **(1) an
%i+1,j+1n+1 T 1+2,J+1n+1+("_1‘)‘(P3Q7[ T {ai,j—lzn—l

** **
B ai——l,j—l:n—l} (1 2Q){ %+1,jn ai,j:n}] '
(6.44)

7. DETAILS OF AVAILABLE TABLES

We list below the tables that are currently available on order statistics and their
moments.
a.  Table of 100a% points (for a=0.50, 0.75, 0.90, 0.95, 0.975, 0.990) for all order
statistics for sample sizes up to 10 and for extreme and central order statistics for

sample sizes from 11 to 25 has been given by Gupta and Shah (1965);

b.  Table of probability integrals of the sample range W_ for n=2 and 3 evaluated at
w=0.20(0.20)1.00(0.50)4.00 has been given by Gupta and Shah (1965);
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¢.  Table of means and standard deviations of order statistics for sample sizes up to 10
has been given by Birnbaum and Dudman (1963). Table of covariances of order
statistics for sample sizes up to 10 has been given by Shah (1966). These two
tables have been extended by Gupta, Qureishi and Shah (1967) for sample sizes up
to 25. Recently, Balakrishnan and Malik (1990) have prepared tables of means,
variances and covariances for sample sizes 50 and less in which the values are

reported to ten decimal places;

d. By using the results presented in Section 6, Balakrishnan and Joshi (1983 b) have
given tables of means, variances and covariances for the symmetrically truncated

logistic distribution (with Q=1-P=0.01,0.05(0.05)0.20) for sample sizes up to 10;

e.  Balakrishnan (1985) has handled the half logistic distribution (case when Q=% and
P=1) and has presented tables of means, variances and covariances for sample sizes
up to 15. He has also given tables of 100a% points (for a=0.01, 0.05, 0.10(0.10)
0.90, 0.95, 0.99) for extreme order statistics for sample sizes up to 15. In addition,

he has presented a table of modes of all order statistics for sample sizes up to 15.
8. PLACKETT'S APPROXIMATION

David and Johnson (1954) and Clark and Williams (1958) have developed some
series approximations for moments of order statistics from an arbitrary continuous
distribution. These have been developed by applying the probability integral
transformation and then using the known moments of order statistics from the uniform

distribution. Plackett (1958), instead, has used the logit transformation which transforms
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an order statistics Ti'n from an arbitrary continuous distribution into the order statistic

Z;.,, from the logistic L(O,gz) distribution to develop some series approximations for the
moments of T, in terms of the moments of logistic order statistics Z,, .

We have already seen in Section 3 that the moments and the cumulants of the
logistic order statistics Zi:n are all available in explicit form. Now, by realizing that the

logit transformation

2= { ety 1)

transforms the order statistic Ti_11 from an arbitrary continuous distribution with cdf
FT(t) into the logistic order statistic Zi-n and, therefore, expanding Ti-n in a Taylor

*
series about the point E(Zi-n) = F"i(1112 we derive

T =80+ 70 )+ 540 [2 - 1))’

o LG )

(8.2)

where, for n-i+1>i,

*1)  _ (1, 1 1
Kitn "'{T+"_+"'+"—*}

h

as derived in Section 3, and t(-]) is the value of the jt derivative of t with respect to Z at

*
Zat Z = K (111) Now, by taking expectation on both sides of (8.2) and upon using
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the exact and explicit expressions for the cumulants of logistic order statistics derived in

Section 3, we obtain the series approximation

] 20+ 12 @ 1@ g8 4 o t(4){n*i‘§fl)+3[n’i‘§§)] 2.

E[Ti:n
(8.3)

The derivatives appearing as coefficients in the approximation in (8.3) are easy to
obtain as in the case of approximations due to David and Johnson (1954) and Clark and
Williams (1958). For example, for the standard normal distribution with probability

density function ¢(t) and cumulative distribution function ®(t), we have

(1)

O - foo [ Pty ]}

T
0 = 2 (1-2)/4,
(2 = ) { () — (28 - 1)},

(3 = (1) 4 26 ® @) 1@ (1 - 29) -2 We (1-0),

and

i@ = 5(10)2 ) 4 +6) {2tt(1) (28 - 1)}

+ 2t(2){tt(2) - 2% (1—<I>)} + 2 (28 -1) 2 (1 - @)
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The above given derivatives are all bounded. As pointed out by Blom (1958), suppose we
include the first j-1 terms in the series expansion for E(T, ) obtained from (8.2), then

the absolute value of the remainder after -1 terms is at most

%ma.x|t()| E|Z, - WP (84)
j!

Since E|Zi_ nl(rll)lz-] is known and also that

{EIZi: (1)|2J—1}7J&_1-S{E|Zi: K (1)|2J }1

we will be able to present bounds to E(Ti-n) for all values of j.
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