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ABSTRACT

Bayesian analysis of a multivariate normal mean is considered under nonconjugate flat-
tailed priors. It is proved that if X ~ N,(8,02I) and 6 has a prior density «(||§ — u||?>/7%)
where y,0? and 72 are known, then the posterior is starunimodal for all X if and only
if it is logconcave for all X. A necessary and sufficient condition for the posterior to
be starunimodal for all X (or logconcave for all X) is obtained when () is a general
scale mixture of normal priors. In particular, when #(-) is a ¢t prior with m degrees of

freedom, it is shown that the posterior is starunimodal for all X if and only if —";—’;2 > ﬂgﬂ.

For 1”;"; < ﬂstﬂ, a complete characterization of the set of X for which the posterior
is starunimodal is obtained. This set is shown to be the exterior of a spherical band
a < ||X — u|| £ 5. The starunimodality property, when it holds, is then used to obtain
lower bounds on the posterior probability of subsets of R? which are star-shaped about
the posterior mode. These lower bounds are then optimized in an appropriate way to
construct credible sets under ¢ priors with a guaranteed posterior probability of 1 — «, for
fixed 0 < a < 1. Evidence is given to show that these credible sets are quite efficient in
terms of their size.

Key words: posterior, starunimodal, mode, logconcave, star-shaped sets, Minkowski func-
tionals, posterior probability.



1. Introduction. In this article, we consider Bayesian analysis of a multivariate normal
mean § under nonconjugate priors. Special emphasis rests on the multivariate ¢ prior,
although many results are proved for more general spherically symmetric priors. The desire
to travel outside of the domain of conjugate priors stems from the need or desirability for
priors with tails thicker than that of the likelihood function. Notice flat tailed priors such
as the t prior often automatically provide a good amount of robustness. See Berger (1985)
for general discussions on this. Also see Dawid (1973), Dickey (1976), Meeden and Isaacson
(1977), Hill (1980), etc. Although point estimation of § will be peripherally considered,
the main goal of this article is to understand the behavior of the posterior distribution,
in particular its shape (is the posterior of § unimodal in a suitable sense etc.) and using
these shape properties to explicitly construct Bayesian credible sets with a guaranteed
posterior probability of 1 — a (where 0 < @ < 1 is any fixed number). This problem needs
attention because as soon as we go outside of conjugate priors, construction of HPD regions
in high dimensions becomes an extremely difficult task. The usual numerical methods for
constructing high density regions by simulating from the posterior and taking the convex
hull of high density points does not work because for the priors we consider (such as a ¢
prior), HPD regions are not known to be convex. We provide ample evidence later on that
our methods not only explicitly produce credible sets with guaranteed posterior probability,
these sets are also typically quite efficient in the sense that the size of the set cannot be much
reduced without violating the minimum posterior probability requirement. A principal
tool in obtaining these Bayesian credible sets is to establish unimodality of the posterior
distribution of § in a suitable sense and then use techniques from the theory of unimodal
probability distributions to obtain lower bounds on the probabilities of sets containing the
mode of the posterior. Such lower bounds then immediately provide Bayesian credible
sets centered at the posterior mode with a guaranteed posterior probability. Unlike in one
dimension, there is no single concept of unimodality in higher dimensions. For a lucid
treatment of unimodality in high dimensions, we refer the reader to Dharmadhikari and
Joag-dev (1988). We will merely mention here that it is possible to index the degree of
unimodality by a positive number « in the sense that if a distribution in the p-dimensional

space is a-unimodal and if a < $, then it is also f-unimodal. Thus decreasing the index



of unimodality leads to stronger forms of unimodality. Typically, the best that one can
hope for is a-unimodality with & = p (the dimension of the problem). p-unimodality
is also known as starunimodality. For (absolutely) continuous distributions with density
f, starunimodal distributions are also characterized by the intuitively appealing property
that the density f decreases as we move away from the mode along any ray in the p-
dimensional space. The concept of strong unimodality (logconcave densities) makes sense
in p-dimensional problems also. It is known that distributions which arer logconcave are
also starunimodal. Thus starunimodality is weaker than logconcavity. We will establish
conditions under which the posterior of § given X = z is starunimodal. We prove the
surprising result that for very general spherically symmetric priors for the mean 6, the
posterior of § given X = z is starunimodal for every z if and only if it is logconcave for
every z. Notice there may (and usually do) exist specific ¢ for which the posterior is
starunimodal but not logconcave, but if the posterior is starunimodal for every z, it must
be logconcave for every z too. As an example, suppose X ~ N(8,0%I) and § has a central
t distribution with m degrees of freedom, location parameter y and scale parameter 72.

Assume y, 0%, 72 are known. Then it is proved the posterior of @ is starunimodal for each

z if and only if ";’2'2 > m;’” If ";’;2 < m;’ £ the posterior is not starunimodal for each z.
We have a characterization of the set Sy, of & for which the posterior is not starunimodal.
It is proved that S,, is a spherical band on the p-dimensional space, i.e., Sy, is a set of the
form {X : am < [|X — u|| £ bm}. We give qualitative descriptions of the behavior of the
set S;, as m increases. In particular, we show that the set S, converges to the empty set
as m — 00; these results are given in section 2. Notice versions of some of these results for

the one dimensional case were proved in DasGupta (1988); also see Fan and Berger (1989)

for related results.

Apart from the multidimensional ¢ priors, other natural priors in this case are general
scale mixtures of normal priors (the ¢ prior is one such). In section 3, we give a short treat-
ment of the problem for general scale mixtures. In particular, we give a theorem describing
a condition on the mixing distribution réquired for the posterior to be starunimodal for ev-

ery z. A few examples are given to illustrate the theorem and to help qualitatively explain



the message of this theorem. As stated before, a major consequence of the starunimodality
of the posterior is a rather sharp lower bound on the probability of a starshaped set C
containing the mode v = v(z). Specifically, suppose z and the prior for § are such that
the posterior for § for this specific z is starunimodal with mode at v. Then it turns out
that for r > 0,

P(6eC/z) > 7,(r), where

T (r) is the rth order posterior moment of a suitable functional of § depending on the set
C (this will be made more precise in the body of the paper). By choosing C large enough,
one can make 7,(r) > 1 — a (usually exactly equal to 1 — &) where 0 < a < 1 is specified.
C then is a guaranteed credible set of posterior probability at least 1 — a. This technique
works for any r > 0. We demonstrate that typically there exists a moderate value of r for
which the probability bound is the sharpest and the set C resulting from this » > 0 is seen
to be an efficient credible set for § in terms of size of the set. Notice we have an enormous
amount of flexibility in choosing the shape of the credible set because the technique works
for any starshaped set (in particular spherical, elliptical and rectangular regions). We do
not claim that our sets are HPD regions for this problem. Indeed, the motivation derives
from the fact that it is extremely difficult to find the HPD sets here. These results are

given in Section 4. In Section 5, we make some concluding remarks.

2. Unimodality of the posterior for spherically symmetric priors. In this section we es-

tablish appropriate unimodality properties of the posterior for § when § has a spherically
symmetric prior. Recall that unimodality of the posterior is crucial for obtaining efficient
credible sets. As stated in the introduction, there is no unique concept of unimodality in
multidimensions. We will, for the most part, consider star unimodality. This is because it
is a natural unimodality property and furthermore suffices for the subsequent construction
of credible sets. Logconcavity or strong unimodality, on the other hand, is interesting on
its own merit. For the sake of completeness we first define star unimodality and then prove
an equivalence theorem stating the equivalence of logconcavity of the posterior of 4 for all
X and star unimodality of the posterior of 8 for all X. Aside from the theoretical impor-

tance, this result has practical implications in the sense that logconcavity is typically much
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easier to verify than star unimodality in the problems we are considering. The theorem

enables us to verify starunimodality for all X by verifying logconcavity for all X instead.

Definition: Let X ~ F be an absolutely continuous random variable on RP with density
f(X). We say X (or equivalently f) is starunimodal about zero if f(tX) < f(sX) for all
0<t<s<ooandall X. X is said to be starunimodal about v if X — v is starunimodal

about zero. v will be called the mode of X.

Remark Notice that if f is differentiable, then starunimodality is equivalent to Ed; fX) <o
for all t > 0 and all X.

Theorem 2.1 Let X ~ N(8,0%I) and let § ~ WQ-LQE#—“Q. Assume y,02%, 7% are known.
Suppose 7(+) is twice differentiable and decreasing. Then the posterior distribution of § is

logconcave for all X if and only if it is starunimodal for all X.

Proof: Clearly we only need prove the if part. We will, without loss, assume g = 0 and

further let 02 = 72 = 1. The case of general 02 and 72 is exactly similar. Let 7(§]X) denote

the posterior density of . Clearly, —log(§|X) is proportional to ¢1(||0|%) + 36 — X||?,

where ¢; = —logw. Suppose now w(8|X) is starunimodal for all X with mode at v =

v(X). .. Z = § — v is starunimodal for all X with mode at 0. It then follows that
V>0, VZ, VX,

d 1
F{alez P+ Jlez v - X1} 20

= 201 (IRZ +|P)CNZIP+4'2)+ IZIF+ 2" (v~ X)) 20 V>0, VZ, VX (21)

Letting ¢t — 0 in (2.1), we have

261l - v'2+2' v -X)20 V2, VX
=AW vty -X)Z220VZ, VX, (2.2)

from which it immediately follows

@il +1) v =X, (2.3)

3]



i.e., v = aX for suitable a. Notice ‘a’ may (and will, usually) depend on X. Given X # 0,

‘a’ can be found from the equation
a(2¢1(®||IX|*) +1) -1 = 0; (2.4)

it is easy to check that 0 < a < 1 and that a = a(||X||) is continuous in || X||. Substituting
aX for v and Z = X in (2.1), one then has '

200 ((t +a)?’X'X)t+a)+t+a—-1>0 Vi, VX. (2.5)

Multiplying both sides of (2.5) by ||X ||, writing w for (t+a)||X ||, wo for a|| X || and letting
f(w) = 24} (w?)w + w, one then obtains that given ||X|| > 0, there exists wy > 0 such that

Flwo) = 11X1],
and f(w) > || X|| Yw > ws.

Since f must then be increasing, it follows that 7(8|X) is logconcave for all X. This is be-
cause direct computations give that the Hessian matrix of —log7(8|X) = (1+2¢(||4]]?))-
I4+441(]|8]|?)0¢' which is nonnegative definite if 14244 (]|6]|*)+4/|6]|247({|6]|*) > 0. This

last inequality, however, follows if f(w) is an increasing function.

Corollary 1 Let X ~ N(§,02I) and § ~ t(m, g, 72I); then the posterior of § given X is

starunimodal for all X if and only if 1"0—’;-2- > lstﬂ.

2 = 72 = 1 (the proof for the general case

Proof: We give the proof here for the case o
is essentially the same). Clearly, we can assume g = 0. From Theorem 2.1, the posterior
is starunimodal for all X if and only if it is logconcave for all X. The condition for
logeoncavity is 1+ 2¢(]|9][%) + 4/|6]12¢7(|16]|*) > 0 for all § which reduces to m > £ on

computation, as required.

The above corollary implies that if § ~ t(m, g, 72I) and if ";’2'2 < m—gﬂ, then there exist
appropriate X such that the posterior of § given X is not starunimodal. The next theorem
characterizes the set of X for which the posterior of § given X is starunimodal for any
given specific values of m, 0%, 72, We take y = 0; if u # 0, all assertions hold with X — 4 in
g X

=17,

place of X. For the sake of brevity, we will denote = = = Xy, E"f_—z =a,m+p=20,

6



mr2
o2

and vy = 1 = . Ignoring constants of proportionality, the posterior density 7(8|X
Y o g g y P Yy TG4

equals

1

(1+57)
L+ 55

. ~logn(81X) = (Z ~ Xo)'(Z — Xo) + "L log(1 + aZ'). (2.6)

n(81X) = =70~ X) (0 - %) =5

If the posterior of § is starunimodal about, say, ¥(X) = v, then using the argument of

Theorem (2.1) it now follows using (2.6) that

v = aXo,
where a solves
afa
o0 =e =1t T X, 20
= aX;Xoa® —aXiXoa®? +(1+aB)a-1=0 (2.8)
- . ——1— .
Substituting X =Y (2.8) reduces to
h(a) = a® —a® + (B +7)ay — vy = 0. (2.9)

Notice h(a) always has a root in the open interval (0, 1) and cannot have any roots outside
of [0, 1]. If the posterior of § given X is starunimodal, then A(a) has only one root. Since

h(a) is a cubic in a, it is wellknown (see, e.g., Press et al, page 146) that

1-3(B+~
letting Q) = -——-—(9 )y
—24+9(B +v)y — 27

h(a) has only one real root if and only if
QB _ R2 S 0
which, on lengthy but straightforward algebra reduces to

4B +7)%y" — (B2 —8y* +2087)y +47 >0 (2.10)

7



For future reference, we will define S; ,, = {X : (2.10) holds}; recall here y = T Xl T

If h(a) has a unique root in the open interval (0, 1), say a*, then the posterior, if it

is starunimodal, will be starunimodal with mode at a*X, (the unique root a* can be
obtained in a closed form; see Press et al (1986)). Equivalently, Z = 8 — a* X will be
starunimodal with mode at Q. If f(z|X) denotes the posterior density of z = § — a* Xy,

then starunimodality of f is equivalent to

d

=f(#t21X) S0 V>0, Vg
which, on direct computation, reduces to

{1212 + (" — D)Xgz}{1 + altz + a* Xo) (2 + a" X o)}
+ap(t|lzl* + a*Xpz) 20 V>0, Vz

= allz||*® + [2aa* X{z|2l* + a(a* — 1)X{zllz]*)?
+[(1+ aa® X Xo)llzl? + 2aa*(a* — 1)(X32)* + o |zt

+ {(a* = 1)(1 + aa*z)gg_{(o) +aBa*}Xpz2>0 V>0, Vz (2.11)

Because a* solves h(a) = 0 (or equivalently, solves (2.7)), (2.11) reduces to the quadratic

inequality

allzl[*#® + ||z X bz(20a” + afa® — 1))t (2.12)

+ P + 0B + aa” X5 Xo) — 2a0™(1 — a*)(X2)?] 20, Vi>0, V2.

For z # (, the roots of (2.12) are given by

_ —(3aa* - )Xz £ \ﬂa — 3aa*)?(X2)? — 4af|[2|[2(1 + of + aa*2)~(6)~(o) - 2oa*(1 - a*)(X(2)?)

t
2a||2||?

(2.13)
We claim that (2.12) > 0 for Vit > 0, V z if and only if the discriminant is < 0 V z.
This is because if the discriminant is > 0 for some z, say zg, then for one of z = zp and
z = —z9, at least one of the two roots in (2.13) is strictly positive which in turn implies
that there must exist ¢ > 0 for which (2.12) is strictly negative for this particular z, a

contradiction.



The condition that the discriminant is strictly negative for all z is

(a — 30a*)*(X§2) +8aa*(1 — a*)(X§2)?.
<4a(l+af +aa” XpXo)llzll* V2
= (1+a*)20?(Xbz)? < da(l + af + ad® X Xo)|lz|]? V 2
=1+ a*)?|Xol2 < 4(B + 7 +a* [|Xoll?)

=(-8a"" +2a" + ]| Xol* <4(8+7) (2.14)

On the other hand (2.7) implies that

ol = (215)
Substituting (2.15) for [|Xo[|?, (2.14) reduces to
(3a*" — 2a* — 1)[(1 + aB)a* — 1] + 4(1 + aB)a* (1 — a*) > 0. (2.16)
Factorizing 3a* — 2a* — 1 as (3a* +1)(a* — 1), (2.16) reduces to
e (1+af)+a*@—aB)+1>0. (2.17)

Again, for future reference, we will define
So,m = {XeS1,m : (2.17) holds};

here a* is the unique root of h(a) = 0.

Since the posterior is starunimodal if and only if (2.10) and (2.17) both hold, we have
the following theorem:

Theorem 2.2 Let X ~ N(8,0%I) and § ~ ¢(m, u,72I). Then the posterior of § given X is

m‘r2 0’2

o2 ’ﬂ:m-i-p”)/: %’ a‘ndy: ”X”2‘

starunimodal if and only if XeS5 ,, where v =

Remark: Recall that for v > % B, the posterior is starunimodal for all X. Indeed, under
this condition, an involved argument does imply that S1m = S2 m = RP. In DasGupta

(1988), it was proved that if X ~ N(6,0?) and 8 ~ t(m, u,72), then the posterior of 8 given
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X is unimodal for all X if and only if ";—’;2 > %ﬂ; otherwise the posterior is unimodal for
|X — u| < a and | X — p| > b for suitable a and b. In other words, the posterior fails to
be unimodal for a < |X — u| < b. We will now give a similar result for the p-dimensional

case. First we need the following proposition.

Proposition 2.3. Suppose X1, X, are such that h(a) has only one root for X = X;,¢ =
1,2. Let a*(X;) denote the root of h(a) for X = X;. Suppose [|X1|| < [|X2|[. Then
a*(|1X11]) < a* (|| X=1))-

Proof: For any fixed X, writing y for ||X1 = by (2.7), a*(||X||) satisfies
Ao

‘ afBya*(y)
()~ 1+ s (218)
Denote Tl-X:lTHz =1, I_IXITHz = y9; note yo < y1. Then we have,
. aByia*(y1)
a — 1l —F=
) aa** (y1) + y1
() — 14 2B, (2.19)

aa* (y1) + y2

(since ;¥ is increasing as a function of y for positive ¢). We claim (2.19) implies a*(y2) >
a*(y1), which will prove the proposition. For if a*(y2) < a*(y1), then for y = y,, the
function h(a) is zero at a = a*(y2), negative at a = a*(y1) and positive at a = 1. By
continuity of h(a), there must therefore be another root of h(a) between a*(y1) and 1, a

contradiction to the assumption that h(a) has a unique root for X = Xo.
We now prove the following theorem.

Theorem 2.4 S5, is a set of the form {X : am < [|X — | < bm} for suitable constants

@m, b depending on m,o?,72.

Proof: Assume without loss of generality that g = 0. By definition, S5 ,, is the set of all
X such that (2.10) and (2.17) both hold. Plainly, the set of X for which (2.10) holds is a

set of the form

{XNIX|l 2 a1,m or ||X]| < b1,m}- (2.20)
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Also, by Proposition 2.3 one gets that the set of X for which (2.17) holds is a set of the

form

{X - [|X]] 2 ag,m or || X[ < b2,m}- (2.21)

Combining (2.20) and (2.21), it then follows that, in general, S5 ,, is a set of the form

It is easy to directly verify, however, that S3 ,, can be a union of two distinct spherical bands
only for the two configurations by m < G2,m < bi,m < @1,m OF b1 < @1,m < b2,m < G2,m.

We will now prove that none of these two configurations can arise. Notice it is only

necessary to consider the case f > 8y, because otherwise the posterior is star-unimodal

for all X.

By direct computation,

8(8+7)°

2 —
Lm T g sy + 208y — /B(B — 87)°

and

8(8 +7)? (2.23)

T .
BT B2 842 4208y — A/B(B — 87)

On simplification, (2.23) reduces to

2 B 87 +208y+ /BB —8)°
1,m — 8")’
and
- B? —8y* +208y— /B(B —87)° (2.24)

8y
Also, note that (2.17) holds if and only if

a*>ﬂ—27+\/ﬂ(ﬂ—87) or . ﬂ—27—\/ﬂ(ﬂ—87)_

a

B 2(8 +7) B 2(8 +7)

Combining this with (2.15), one therefore gets that (2.17) holds if and only if

IXIP > 4(8+71)*(B— 4y +/B(B—8Y)) o
T B2+ VBB -8NPIB+ 4y - VBB 8] T

11




or

HX”Z < 4(18 +7)3(IB — 47 -V IB(/B — 87)) — b2 . (225)
T B-2y-VBB-8PB+ 4y + VBB -8 7

Again, algebra reduces (2.25) to

2 Bt 7)2[(ﬂ +1/B(B — 87))? — 1677
2m T 4B+ /BB = 87) — 292

2 (ﬂ+7)2 [(8 — V/B(B — &))" — 16v"] (2.26)
2m = —/B(B —87) —27]?

Straightforward algebra now gives that »

and

2 2
R b2,m

_ 182 —8y? + 208y + /B(B — 87)*]1B — 27 — V/B(B — &) 2 —2(8+9)%1(B — /B(B—87))? —16+7]
8y[B — V/B(B — 8y) — 27]?

(2.27)

The numerator of (2.27) simplifies to

16(8 — 8v)v* (B +7)*
(82 — 667+ 2v2)/B(B —87) + B(B — 87)(B — 27)’

which is nonnegative since § — 8y, 8 — 27 and B2 — 68~ + 2v? are each nonnegative. This

(2.28)

proves that ai m > b2,m. Similar arguments give that as ., > b1,m. Hence Szcym, ie., the

set of X for which the posterior of § is not starunimodal, is a single spherical band.

3. Starunimodality and logconcavity for general mixture normal priors. In Section 2, we

derived a necessary and sufficient condition for the posterior of § to be starunimodal for
all X (or equivalently, logconcave for all X), when § has a spherically symmetric ¢ prior.
In this section, we give an analogous necessary and suflicient condition when the prior for
g is a scale mixture of normals of the form

—4'¢

w(#0)= [ mdc), (31)

where G is a probability measure on (0,00). Note w(-) is not a probability density because
it has not been normalized; however, this will naturally have no bearing on any of the

results derived in this section.

12



Theorem 3.1 Let X ~ N(,I) and let § have a spherically symmetric prior density 7(8'6)
given by (3.1). Then the posterior of § given X is starunimodal for all X if and only if

2X Vary(u) < 14 Ex(u) for all A,

!

6'6 '
where A > 0 denotes == and u is distributed as p(u|\) = e 2utdH(u)/ [ e utdH (u)

where H is the probability distribution of % induced by the distribution G for 7 in (3.1).

!

0'¢
Remark: For the case when X ~ N(§,0%I), Theorem 3.1 holds with A = == replaced by
§'9/20°.

Before we give a proof of Theorem 3.1, we will give one short example illustrating the use

of Theorem 3.1.

Example 1. Let § have the ¢ prior with density proportional to —l—m—_iz In this
86\ 2
403

case, it is well known that G is absolutely continuous with density g proportional to

e (%)‘3—;1’- +1, where as before v = ":;2 = m7? and = m-p. Consequently, H is also

absolutely continuous with density h proportional to e_%”uﬂ—gﬂ — 1. Direct computation

now yields that under the density e~ **u¥h(u)/ [ e~ *u? h(u)du,

__B
EA(U’) - 2()\ n _'21)
B
and VarA(u) = m

Thus, the posterior is starunimodal for all X if and only if

B B
— —-1<0 YVA>0
(A+3)2 200+3)

which, on multiplying by (A + %)? on both sides reduces to the quadratic inequality

2
A2+(7—§),\+7Z+lfzo VA>0. (3.2)

It is now easy to argue that (3.2) holds if and only if the discriminant (y— ‘g)2 —(v2++8) is
negative, which is equivalent to 8 < 8v, i.e., m7% > m—gl'ﬂ, precisely the condition obtained

earlier in Corollary 1.
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Proof of Theorem 3.1: It follows from the proof of Theorem 2.1 that the pdsterior is
starunimodal for all X if and only if 1 + 26, (]|0]1*) + 4/|6]12#} (||6]*) > 0 for all §, where
$1(11611*) = —log7(]|6]|*). Denoting ||6]|* by s,

n(s) = / e~ 34w dH (u);
therefore, by direct computation,

1+ 2¢1(s) +4s¢7(s) 20

W i e :(O) [ertruit2an) [ [etudtianw)\ | | .
Je tuidH (u) e 3vuidH(u) e %ruidH (u) -

Nl

which is the desired result on using A = 3.

Remark: The main message of Theorem 3.1 seems to be that if the variance of u is small
compared to its mean under p(u|)), then the posterior is starunimodal for all X. If the
mixing distribution G has this property itself, then it will often carry over to p(u|)). For
example, if 7(-) is a normal density (i.e., G is a point mass), then the posterior is clearly

starunimodal for every X.

4. Construction of credible regions and their efficiency. In this section, we exploit the
properties of starunimodality derived in Section 2 to construct credible regions for § under

t priors. We first need the following definition and a lemma.

Definition Let S € RP be any starshaped set, starshaped about . The Minkowski func-
tional of the set S is defined as

7s(v) = inf{a > 0 : veaS}.

Lemma 4.1 Let V have a starunimodal distribution on R? with mode at 0. Let S C RP
be any starshaped set containing 0. Let a > 0 be any fixed number and let » > 0 be such
that E(W7") < oo where W# denotes the Minkowski functional of the set S. Then

r " EB(WT)
r+1 apb”

P(VeaS) > 1 - (
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Proof: First note that since V is starunimodal with mode at 0, V admits the representation

where U ~ u[0,1], and U, Z are independent (see page 40, Dharmadhikari and Joag-Dev
(1988)). Also, it follows from the definition of ms(V') and the fact that S is starshaped

that ws(V) is homogeneous of degree 1, i.e., for a > 0, 7s(av) = ams(v).
.. with probability 1,
rs(V) =ns(U? ) = Urns(Z)
=W = (rs(V))F = U(rs(2))"- (4.1)

Since U, Z are independent, so are U and (m5(Z))? and therefore, by Khintchine (1938)
(also see page 6, Dharmadhikari and Joag-Dev (1988)), W is a scalar-valued unimodal

random variable with mode at 0. Since for any a > 0,
71'5(‘[) <a=—= YsaS,

we now have,

P(VeaS) 2 P(rs(V) < a)

— P(W < a?)
S < r ) E(WT)
- r+1 aPr

by Theorem 1.11 in Dharmadhikari and Joag-Dev (1988). This proves the theorem.

Corollary 2 For any fixed 0 < a < 1, let

. r 1/p
a= 11.1'>1]E <—(T+1)O{1/r||W||r> ’

where ||W||, = (E(W™))*/". Then,
P(VeaS)>1-—a.
Proof: Given any r > 0,0 < a < 1, if we let

o= (i) (4.2)
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then from Theorem 4.1 we have,
P(VeaS)21-aq, (4.3)

from which the corollary follows by using the Dominated Convergence Theorem on noting

that aS | aS as a | a.
We are now in a position to state the principal result of this section.

Theorem 4.2 Let X ~ N(§,02I) and § ~ t(m,0,7%I). Given m,0?,7%, suppose XeS3 m
where S, is defined in (2.16). Let v = y(X) = a*X be the mode of the posterior
distribution of § given X where a* is the unique root of (2.9). Then, for any starshaped
set S, starshaped about 0, and any 0 < a < 1,

Pl —veaS|X] 21— o,

where g is as in Corollary 2, with V =6 —v.
Proof: Use Corollary 2 and the fact that for XeSs m, the posterior of § is starunimodal
with mode at v = a* X.

Remark: Since S is any starshaped set containing 0, Theorem 4.2 provides a great amount
of flexibility in obtaining Bayesian credible regions for § with a guaranteed posterior proba-
bility of 1 — . However, the choice of S must necessarily be dictated by the convenience in
computing ||W]|. It turns out that for natural starshaped sets, the Minkowski functional
75(-) is easy to calculate in a closed form. This is very useful for later calculating ||W|].

For example, if S is an ellipsoid
S={0:
then wg(0) = \/QT_IQ- If, on the other hand, S is a symmetric hyperrectangle
S ={4:8i] < b},
then 7s(0) = max 19,

1<i<p b
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Such simple closed form expressions for mg(-) make it easier to compute ||W||,. An-
other concern here is that the use of Chebyshev-type inequalities in Lemma 4.1 can make
the credible regions of Theorem 4.2 inefficient in the sense that it may be possible to reduce
the size of the credible region drastically without making the posterior probability less than
1 — a. We show substantial evidence below that by using a instead of ‘a’ given by (4.2)
with a fixed r (such as r = 1 or 2 say), we can make the credible regions quite efficient.
We therefore recommend that as a general practice, a few different values of r (say integral
values r = 1,2,... etc.) should be tried to find out which r gives a small value of ‘a’. Our
methods then produce reasonably efficient credible regions under robust flat tailed priors
with a guaranteed posterior probability of 1 — @ and it is important to note that in the
process we do not need to compute anything more than a few posterior moments ||W]||.
for a few values of r > 0. The posterior moments can be evaluated by simulation from the
posterior distribution; that is what we do below. But, alternatively, one can often evaluate
the posterior moments E(W™) by doing a series of only one dimensional numerical inte-
grals provided the set S is a nice starshaped set, such as an ellipsoid or a hyperrectangle.
We comment here that g will usually correspond to a fractional r > 0. The simulation
methods can be applied equally well by first choosing a near optimum integral value of r
and then taking a grid of fractional values near this integral . This will result in greater

efficiency.

Example We take X ~ N(§,0%I) and 8 ~ t(m,0,72I). Two different values of p are
considered, p = 2,3, and m is taken to be 6. All calculations given below are for a = .05
and for elliptical credible regions S, = {6 : (§ — v)'A~(§ — v) < a®}, where A is taken
to be the posterior covariance matrix. See Berger (1985), Tierney and Kadane (1984),
Johnstone and Velleman (1984) etc for methods to approximate (posterior) moments. We
show below the minimum value of ‘a’ for r = 1,2, 3,4, 5. This is denoted by ag, and the r to
which it corresponds is denoted by rg. Thus the credible region with guaranteed posterior

probability of .95 we recommend 1s
So={8=(8-v)A7 (6 —v) < ag}.
Efficiency is calculated as follows: the ellipsoid Sy is continuously shrunk by decreasing ‘a’
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further from aq until for the simulated sample a posterior probability of .95 is attained.
The value of ‘a’ for which this happens is called ani, and the efficiency is measured by
ijfén. Thus, for example, @iz = .8 will mean that the length of each axis of Sy can be
reduced 20 percent without lowering the posterior probability below .95. For the sake
of completeness, we also give the actual posterior probability of Sy (notice .95 is a lower
bound). This is denoted by P,. Different values of 02,72 and X'X are tried. We choose
X'X = n+ év, where n,v stand for the marginal mean and standard deviation of X'X

for a specific combination of m,o? and 72 and § is allowed to vary. Simulation sizes vary

between 500 and 5,000.
Table 1: Table of efficiency of credible regions

pa®2 §ro a P Omin  %min/G
2.25 1 .1 2 3.34565 .98100 2.67582 .79979
3.95 1 -5 1 5.47449 .99700 2.79106 .50982
2 1 1 .1 3 2.98027 .98400 2.44745 .81874
2 1 1 .5 3 3.22387 .98500 2.71662 .84266
2 1 1 1 2 3.33021 .99200 2.55734 .76792
2 1 1 2 2 4.31434 .99900 2.55147 .59139
3 1 1 .1 3 3.61290 .99200 2.79821 .77451
31 1 .5 2 4.27755 .99600 2.86880 .67066
2 4 1 .1 3 2.96171 .98800 2.52082 .85418

In general, the credible regions appear to be more efficient for p = 2 and for smaller
values of |§], i.e., when X'X is close to its marginal mean. The credible regions seem to
be the least efficient when ‘1’:—: is small and p is large and |§] is also large. However, more

computation is needed before something definite can be asserted with complete confidence.

5. Concluding remarks. Shape behaviors of the posterior are always theoretically inter-
esting. In this article we describe how knowledge of appropriate forms of unimodality
is also practically useful in deriving reasonably efficient credible sets with a guaranteed
posterior probability. We have dealt with only the symmetric cases here, i.e., the variance-
covariances matrices of X as well as § are assumed to be proportional to the identity
matrix. Many of our results and methods should be applicable to the case of general
known covariance matrices as well, although the posterior mode will not, in such cases, be

on the line joining the data and the prior mean. Point estimation of § using the poste-
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rior mode is also of interest. Risk behavior of the posterior mode and comparison to the
posterior mean are both important issues. A convenience in using the mode as opposed
to the mean is that the mean needs to be approximated by numerical methods but the
mode, as we describe in the paper, has a closed form expression. This allows further study
of its properties. These issues will be considered elsewhere. We hope that our results
on estimation of a normal mean with flat tailed priors will be useful in robust estimation

problems.
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