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In this paper, we consider the classical classification problem in
which we have a training sample from each of two multivari-
ate normal populations with equal covariance matrices and we
wish to classify another observation x as coming from one of the
two populations. Furthermore we assume that the parameters of
these two distributions are unknown and that the priori proba-
bilities that x comes from each of these populations are equal. It
is well known that the most widely used discriminant procedure
for this purpose was introduced by Fisher (1936). By extend-
ing the methods of Stein (1975), (1977), an alternative linear
discriminant procedure is proposed. The idea here is to try to
improve upon the usual procedure by using a better estimate
of the smallest eigenvalue of the population covariance matrix.
Although we have obtained some first-order asymptotic results
concerning this alternative procedure, we have not been able to
obtain an analytical treatment of the misclassification rate of
this procedure. A Monte Carlo study is used instead to evalu-
ate its performance relative to the usual discriminant rule. The
results indicate that the misclassification rate of the alternative
discriminant rule compares very favorably with the usual rule.

KEY WORDS: Linear discriminant analysis; Fisher’s linear dis-
criminant function; Monte Carlo; Multivariate normal distribu-
tion; Eigenvalue decomposition.

1 Introduction

In this paper we consider the problem in which we have a sample from
each of two multivariate normal populations and we wish to classify another
observation as coming from one of the two populations. More precisely,
suppose we have a training sample xgl), . ..,xslll) from Np(p(l),}_]) and a
training sample xgz), e ,x%) from Np(u(z),E) where nj +ne —p—3> 0
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and ¥ nonsingular. We wish to classify another observation x as coming
from one of these two distributions.

In the case where the two distributions are completely known, Wald
(1944) proved that the classification procedure which minimizes the mis-
classification rate is given by the Fisher’s discriminant function, namely:
Classify x into N,(p(), X) if

OPT(x) = [x — (0™ + p®)/2]'S 1 (p® — p®) > log(gz/q1), (1)

or into N,(u(®), ) otherwise, where gy, ¢z are the priori probabilities that
x comes from N,(p(1), ), Np(u?), X) respectively. For simplicity and defi-
niteness, we shall assume throughout this paper that the priori probabilities
g1 and ¢; are equal.

However very often, the parameters of the two distributions Np(p(l), 3)
and Np(p(z), 3) are unknown and need to be estimated from the training
samples. If the maximum likelihood estimators are used to estimate these
parameters in (1), we obtain the usual linear discriminant rule, that is,
classify an observation x into N,(p(), B) if

LDF(x) = (n1 + nz — 2)[x — (xV + ) /2)'s~1(x(V) — %(2)) > 0,

or into Np(p(z), 33} otherwise. Here for 1 = 1,2,
() = Z xg-‘.)/ ng,
i=1

2 n; ) ) ; )
S = >3 () - 2O — xy

=1 j=1

and the MLE of ¥ is scaled by a factor to remove the bias. As noted
by Gnanadesikan, et. al. (1989), the above procedure is presently the most
widely used rule for classifying an observation x into one of two populations.
Its main advantages are simplicity, the availability of package programs and
reasonable robustness against model violations especially for moderate sam-
ple sizes. Excellent accounts of this procedure can be found, for example, in
Anderson (1984) and Gnanadesikan, et. al. (1989).

In the next section, we propose an alternative linear discriminant rule.
Section 3 summarizes the results of a Monte Carlo study which compares the
performance of this rule with that of the usual linear discriminant rule. Some
asymptotic properties of the alternative procedure are proved in Section 4
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and the derivation of this procedure is given in Section 5. We conclude
with remarks on some issues that have not been addressed to in this paper.
Technical details are deferred to the Appendix.

We end this section with the following note on notation. If a matrix
A has entries a;;, we shall indicate it by (a;;). Given an r X s matrix A,
its s X r transpose is denoted by A'. A~l, trA denote the inverse of the
square matrix A, the trace of A respectively. If a p X p matrix A is diagonal
and has entries a;;, we shall write it as A = diag(ay1,...,app). Finally the
expected value of a random vector X is denoted by EX.

2 Alternative Linear Discriminant Rule

The usual linear discriminant rule is obtained by ‘plugging in’ the MLE’s into
(1). It is conceivable that by using a better estimate of n = £~ (u(V) — u(2)),
a better linear discriminant rule will emerge. This idea of replacing the MLE
of § by a better estimate is definitely not new. This has been an area of
intensive research over the years. The literature includes Das Gupta (1965),
DiPillo (1976), (1979), Dey and Srinivasan (1986), Haff (1986), Greene and
Rayens (1989), Rodriguez (1988) and Friedman (1989). Unfortunately, for
the problem at hand, it appears that none of the procedures found in the
literature dominates or nearly dominates the usual linear discriminant rule
in terms of misclassification rate.

In this paper, we propose the following alternative linear discriminant
rule: Classify x into N,(p1), X) if :

ALT(x) = [x — () + %) /2] 410 > O,

or into Np(u(?), 2) otherwise, where ] 47 is determined below.

First we need some additional notation. Let H = (h;;) be an px p orthog-
onal matrix such that HSH' = L = diag(ly,...,Ip) withl; > ... > I, and
h%;)z 0 for i =1,...,p. Furthermore we let y = \/ninz/(n1 + nz)H(i(l) —
x(2)).

Theorem 1 #j(y,S) is an orthogonally equivariant estimator of
vning/(n1 + n2)n if and only if

i’(Y7 S) :H,Q(Il)"'alpyy%r")ygz;)Y1 (2)

where ® = diag(¢y,...,dp).




LINEAR DISCRIMINANT ANALYSIS 4

PROOF. The proof is straightforward and is omitted. O
REMARK. If we take ® = (n; + na — 2)v/(n1 + nz)/nin2L~1 in (2), we get
the maximum likelihood estimate fjprzg = (n1 + ng — 2)S~ 1) — x(2),
Again the MLE of X is scaled by a factor to remove the bias.

Next define

[p/2]

C = > {Lb+v}(IrLy, D)}/ i-1), (3)
=1

é1 = (n1+n2—p—3+C)Vny+na/(l1/nin2),

¢ = (n1+n2—p—3)vn1+ny/(ls/ning), i=2,...,p~1,

¢p = (n1+nz—p—3—C)Vny+na/(lpy/nin2),

where [p/2] denotes the greatest integer less than or equal to p/2. ¢1,...,¢p
are approximations to the diagonal elements of ®. However the natural
ordering of the ¢;’s may be altered. The natural ordering of the ¢;’s is given
by 0 < ¢y < --- < ¢p. To correct for this, Stein’s (1975) isotonic regression
is applied to the ¢;’s. This results in ¢;-9T, i=1,...,p where 0 < ¢§T <
e < ¢5 T. For a detailed description of Stein’s isotonic regression, we refer
the reader to Lin and Perlman (1985). Now we define

ilALT(y’ S) = H'QSTY1

where @57 = diag(¢57,...,457).

REMARK. As an alternative to Stein’s isotonic regression, Haff’s (1988)
algorithm can be applied instead. The essential difference between these
two algorithms is that the latter appears to give smoother estimates.

Here is a heuristic explanation for the form of #) 4;7; its derivation is
given in Section 5. Let A; > -+ > A, denote the eigenvalues of 3. It is well
known that the eigenvalues of §/(n; + n2 — 2) are more spread out than the
eigenvalues of X. In particular, I,/(n1 + ns — 2) underestimates Ap,. From
the functional form of Fisher’s linear discriminant function OPT(x), it is
clear that OPT(x) is heavily influenced by the estimate of A,. #) 477 tries
to get a better estimate of A, by correcting for the bias of I,/(n1 + n2 — 2).
We also wish to add that the correction to Iy /(n1 + ng — 2) is not significant
here since OPT(x) is only slightly influenced by the estimate of A;. The
reason for doing so is to ensure that Stein’s isotonic regression is formally
applicable.

Another interesting point to note is that the correction factor C does
not depend exclusively on S but also on the orientation of the eigenvectors
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of S to that of (i(l) — %(2)). More precisely, if (i(l) ~ %(2)) lies in the
subspace spanned by the eigenvectors corresponding to the smallest sample
eigenvalues of S, the correction factor should be small and if (J_C(l) — i(2))
lies in the subspace spanned by the eigenvectors corresponding to the largest
sample eigenvalues, C should be substantial. The reason is that in the former
case, correcting the smallest sample eigenvalue reduces bias at the expense
of introducing additional variance. If the Mahalanobis distance between the
two populations is not too great, this may lead to increased variability of
ALT(x) and hence the misclassification rate. However in the latter case,
correcting for the smallest eigenvalue reduces both bias and variance and
hence would lead to a decrease in misclassification rate. This point was also
raised by Friedman (1989). This is especially relevant in applications since it
is usually the case that the ‘signal’ (p(l) — ”(2)) lies in the subspace spanned
by the eigenvectors corresponding to the largest eigenvalues of X. This is
also one of the main assumptions justifying the use of the first few principle
components in classification, see for example Chang (1983).

3 Some Asymptotics

In this section, we assume that p is fixed and we let ny, ny tend to infinity. It
is well known that the usual linear discriminant rule is asymptotically opti-
mal in that the law of LDF(x) tends in distribution to the law of OPT(x).
The following is also true.

Theorem 2 The law of ALT(x) tends in distribution to that of OPT(x).

PROOF. This follows immediately from Slutsky’s theorem and the fact that
flarr — 71 — u2)) in probability. O

It follows from the above result that at least up to first-order asymptotics,
LDF(x) and ALT(x) are equivalent.

4 Monte Carlo Study

Due to its rather complicated construction, we have not been able to obtain
an analytical treatment of the misclassification rate of the alternative linear
discriminant rule ALT(x). We shall instead compare the behaviour of this
procedure to that of the usual linear discriminant rule via a Monte Carlo
study.
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For the simulations, independent standard normal variates are generated
by the IMSL subroutine DRNNOA and the eigenvalue decomposition uses
the IMSL subroutine DEVCSF. We take p =5, n; = 5, ng = 5 and p =
10, ny = 7, ng = 7. For simplicity, we write £ = p — p@). Due to the
location and orthogonal equivariance of both procedures, we shall, without
loss of generality, take p(2) = 0 and ¥ to be diagonal. 7

Each experiment consists of 2000 independent replications of the follow-
ing procedure. First, training samples of sizes n; and n» are generated from
N,(€,3) and N,(0, X) respectively. Next another test data set of size 100 is
randomly generated such that each data point has prior probability 1/2 of
coming from Np(§,X) and prior probability 1/2 as coming from N,(0, Z).
This test set is then classified using the rules ALT(x) and LDF(x) derived
from the training sets. This gives us estimates of the misclassification rates
of both procedures.

Tables 1 and 2 give the average misclassification rates and their standard
deviations of the procedures LDF(x) and ALT(x) over the 2000 indepen-
dent replications. The numbers in italics in these tables correspond to that
of ALT(x). We observe that there is a high positive correlation between the
average misclassification rates of these two procedures since the same train-
ing samples and test set are used for both. Thus the estimated standard
deviation (as given in Tables 1 and 2) is probably a conservative indicator
of the variability of the relative magnitude of the average misclassification
rates.

We shall now summarize the results of this numerical study:

1. The misclassification rate of the alternative linear discriminant rule
ALT(x) compares very favorably with that of the usual discriminant
rule LDF(x) for the values of p,ny,ns used. Savings in misclassifi-
cation rate is achieved over most parts of the parameter space. In
particular, this is most dramatic when the eigenvalues of 3 are spread
far apart, £ is in the subspace spanned by the eigenvector correspond-
ing to the largest eigenvalue of 3 and the Mahalanobis squared dis-
tance, £'S71¢, is moderately large. For example, Table 2 shows that
when p = 10, ny = 7, ng = 7, ¥ = diag(10°,108,...,1) and ¢ =
(158113.883,0,...,0), the misclassification rates of the alternative and
the usual linear discrimination procedures are 6.16% and 12.85% re-
spectively. This gives an approximately 50% decrease in misclassifica-
tion rate with the use of ALT(x) over LDF(x).

2. On the other hand, the usual discriminant rule is most favorable
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against the alternative rule when the following situation occurs. The
eigenvalues of 3 are far apart, € lies in the subspace spanned by the
eigenvector corresponding to the smallest eigenvalue of 3. However,
here the difference between the misclassification rates of these proce-
dures is small: at most an increase of 4% in misclassification rate with
the use of ALT(x) over LDF(x). For example, Table 1 shows that
when p = 5, ny = 5, ng = 5, & = diag(103,106,10%,10%,1) and ¢
= (0,0,0,0,3), the misclassification rates of the alternative and the
usual linear discriminant procedures are 18.63% and 18.09% respec-
tively. This gives roughly an increase of 3% in misclassification rate
with the use of ALT(x) over LDF(x).

3. For a fixed set of parameters (£, X)), this study shows that the differ-
ence in the misclassification rates of these two procedures decreases
with n; and ny. Theorem 2 also points to this. Furthermore, the dif-
ference in misclassification rates also decreases with increasing p. This
is intuitively evident since ALT(x) essentially differs from LD F(x)
only in the smallest eigenvalue estimate of 3.
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TABLE 1
p=>5 nyg=>5 neg =25
Average misclassification rates of usual discriminant rule
and the alternative discriminant rule
(Estimated standard errors are in parenthesis)

Eigenvalues of ¥ | £ = (,0,...,0)' [ €=(0,...,0,z)
&3-1¢ =1.00
(1,1,1,1,1) 42.29 (0.18) 42.17 (0.19)
41.82 (0.18) 41.77 (0.19)
(25,1,1,1,1) 42.29 (0.18) 42.17 (0.19)
40.91 (0.19) 42.08 (0.18)
(25,25,25,25,1) 42.29 (0.18) 42.17 (0.19)
42.00 (0.18) 42.35 (0.19)
(25,5,1,0.5,0.04) 42.29 (0.18) 42.17 (0.19)
41.24 (0.19) 42.50 (0.18)
(50,40,30,20,10) 42.29 (0.18) 42.17 (0.19)
41.57 (0.19) 42.18 (0.18)
(16,8,4,2,1) 42.29 (0.18) 42.17 (0.19)
41.84 (0.19) 42.81 (0.18)
(108,108,104, 10%,1) | 42.29 (0.18) 42.17 (0.19)
41.19 (0.19) 42.56 (0.19)
£371¢ = 9.00

(1,1,1,1,1) 18.08 (0.20) 18.09 (0.21)
15.97 (0.19) 16.13 (0.19)
(25,1,1,1,1) 18.08 (0.20) 18.09 (0.21)
18.22 (0.19) 17.89 (0.20)
(25,25,25,25,1) 18.08 (0.20) 18.09 (0.21)
16.07 (0.19) 18.37 (0.21)
(25,5,1,0.5,0.04) 18.08 (0.20) 18.09 (0.21)
18.21 (0.19) 18.54 (0.22)
(50,40,30,20,10) 18.08 (0.20) 18.09 (0.21)
14.68 (0.19) 17.84 (0.20)
(16,8,4,2,1) 18.08 (0.20) 18.09 (0.21)
18.73 (0.19) 18.09 (0.20)
(108,10%,104,10%,1) | 18.08 (0.20) 18.09 (0.21)
18.14 (0.18) 18.63 (0.22)
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TABLE 1 CONTD.

Eigenvalues of ¥ [ ¢ = (z,0,...,0)' | £=(0,...,0,z)’
&n-1¢ = 25.00

(1,1,1,1,1) 6.29 (0.15) 6.30 (0.15)
4.64 (0.13) 4.68 (0.13)
(25,1,1,1,1) 6.29 (0.15) 6.30 (0.15)
3.22 (0.11) 5.72 (0.14)
(25,25,25,25,1) 6.29 (0.15) 6.30 (0.15)
4.85 (0.12) 6.35 (0.15)
(25,5,1,0.5,0.04) 6.29 (0.15) 6.30 (0.15)
3.01 (0.11) 6.42 (0.15)
(50,40,30,20,10) 6.29 (0.15) 6.30 (0.15)
3.88 (0.12) 5.92 (0.14)
"(16,8,4,2,1) 6.29 (0.15) 6.30 (0.15)
8.41 (0.11) 6.15 (0.14)
(108,108,104, 10%,1) 6.29 (0.15) 6.30 (0.15)
2.90 (0.11) 6.46 (0.16)
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TABLE 2
p=10 ny =17 ng =17
Average misclassification rates of usual discriminant rule

and the alternative discriminant rule
(Estimated standard errors are in parenthesis)

Eigenvalues of

I €: (a:,O,...,O)' I £: (0)---)07x),

¢x-1¢ =1.00
(1,1,1,1,1, 44.67 (0.16) 44.66 (0.16)
1,1,1,1,1) 44.10 (0.16) 44.08 (0.16)
(10,10,10,10,10, 44.67 (0.16) 44.66 (0.16)
1,1,1,1,1) 43.65 (0.17) 44.89 (0.16)
(50,1,1,1,1, 44.67 (0.16) 44.66 (0.16)
1,1,1,1,1) 42.85 (0.17) 44.25 (0.16)
(25,25,25,25,25, 44.67 (0.16) 44.66 (0.16)
25,25,25,25,1) 44.81 (0.16) 44.94 (0.15)
(20,20,20,5,5, 44.67 (0.16) 44.66 (0.16)
5,5,1,1,1) 48.61 (0.17) 44.52 (0.15)
(100,90,80,70,60, 44.67 (0.16) 44.66 (0.16)
50,40,30,20,10) 48.87 (0.16) 44.58 (0.15)
(512,256,128,64,32, 44.67 (0.16) 44.66 (0.16)
16,8,4,2,1) 43.09 (0.17) 44.89 (0.15)
(10°,108,107,108%, 105 44.67 (0.16) 44.66 (0.16)
10%,10%,10%,10, 1) 42.83 (0.18) 45.82 (0.15)

¢x-1¢=9.00
(1,1,1,1,1, 25.48 (0.22) 25.90 (0.22)
1,1,1,1,1) 22.42 (0.22) 22.82 (0.23)
(10,10,10,10,10, 25.48 (0.22) 25.90 (0.22)
1,1,1,1,1) 19.51 (0.23) 25.02 (0.22)
(50,1,1,1,1, 25.48 (0.22) 25.90 (0.22)
1,1,1,1,1) 17.58 (0.24) 23.63 (0.22)
(25,25,25,25,25, 25.48 (0.22) 25.90 (0.22)
25,25,25,25,1) 22.58 (0.22) 26.28 (0.22)
(20,20,20,5,5, 25.48 (0.22) 25.90 (0.22)
5,5,1,1,1) 19.40 (0.23) 25.28 (0.22)
(100,90,80,70,60, 25.48 (0.22) 25.90 (0.22)
50,40,30,20,10) 20.25 (0.23) 25.88 (0.22)
(512,256,128,64,32, 25.48 (0.22) 25.90 (0.22)
16,8,4,2,1) 17.79 (0.24) 26.01 (0.22)
(10°,108,107,108,10°, | 25.48 (0.22) 25.90 (0.22)
104,103,10%,10,1) 16.71 (0.24) 26.79 (0.24)
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TABLE 2 CONTD.

Eigenvalues of 3 £=(z,0,...,0) | £=(0,...,0,2)
¢x71¢ = 25.00
(1,1,1,1,1, 12.85 (0.21) 13.30 (0.22)
1,1,1,1,1) 9.56 (0.20) 9.91 (0.21)
(10,10,10,10,10, 12.85 (0.21) 13.30 (0.22)
1,1,1,1,1) 7.61 (0.20) 12.49 (0.21)
(50,1,1,1,1, 12.85 (0.21) 13.30 (0.22)
1,1,1,1,1) 6.73 (0.19) 10.87 (0.21)
(25,25,25,25,25, 12.85 (0.21) 13.30 (0.22)
25,25,25,25,1) 9.20 (0.20) 18.84 (0.22)
(20,20,20,5,5, 12.85 (0.21) 13.30 (0.22)
5,5,1,1,1) 7.55 (0.20) 12.67 (0.21)
(100,90,80,70,60, 12.85 (0.21) 13.30 (0.22)
50,40,30,20,10) 8.12 (0.20) 12.61 (0.21)
(512,256,128,64,32, 12.85 (0.21) 13.30 (0.22)
16,8,4,2,1) 6.74 (0.19) 18.21 (0.22)
(10°, 108,107,108, 105, 12.85 (0.21) 13.30 (0.22)
10%,10%,10%,10,1) 6.16 (0.19) 13.56 (0.22)
£3-1¢ = 49.00
(1,1,1,1,1, 6.41 (0.17) 6.78 (0.18)
1,1,1,1,1) 4.5% (0.16) 4.71 (0.17)
(10,10,10,10,10, 6.41 (0.17) 6.78 (0.18)
1,1,1,1,1) 8.54 (0.15) 6.20 (0.18)
(50,1,1,1,1, 6.41 (0.17) 6.78 (0.18)
1,1,1,1,1) 8.12 (0.14) 5.56 (0.18)
(25,25,25,25,25, 6.41 (0.17) 6.78 (0.18)
25,25,25,25,1) 4.87 (0.16) 6.71 (0.18)
(20,20,20,5,5, 6.41 (0.17) 6.78 (0.18)
5,5,1,1,1) 8.55 (0.15) 6.36 (0.18)
(100,90,80,70,60, 6.41 (0.17) 6.78 (0.18)
50,40,30,20,10) 3.86 (0.15) 6.27 (0.18)
(512,256,128,64,32, 6.41 (0.17) 6.78 (0.18)
16,8,4,2,1) 8.11 (0.14) 6.67 (0.18)
(10°,108,107,108, 105, 6.41 (0.17) 6.78 (0.18)
10%,10%,10%,10,1) 2.85 (0.14) 6.84 (0.18)
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5 Derivation of Alternative Discriminant Rule

From Section 2, we observe that it suffices to derive (3). First we observe
that Fisher (1936) used the following criterion to estimate #: Choose #) to

maximize the ratio §'(X(!) — %(2))/1/#'S#j. This implies, as a first approxi-
mation, that the relevant loss functions to consider may be

Ly(#,n) = -9'¢/(V'Zq/ €' €)
Ly (#,n) = —'Sn/(\/#'Si\/ €'SE).

From the method of Lagrange multipliers, this is roughly equivalent to choos-
ing (7, ) so as to ‘maximize’

and

Ls= \/nlng/(nl + nz)ﬁ'SE;IE - X#H'S#H — 1).
The following theorem gives an unbiased estimate of Ls.
Theorem 3 Let #) be defined as in (2). Then
E(L3) = A+ E(R),

where

14
> {(ny+n2 — 4)iy? — Ligy — 2(Ligi) Py

i=1

+oiy (Z ) +2(k6) Oy
1#1 i

—2l,y. (Z y.‘l [¢(P+.’l) ¢(P+')])+l¢‘(z y:l ) A ¢? }’
.'I#f J#i

with (1;¢:)P+) = 8(li¢:) /8y? and (L::)) = 8(Lig) /Dl;.

The proof of this theorem is deferred to the Appendix.

Now we proceed with a heuristic maximization of R relative to the ¢;’s.
We observe that in order to compete well with the usual discriminant rule,
our estimate of #§ must tend to # 5,7, When the [;’s are spread far apart and
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that y2 is large relative to the rest of the y?’s. This implies that if these
conditions hold, we should have for 1 < 4,5 <p

(L)) ~ o,
(l,'¢,')(£) ~ 0. ) (4)
Thus ignoring the derivative terms in R gives us

R =~

R

4
D A+ na = )gu? — lidi + i 1 _,
=1 FE2)

Hiti(X 7 y’ )—AI¢2 7).
J#t

R is maximized if for 1 < ¢ < D,
YA l;
=[p1+n2—p-3+ (Z + Q= 2 —1) Y, ) ;‘2‘]/(2’\11')- (5)
Pl ? prg :

With ¢; defined as such, we observe that condition (4) is approximately valid
only when ¢ = p. Furthermore, we observe that the absolute magnitude of %
does not matter here, only its direction. Hence we define forz =2,...,p—1,

¢i = \/(m + ng)/nanz(n1 + n2 — p— 3) /L.
A slight perturbation of the functional forms of ¢; and ¢, results in
(nl +n,—p-3+ C, b)M/(ll\/—W7
¢ = (n1+n2— p—3— Cop)Vna+ na/(lpy/ning),

where for suitable constants a, b, we define
a
Cap =D {lp+ ¥ (b A Ly)}/ (i — 1p).
i=1

From Monte Carlo simulations, we find that taking ¢ = [p/2] and b = 1
gives a favorable alternative linear discriminant rule. This results in (3).
REMARK. We observe that (3) can also be obtained by using the following
naive quadratic loss function get a better estimate of %:

La(H,m) = (7 — 1)'S(f — n).
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6 Final Remarks

There are a number of important issues that have not been addressed to in
this paper. The first is the possible improvements in the proposed linear
discriminant rule. It is evident that getting a better estimate of the smallest
eigenvalue of X is of prime importance. However the alternative rule can
be ‘fine tuned’ by getting better estimates of all eigenvalues of 3, not just
the smallest eigenvalue. A promising idea would be to iterate the methods
introduced here.

We have assumed that the priori probabilities ¢; and ¢; are equal. If ¢y
and ¢z are unequal, it is clear from the functional form of ALT(x) that not
only the direction of }, but also its magnitude should be taken into account.

Another issue is the performance of the alternative discriminant rule
under model violations. In particular we are concerned with the performance
of the alternative rule when (1) the two populations are multivariate normal
but have unequal covariance matrices and (2) the populations may not be
multivariate normal. More research is needed in this direction.
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8 Appendix

PROOF OF THEOREM 3.

First we need some additional definitions. A function ¢ : RP*" — R
is almost differentiable if, for every direction, the restrictions to almost all
lines in that direction are absolutely continuous. If g on RP*" is vector-
valued instead of being real-valued, then g is almost differentiable if each of
its coordinate functions are.

Theorem 4 (Normal Identity) Lety = (y1,...,¥p)' ~ Np(p,X) and g :
RP — RP be an almost differentiable function such that E[};; | dg:(y)
/3y |] s finite. Then

E[= Yy - w)g'(y)| = E[VE'(¥)],

where V = (8/dy1,...,8/3yp)".
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The Normal identity was first proved by Stein (1973). Let S, denote the set
of p X p positive definite matrices. Also we write for 1 <1,5 < p,

6 = (6,-,-),,,(,,, where 6,'1' = (1/2)(1 + S;j)a/as,-,-,
where 6;; denotes the Kronecker delta.

Theorem 5 (Wishart Identity) Let X = (Xy,...,X,) be ¢ p X n ran-
dom matriz, with the X} independently normally distributed p-dimensional
random vectors with mean 0 and unknown covariance matriz 3. We sup-
pose n > p. Let g : S, — RP*P be such that x — g(xx') : RP*"™ — RP*P {s
almost differentiable. Then, with S = (s;;) = XX/, we have

Etr5~1g(8) = Etr|(n — p— 1)S71g(8) + 2Vg(8)],
provided the expectations of the two terms on the r.h.s. exist.

The Wishart identity was proved by Stein (1975) and Haff (1977) indepen-
dently. Next we need a few lemrnas.

Lemma 1 With the notation of Theorem 3,

p K
E[y'SLHS'H'(y — cHE)| = B {Ligs + 2LipT ™42},

=1

where ¢ = \/ninz/(n1 + n2).

PROOF. We observe from the Normal identity that

E[y'SLHXZ 'H'(y - cHE)] = E(V'L®y)
P
= E)_ 3(lipi:)/dy:
i=1
3 (p+4)
= EY {ligi+ 24"y}
=1
This completes the proof. O

Lemma 2 With the notation of Theorem 3, we have

6,'1:1; = hijhiy,

~

1 h;
Vikhrs = 23 77 (hishri + hirhej).
I‘#f r %
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Lemma 2 was first proved by Stein (1975).

Lemma 3 Let n=ny +ng — 2. Then

E[y'®LHX 'H'y]

P
i l;
= B {néiy? + 2082 + (3 )bt
i=1 j#i ot
Ui i) _ (o) y;
~209} Q0 =165 - 6D + L O T
T R AT

PROOF. For simplicity, we write y = Hx. We observe from the Wishart
identity that

Ely'?LHX 'H'y]
= Etr(Z7'H'L®Hxx')
= E{(n-p—1)y'®y+ 2trV(H'LEHxx')},

and the result follows, after some tedious computation, from Lemma 2. O
Finally we observe that with # defined as in (2) and ¢ = y/ning/(n1 + n2),

E{c'SZ 1€ — A(#'Si — 1)}
= E{y'®LHTZ 'H'y — y'@LHX 'H'(y — cH¢) — A(#'S#H — 1)}.

Theorem 3 follows immediately from Lemmas 1 and 3.
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