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Abstract

Let X, be a nearest neighbor random walk on the group § = free product of L copies
of Z,. Explicit saddlepoint approximations for P(X, = z) are given; these hold uniformly
for those z € § that can be reached in n steps. The saddlepoint approximations are used
to identify the space-time Martin boundary of the random walk as (A x [0, R])U (G x {R}),
where A is the space of ends of the Cayley graph of § and R~! > 0 is the spectral radius
of the transition operator. The extreme points of the space-time Martin boundary are
shown to be A X [0, R].



0. Imtroduction

The purpose of this note is to identify the space-time Martin boundary for a nearest—
neighbor random walk on a homogeneous tree. For simplicity we shall only consider trees
of a certain type, to wit, Cayley graphs of free products of the two—element group Z,.
However, the techniques developed here are applicable also to certain other trees, e.g.,
Cayley graphs of finitely generated free groups, and the space-time Martin boundaries in

such cases admit similar descriptions.

Let G be the free product of L > 3 copies of Z,, i.e., § has generators {a1,a2,...,ar}

? = e = identity. Each z € § may be written uniquely as a reduced

and relations a
word in the generators: z = a;, @i, ...a;,, where t; # ;4 for y = 1,2,...,m — 1. The
Cayley graph of § has vertex set § and edge set {(z,za;):z € G, + = 1,2,...,L}. A
nearest-neighbor random walk (X,)n>0 on § is a Markov chain with 1-step transition

probabilities

P(Xpt1 = zai|Xp = z) = pi,
P(X,H_] = $|Xn, = 3) = Pe;

L
where p, > 0, p; > Ofor each ¢ =1,2,...,L,and p.+ Y_ pi = 1. (The reason for assuming
i=1
pe > 0 is to make the Markov chain aperiodic. This is only for convenience, however; our
results could easily be extended to allow p, = 0.) When not otherwise specified, we will

assume that P(Xo =€) = 1.

It is known [C], [D], [DM] that a nearest-neighbor random walk on § is transient,
and that its Martin boundary coincides with the space A of ends of §, defined to be the
set of infinite words w = @;, a4, ... in which the same letter a; does not appear twice in
succession, i.e., i; # ¢;41Vj > 1. The space § U A is endowed with the natural “word
topology”: each {z}, £ € §, is open and closed; A has the product topology (the topology
of coordinatewise convergence); and z, — w, with z, € § and w € A, iff the words

representing z, converge coordinatewise to w.
The space-time Markov chain associated with the nearest-neighbor random walk is
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the Markov chain Y,, with transition probabilities
P(Yn+l = (m + 1,xa;)|Y = (m,z)) = Pis
P(Yp41 = (m+1,z)|¥, = (m,z)) = pe
and state space I' = {(m,z):m € Z, z € §, and |z| < m}. Here |z| denotes the word-
length of z, i.e., if = a;, ...a;, then |z| = k; also Z = {0,1,2,...}. The state space T
should be visualized as the vertex set of a directed tree with root (0,e) and arrows from
(m,z) to (m + 1,z) and from (m,z) to (m + 1, za;), ¢ = 1,2,...,L. The transition
probabilities of Y, are related to those of X,, as follows:
gn((m,z), (m+ n,z'))
& P(Yirn = (m +n,2)|Vi = (m,2))
= P(Xk4n = Z'| Xk = z)

£ pn(2,2') = pale,z7'2') £ p*™(z7'2).

We shall prove (Theorem 2) that the Martin boundary of the space-time process Y,

(the “space-time Martin boundary”) is
(A x[0,R])U (G x{R})

for a certain real number R > 0. The topology is as follows: A x [0, R] has the product
topology, and A has the “word topology”; also (AU §) x {R} has the “word topology”, so
(zn, R) — (w, R) iff z, — w letter by letter. We shall also give an explicit formula for the
Martin kernel. Finally, we shall identify the “space of exits” B, (the extreme points of the

Martin boundary) as
B, = A x [0, R].

Thus, the space—time random process Y, is an example of a transient Markov chain whose
space of exits is strictly smaller than its Martin boundary (see [KSK], sec. 10-13, ex. 4 for

another example which, however, is more artificial).

The identification of the space-time boundary entails the development of sharp asymp-

totic estimates for the transition probabilities p*"(z). Local limit theorems for p*™(z) have
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been obtained by [GW] (see also [S}, [FP], [CS] for local limit theorems in similar settings);
these state that for any fixed z € §

p*"(z) ~ C R "n=3/?

as n — oo. These relations clearly cannot hold uniformly for z € §. Let £ = {(n,z) be
the vector (&1, &2,-.-,£L) of nonnegative reals such that né; is the number of times the

letter a; occurs in the word representing z. We will prove (Theorem 1) that for certain

functions (&), Bn(€),
p*"(z) ~ Bn(é(n, z)) exp{np({(n, z))}

as n — 0o, uniformly for z € § such that |z| < n, where n=!log 8,(£) — 0 uniformly for ¢
satisfying X¢; < 1. Explicit asymptotic formulas for 8,(£) will also be given (Propositions
4-5). These saddlepoint approximations are not entirely routine, because f,(¢) makes a
transition from Cn—3/2 to C'n—1/2 as £¢; varies from O to &, then another transition from

C'"n~1/2 to C' as T&; varies from 1 — ¢ to 1.

1. Generating Functions

The saddlepoint approximations are based upon analyticity properties of certain gen-
erating functions of a type also used in [GW], [SS|, and [A]. We begin by studying these,
following the method of [GW]. For z € §G, ¢ € {1,2,...,L}, and z € C, |z| < 1, define

T(z) = inf{n > 1: X,, = z},
F(z,z) = E2T®)1{T(z) < oo},
Fi(2) = F(ai,2),
o0
G(z,2) = Zp*"(z)z",
n=0
G(z) = G(e, 2),
L
H(z) = Ep,-F,-(z) + pe.
1=1

The functions F(z,2), G(z,2) are evidently analytic in |z| < 1. In fact they are algebraic

functions, as we will show next.



First, notice that if £ = a;, a;, ... a;,, then to reach z the random walk must visit in se-
quence a;, , @, Giyy...,0; a5, ... ai,,_,, T. Furthermore, the passage time from a;, a;, ... a;,
to a;, a;, ...a; ., has the same law as that from e to a;,_,, by the translation invariance

of the random walk. Hence, by the Markov property,

m
F(z,2) = [] B4 (2,
i=1
G(z,z) = F(z,2)G(z2).
Second, conditioning on the first step X; of the random walk leads to the equations
G(z) =1+ zH(2)G(=z),
F(2) = piz + zH(2) Fi(2) — pizFi(2)*.
The latter is a quadratic equation in F;(z), which may be solved in terms of z and H(z),

and hence z and G(z), by the first equation. The positive /~ in the quadratic formula

must be used because z = 0 is a regular point of F;(z). Thus,

(1) Fi(z) = -1+ \/2;:;;,(5;2(?(»2)2.

Multiplying by p;, summing on ¢, and substituting for H(2) in terms of G(z) yields the

algebraic equation
(1.2) G(2) = P(2G(2)),

where

L
P(t) =1+pet+ ) _{-1+1/1+4p32}.

i=1

PROPOSITION 1: Let t. be the unique positive solution of the equation P(t) = tP'(t).
Then each of the power series G(z) and F;(z), 1 < i < L, has radius of convergence
R =1/P'(t.), and for each of these functions the argument z = R is the only singularity
in {|z| < R}. Moreover, there ezist functions H;(z), Ki(z) for 0 < ¢ < L, each analytic
in {|z| < R+ 8}, for some 6 > 0 such that

G(z) = Ho(2) + VR — z Ko(2),

Fi(2) = Hy(2) + VR — 2z Ki(2)  V|2| < R;
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and

G(R) = Ho(R) = P(t.),

Fi(R) = H;(R) = (-1 + {1 + 4p?t2}/?)/2pit. <1 V1<i<R,
Ko(R) = —{2P(t.)P'(t.)3/P"(t.)}/% < 0,
K;(R) = {Ko(R)H;(R)/G(R)}{1 + 4p?t?} /2 <0 V1<i<R.

NOTE: This is adapted from [GW], with minor changes. For completeness we shall give

a proof, most of which is taken from [GW].

LEMMA 1: FEach of the functions G(z,2) has an analytic continuation to all z € C\R;

thus, all singularities of G(z, z) are real.

PROOF: Consider the bounded linear operator M: £2(G) — £2(§) defined by M f(z) =
L
pef(z) + X pif(za;). Clearly, |[M| <1, and M is Hermitian. Consequently, its spectrum
=1
lies entirely in [—1,1], and its resolvent R, = (2] — M)~! is analytic for z € C\[~1,1].
o0

But z71R,-: = Y 2"M™ for |2| < 1, so

n=0

(o ¢]

2 1R, i f(z) = Z Z 2" p*" (z7'y) f(y)

n=0yeg

= 3 Gy, 2)f(y)

YyeEYG

for |z| < 1. Applying this to f = 1¢} we see that G(z~!,2) extends analytically to all of
C\R. /1]

PROOF of Prop. 1: Each of the power series G(z, 2), F;(z) has nonnegative coefficients,
so its radius of convergence coincides with its smallest positive singularity. We will use the

functional equations (1.1)-(1.2) to determine the singularities.

Consider the function P(t). Routine calculations show that P(0) > 0, P'(0) >
0, P”(t) > 0 for all t > 0, and that y = P(t) approaches the asymptote y = (p. +
2 EL: pi)t — L+1 as t — oo. For each t > 0 the line tangent to the graph of P at (¢, P(t))
in‘t:e;sects the y-axis at a point (0,y:); the function ¢t — y; is continuous and strictly de-
creasing, since P” > 0. But yo = P(0) and y - —L+1 < 0 as t — oo, so there is a

unique ¢t = ¢, > 0 where y; = 0, equivalently P(t) = tP’(t).
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The functional equation G(z) = P(2G(z)) implies that for 0 < z < 1 the value G(z)
is the y—coordinate of the (first) point of intersection of the line y = ¢/z with the curve
y = P(t). The results of the previous paragraph imply that this intersection is transversal
for all 0 < 2z < 1/P’(t.). Consequently, by the Implicit Function Theorem, G(z) has an
analytic continuation along the segment 0 < z < 1/P’(t,); this proves that the radius of
convergence of G is at least 1/P’(t,). Furthermore, as 2 1 1/P'(t.), G(2) T P(t.) < oo.

To see that z = 1/P’(t.) is in fact a singularity of G, rewrite (1.2) as f(z,w) = 0, where
f(2,w) = w — P(2w) and w = G(z). The value ¢, has been chosen so that f, =0 at z, =
1/P'(t.), w.« = P(t.). Hence, when f(z,w) is expanded in a Taylor series around (z«,w«),
it becomes locally quadratic in (w — w.). It follows that G(2) = ao + a; (2. — 2)¥/2 + ...
for z near z., z < z., with a; # 0, so z. = R is a singularity. Routine calculations show

that G(2) = Ho(z) + (R — 2)'/2Ko(2) where Ho(R), Ko(R) are as advertised.

Lemma 1 implies that G has no singularities on |2| = R except z = R and possibly
z = —R. Now |G(2)| < G(|2|) for all |2| < R, with equality iff z = |z| (because p. > 0,
and so p*™(e) > 0 for all n > 0). From the functional equation G(z) = P(2G(z)) it follows
that z = —R is a singularity only if P(—RG(—R)) = —RG(—R)P'(—RG(—R)), by the
Implicit Function Theorem. But

|P(t) —tP'(t)| =1 - L+ ZL:{l +4p2t?}Y% > 0
i=1

if |t| < t«. Since |[RG(—R)| < RG(R) it follows that z = —R is not a singularity of G.

Finally, consider the function F;(z). Since F; is defined by a power series with nonneg-
ative coefficients, its radius of convergence coincides with its smallest positive singularity.
The only singularities of F;(z) are real, by Lemma 1, since G(a;,2) = F;(2)G(z). The
functional equation (1.1) expresses F;(z) as a function of 2G(z), and for real z this func-
tion is analytic. It follows that 2 = R is a singularity of F;(z), but z = —R is not. Routine
calculations show that Fj(z) = H;(z) + (R — 2)Y/2K;(z) with H;(R), K;(R) as in the
statement of the proposition. ///

NOTE: It can be shown directly that R > 1; however, this is not needed for any of the

subsequent results.



For —oo0 < s < log R define
¥Po(s) = log G(e?)
¥i(s) = log Fy(e®), 1 =1,2,...,L.

PROPOSITION 2: The functions 1;(s) are strictly increasing, strictly convez functions
of s € (—oo,log R] satisfying
¥/(s) >0, :=0,1,...,L,
im ¢!(s) =00, i=0,1,...,L,

stlog R
lim ¥i(s)=1, ¢=1,2,...,L.
8l—o0

PROOF: First take ¢ = 1,2,..., L and differentiate both sides of Ee®*™1{r; < oo} = e¥i(?),
where 7; is the first time the random walk visits a;. This is allowable because F; is analytic.

We obtain
Pi(s) = Erie®"1{r; < oo} /e¥(®)

¥i(s) = E'r,-ze"r‘l{r,- < oo}/e"b"(")
— (Eme®1{r; < oo} /¥ ()2,
It follows that ¥!(s) > O because the right hand side of the last equation is a variance
of a nonconstant random variable. Next, 9(s) = e°F/(e®)/F;(e®) T oo as s | logR,
because F;(z) has an algebraic singularity at z = R. Finally, it follows from the expansion

Fy(2) = piz + 22 F;(2) near z = 0 that ¢}(s) — 1 as s — —oo.

The corresponding statements for 1 follow by similar arguments. ///

2. Saddlepoint Approximations

Let £ = (&1, &2,...,&L) be any vector of nonnegative real numbers satisfying X¢; < 1;

define

o e (S,

Since each t;(s) is a strictly convex function of s € R, the infimum is attained at precisely

one s € [—oo,log R|. If {&; = &2 = ... = £ = 0, the infimum is attained at s = log R. If
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0 < X¢; < 1, the infimum is attained at the unique s = s(¢) € (—o0,log R) satisfying

L
(2.2) 3 ewi(e) =1

(recall that ¥}(s) is a strictly increasing function such that ¥}(s) — 1 as s — —oo0 and

Pi(s) — oo as s — log R). If £¢; = 1, the infimum is attained at s = —oco, and in this case
. ,
(2.3) p(8) =) _ &logp;
i=1

(since e¥:(®) = p;e® 4 0(e2?) as s — —o0).

Now let z = a;, a;, ...a;,, be a reduced word in G. For n > m, define é(n,z) = ¢ =
(é1,&2,...,&L) to be the vector of nonnegative real numbers such that n¢; is the number

of occurrences of the letter a; in the word a;, a;, ... a;

m*

THEOREM 1: For each reduced word x = a;,a;, ...a;_, tf n > m then

p*"(z) = Bn(£(n, z)) exp{np(£(n, 2))},

where
. 1 .
Jim sup +1log Bn(€)| =0,
the supremum being taken over all nonnegative vectors £ = (&1, &2,. .., £L) satisfying £¢; <
1.

Theorem 1 will follow from Props. 4-5 below, and the detailed asymptotic behavior
of the factors 8, (&) will be described. The main point of the theorem is that the function
©(&) controls the exponential decay of the probabilities p*™(z). This should be compared
with the local limit theorem of [GW], which states that for each fized z (not varying with

n)

p*n(z) ~ Czn—3/2R—n

as n — oo. (See also Corollary 1 below.) This is consistent with Theorem 1, because
for fixed = the word length m is constant and so £(n,z) — 0 which implies p(¢(n,z)) —

—log R. But Theorem 1 also indicates that (at least for long words z) the exponential rate
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% log p*"(z) undergoes a long, gradual change before finally settling down at — log R when
n gets much larger than the word length of z. It is interesting that this gradual trend in

%log p*"(z) is an tncreasing trend, as the next result shows.

PROPOSITION 3: For each nonnegative vector § = (&1, &2,...,&L) such that T¢; = 1,

the function t — p(t€) is strictly increasing in t.

PROOF: If 0 < ¥¢; < 1 then the infimum in (2.1) is attained uniquely at s = s(¢)
satisfying L&;1{(s) = 1. Consequently, if 0 < X¢; < 1 then p(€) = S&4;(s(€)) — s(¢) and

SO

, ds
65 = i(s(&)) + (Zw(ss))a& 3%,
= ¥i(s(¢))

<0,

because F;(z) < F;(R) < 1for 0 < z < R. Consequently, if £¢; =1 thenfor 0 <t < 1

d
G0t = Tege(te) < /11

PROPOSITION 4: For any 0 < € < 1 the asymptotic behavior of Bn(£) as n — oo
for nonnegative vectors £ = (£&1,...,€L) in the range € < X&; < 1 is as follows: with

k= n(l - ZE,‘),

(2.4) Br(€) ~ G(eO){2mn Y _ & (s(6))} /2 if D& <1-n7%4,

(2.5) Bn(&) ~ k*e™F/k! f1>5¢>1-n"%4

These relations hold uniformly for nonnegative vectors & satisfying e < ¥¢; < 1.

NOTE: For large k, k*¥e=*/k! ~ (2nk)~/2. Consequently, the two asymptotic formulas
“merge” at the crossover point 1 — n~3/4, because {2mnX &Y (s(£))} V2 ~ {2rk}~1/2
for B¢; ~ 1 — n~3/4, as will be seen in the proof. Also, there is nothing special about the

exponent 3/4; any exponent < a < 1 would work just as well.
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PROOF: By the Cauchy Integral Formula,

p*™(z) = (2mi)~" / G(z,2)2~""dz
r,
(2.6) L
= (27i)~! H F;j(2)™ G(z)z~ " 1dz
Trjoi
where T, is the circle of radius r with center 0, oriented counterclockwise, 0 < r < R,
and m; = n§; is the number of occurrences of the letter a; in the reduced word z. Set

r = e*(&); then z = r is a “saddlepoint” for the integrand, in particular, for small 6],

L

( H Fj (reio)m_.,- ) (reia)—n

j=1

L
(2.7) =exp { Y _ m;th;(s(€) + i8) — ns(€) — inb

i=1

L
= exp{np(€(n, )} exp {—nZs,-«ﬁ;-'(s(e»oz/erO(noz)}

i=1

since Em;l(s(€)) = nX¢;9;(s(€)) = n. Consequently, the integral may be analyzed by
Laplace’s method of asymptotic expansion ([E], sec. 2.4), which (at least formally) gives

the result (2.4) for 0 < X¢; < 1.

To justify the use of Laplace’s method we must verify that the major contribution to
the integral comes from those z € I', near r. This, however, follows easily from the fact
that for each j = 1,2,..., L the ratio |Fj(re)|/|F;(r)| is uniformly bounded away from 1
for0<6§<|0|<mand e <r < R—¢, € >0. Furthermore, the two—term Taylor series
(in 0) for v;(s + 10) is uniformly accurate for 0 < |#| < 6 and s bounded away from —oo
and log R. Therefore, the Laplace expansion (2.4) is valid uniformly for ¢ = (&1,...,¢&L)

in the range § < X§; <1—¢, for any € > 0.

It remains to investigate the behavior of the integral (2.6) when X¢; is near 1. This
requires more care, because nX Ej'(,b;-’ (s(€)) is not large when n —nX¢; bounded, and so the

integral is not dominated by those z = reY with || small.
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Routine computations show that for each 1 = 1,2,...,L

¥i(s) = 1 + pee® + 0(e??),
Vi (s) = pee® + 0(e?),

¥i"(s) = pee” + 0(e™)

for small e®. Since s(¢) = logr is the unique solution of £¢;¢!(s) = 1 it follows that
r=e"®) = (1-%¢)/p. +0((1 — £&)2)

for £¢; near 1. Now consider vectors ¢ in the range 1 — e < Y6 <1-— n=3/4 withe > 0
small. For r = ¢*(§),

m;

[ rptf . .
EUed ™ 1= per(t — e) + 002 ™,

i(r)
and since r > Cyn—3/4 it follows that the integral (2.6) is dominated by those ret® with 0 <
|8] < 6, 6 > 0 small, uniformly for 1 — ¢ < ¢ < 1 —n—3/4, Moreover, if $¢<1—n—3/4
then nEsz,b;-'(s(E)) > Conl/* - oo and 1/1;-”(3(6)) < Cgt,b;’(s(f)), so the logarithm of

the integrand (2.7) is, for small ||, nearly quadratic in 8, with a large coefficient. Thus

Laplace’s method applies again, yielding (2.4) uniformly for 1 —e < ©¢; <1 —n—3/4,

Finally, consider vectors £ in the range X¢&; > 1 — n—3/4, Laplace’s method breaks
down in this regime, because nEszﬁ;-’ (s(£€)) does not converge to co uniformly. However,

for each y =1,2,...,L and r > 0 small,

Fj(re*®)

(e — L Per(l- e*’) +0(r?)
J

is the characteristic function of a nonnegative, integer-valued random variable X () such

that .
P(XU) =0) =1 — p.r + 0(r?),

P(XYD) =1) = p.r +0(r?),
P(X9) >2) =o(r?).
Observe that if ¥¢; > 1 — n=3/4 then r < Cn—3/4 and r? < C'n-3/2,
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Now
exp{—np(¢(n,z))}p*" (z)

_ (2n)"! /_ ,,H{ F; F('(‘?r } " Gre)e g

_ 2m)- /_ ) H { re;z } e=*¥%d9 1 0(r)

(since G(0) = 1). This last integral equals

j=11t=1

o)

where the random variables Xi(j) are independent and each Xt-(j ), t = 1,...,m; has the
same distribution as X(9). The random variables X ,(j ) may be constructed on a probability

space also equipped with independent Poisson r.v.s Xf’ ) satisfying
EX"(J ) = PeT

and

(i f’: X 4 Z Z X(a)) _ 0(n-%/?)

Jj=1:=1 j=1¢=1

L o
uniformly in the range £¢; > 1—n~%/4. Now Y. m; ~ n and EX,-(J) =per = (1 - X&)+

i=1
0(r?), so
L m;
EY Y %9 =n( 1—25, +n0(r
j=11=1
=k+ O(n“l/z).
Therefore,
E Z X(J)
J=1i=1 1
{kFe=* [k} ~

uniformly in 26.7 >1- n—3/4, Since k = n(l — EEJ) < nl/4 and kke_k/k! ~ (27!']6)_1/2,
it follows that the O(r) = 0(n~3/4) errors made in the analysis above are asymptotically

negligible.
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Observe that as s(£) — —oo, ¥¥(s(£)) ~ pee®), so {27nZ€;97 (s(£))} /2 ~ {27n2¢;
(1 —-X¢&)}"Y2 ~ {27k}~1/2, as noted earlier, so the asymptotic formulas (2.4)-(2.5) do

indeed merge at the crossover point. ///

The behavior of 8,(§) in the regime L¢; = o(1) is only slightly more complicated.
Recall (Prop. 1) that

(2-8) G(z) = Ho(2) + VR — z Ko(2),
(2.9) Fi(z) = Hi(2) + VR — z K;(2)

where H;(z) and K;(z) are analytic in |2| < R+ §, and K;(R) < 0 < H;(R) for each
1=0,1,...,L.

PROPOSITION 5: For any 0 < € < 1 the asymptotic behavior of (,(&) for nonnegative
vectors & = (€1,82,...,€L) in the range 0 < L¢; < € is as follows:

L
(2.10) B (€) ~ G(e*©){2mn Y _ &Y (s(€))} M2 if BE > n~ Y4,

i=1

L
(2.11) Bu(€) ~ {R/4nn®}/*{~G(R)n ) _ &i(K:(R)/Fi(R)) — Ko(R)} if T& <n~Y/4,

=1

These relations hold uniformly for & in the range 0 < L¢&; < e as n — oo.

Before proving Prop. 5 we will show that it implies the local limit theorem (Th. 2) of
[GW].

COROLLARY 1: Let z = a;,a, ...a;,, € G be fized. Then as n — oo,

(2.12) p*™(z) ~ bo(2y/7) VR R"n =3/

where
@13) b= {_H Fy (R)} {—G(R) > (s, (R)/ Ry (R) - Ko(R)} .

PROOF: By Th. 1, p**(z) = Bn(é(n, z)) exp{np(é(n,z))} where B, satisfies (2.11). Con-

sider first the exponential factor. The vector {(n,z) — 0 as n — oo, because z is fixed;
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furthermore, ©(0) = —log R and dp/d¢; = vi(s(€)) (see the proof of Prop. 3). Conse-
quently, by Taylor’s theorem,

L
np(é(n,z)) = —nlogR+n Z £(n,z),-¢,-(s(£~))

=1
= —nlogR + Z ¢ij (S(é))
J=1

where £ is a point on the line segment from 0 to £(n,z). But £(n,z) — 0 as n — oo, so
exp{np(€(n,z))} ~ B~ [[ Fy (R).
=1

The result now follows from (2.11), because

L m
n ) &(n,z)i(Ki(R)/Fi(R)) = ) (K, (R)/H;,(R)).
i=1 j=1

PROOF of Prop. 5: We begin again with the formula (2.6) for p*"(z). As in the proof
of Prop. 4 we set r = e*(¢) and observe that the main contribution to the integral comes
from |6| < 6, where 6 > 0 is small. (The errors made in discarding those |§] > 6 are small
uniformly in ¢, because |Fj(re*?)|/F;(r) are bounded away from 1 for |§] > 6§ and r < R))
For |0] < 6 we can again use the Taylor expansion (2.7). The only difficulty in applying the
Laplace method now is that the 0(n6?) error term in the final exponential in (2.7) does not
stay small compared to the main quadratic term n2§j¢;’(s(£))02/ 2 when X¢; — 0. But
routine (and tedious) calculations show that the error term is uniformly small compared
to nX&;9) (s(€))0? /2 provided T¢&; >> n~1/2 eg., if £¢; > n~1/4. Thus, the Laplace

expansion (2.10) is valid uniformly in this range.

To obtain an asymptotic expansion for p**(z) valid in the range 0 < £¢; < n—1/4
we must make a transformation in the integral (2.6). This is because as £&; | 0 the
“saddlepoint” r = °(£) T R, a singularity of the integrand, and this causes the Laplace
method to break down. Equations (2.8)~(2.9) suggest the substitution ¢ = {R — 2}1/2 for

Re z < R (the positive branch); then (2.6) becomes
L

P (e) = (ri) ™ j[ [1(H; (R~ ¢%) + oK (R~ %)™

(2.14) r |

(Ho(R - ¢*) + ¢Ko(R — ¢*)) (R — ¢®) ™" ¢ds

15



where T is any contour that winds once around the point R and lies entirely in the domain
{¢:|R—¢?| < R+6} (recall that H;(z) and K;(z) are analytic in |z| < R+6). The contour

I' = T'¢ we will use consists of a vertical line segment {s + 16 |§| < a}, where a > 0 and

L
s = -RY_ &K;(R)/2H; (R),

together with an arc of the circle of radius v R’ centered at VR, where R< R' <R+ 6
and R’ does not depend on &.

Observe that I' makes its closest approach to R at the point ¢ = s; consequently,
|R — ¢2| is smallest at ¢ = s. Keep in mind that E§; < n=14, s0 Tm; = nE¢; < n¥/4,
and so despite the fact that |H; (R — ¢2) + ¢K;(R — ¢?)| may not take its maximum value
on T at ¢ = s, the major contribution to the integral comes from those ¢ € I' near s. The
error made in replacing T’ by the vertical segment {s + i0:|0| < a} is uniformly small for

¢ in the range 0 < ¥¢; < n—1/4,

The reason for choosing s = —RX.{; K;(R)/2H;(R) is that s is very near a saddlepoint
for the integral (2.14). The minimum of [[{H;(R — ¢?) + ¢K; (R — ¢®)}™i (R — ¢*)™™ for
0 < ¢ < RY? is exp{np(£(n,z))}, and is assumed at ¢ = s + O(s?); at this point the
derivative of Em; log(H;j (R—¢2)+¢K;j(R—¢?))—nlog(R—¢?) must be zero. Consequently,

{H(HJ‘(R —¢B) +¢K;(R - ¢*)™ } (R—¢%)"

= exp{np(£&(n,z))} exp{—n((6%/R) + 0(s0? + s°0)}.

Hence, (2.14) may be rewritten as

p*"(z) exp{np({(n,z))}
- /0 e IRH(R) + (s + i0)Ko(R)}(s + )8/ R

uniformly for 0 < £¢; < n~ /4, The formula (2.11) now follows by routine arguments

based on the substitution v = \/2n/R 0. /]
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3. The Space-Time Martin Boundary

Recall that A is the set of infinite reduced words w = a;,a;, ... from the alphabet
{a1,a2,...,ar} (“reduced” means that no letter appears more than once in succession).
For z = a;,ai,...a;, € § and w = aj,a;, ... € A, define N(z,w) to be the maximum k

such that a;, = ¢;, V£ =1,2,...,k (note that k = 0 if a;, # a;,), and for 0 < A < R define

m N(z,w)
(3.1) Qx(z,w)={ II Fie(f\)}/{ I1 Fit(’\)}-
=1

£=N(z,w)+1

Recall that the space-time process Y;, has state space T’ = {(n,2):0 < |z]| < n}, and
that only transitions of the form (n,z) — (rn+1,z’) are permissible. Hence, the root (0, €)
is the only state from which all other states are accessible, so we will use the unit point
mass at (0,e) as the “reference measure” (|Dy], sec. 8) for the calculation of the Martin

kernel. For (m,z), (n,y) €T define

(3.2) K(n,y)(m,Z) = Pr—m(z,Y)/Pn (e, y);

this is the Martin kernel (note that for n < m, it is zero). For each fixed (n,y) € T, K (n,y)
is a nonnegative superharmonic function. The Martin space M is defined to be the set of
all functions K, which are (pointwise) limits of sequences of K, (n,y)> (n,y) € T, and the

Martin boundary is M\{K(n y): (n,y) € T}.

PROPOSITION 6: Let (nj,y;) € I' be such that n; — oo, y; — w € A, and &(nj,y;) —
L
€= (&1,82,..-,€L) where Y & < 1. Then for each (m,z) €T,

t=1

(3.3) lim K, y.)(m,z) = A" Q@ (z,w)

j—oo
where

A= e,

PROOF: Write £0) = £(nj,y;) and £6) = ¢(nj — m,z~1y;). By Theorem 1,

Br;-m(E9)) exp{(n; — m)p(£9))}
Bn; (£9)) exp{n;p(£0))}
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Note that £() — ¢ and é(j ) = ¢; consequently, if 0 < £¢; < 1 then Prop. 4 (specifically,
(2.4)) implies that

(3.5) lim Pra=m(€7) ni=m(£9)

j—oo .Bn_.,- (6_1) =1

Now suppose 3¢ =0. Smce y; = w € A, the word length |y;| converges to co. But
lyj| = ny E f("), so both n; E 6(]) and (n; — m) E S(J) converge to co, and

1=1 =1

M
o4
“
—_
=X
—
&y
p
~
=
p_—
=)
=

-,
i
]

=
o
S,
P
=
A
v
~~
s
A
\./
~—

-,
I
—

Hence, Prop. 5 (both (2.10) and (2.11) are needed) implies that (3.5) is valid even when
¢, =0.

Consider the difference between the vectors ¢() and é (7). Recall that nj fg ) and
n; —m)é () are the numbers of times the letter a; appears in the reduced words y; and
J t J

z~ly;, respectively. Consequently, if = = a;, ay, ...a;,, then for sufficiently large 7,

. . m N(z,w)
(nj—m)ED —ne = Y Wie=i}- Y i =1}
£=N(z,w)+1 £=1

Recall from the proof of Prop. 3 that (dp/d¢&;) = ¥i(s(€)); it follows that

(nj — m)p(€Y)) —n '@(E‘j))

= —mp(eD) + Z m) (€7 — €7)ui(s(69)) + 0(1)
= —mp(£) +m Z &i(s(£))
L m N(z,w)
+3 { Yoo ie=it— Y 1ie= i}} ¥i(s(¢))
1=1 {€=N(z,w)+1 £=1
+ o(1)
L m N(z,w)
= ms(§) + Z { Y Yie=d}- Z 1{i, = i}} Yi(s(€)) +o(1)
i=1 | e=N(z,w)+1 =1

18



since p(€) = L&ii(s(€)) — s(€)- The result (3.3) now follows from (3.4), in view of (35)

/1]

PROPOSITION 7: Let (n;,y;) € T be such that n; — oo, y; — w € A, and &(nj,y;) —
L

£ = (&1,€2,-..,€L) where Y & = 1. Then for each (m,z) € T, with |z| = v and
i=1 '

r=2a;,a,...0;,,

(3.6) Jll’ngo K(n;y;)(m,z) =0 unless m = v = N(z,w);
(3.7) J.i.ﬂtoloK(n,-,y,-)(m,-":) = (pi,Piy ---pi,) " f m=v = N(z,w).

PROOF: As in the proof of Prop. 6, write £() = £(n;,y;) and £6) = é(nj — m,z1y;);
L . . : L.

also, set k; = nj(1 — ) 651)) and k; = (nj —m)(1 — ) £§])). Observe that k; — oo
1=1 =1

iff k; — oco. There will be two cases to consider: (i) k;, k; — oo, and (ii) k; — k and

A

k;j — k. (If one of these doesn’t hold, we pass to a subsequence.)

By Prop. 4 (both (2.4) and (2.5) are needed),

i Brs=m(€9)
J—oo ﬂnj (6(.1))

=1if ch,l?:j — 00;

and . .
. Bry-m(EV9)) kR Fi! A
lim . = if k; : .

j—oo Pn(€0)  kke—kf

By Theorem 1,

Br;-m(€ED) exp{(n; — m)p(£D)}
K(nj’yj)(m’z)= ﬂn,(f(])) T expinjgo(f(j))}

and by Taylor’s theorem,
(nj — m)p(€9)) — njp(¢Y))

L
= —mp(ED) +n; Y (EF) — €P)u(s(ED))

t=1

where £0) is a point on the line segment from £0) to £0). Now £ — ¢, and p(¢) =
%¢;log pi, by (2.3). Moreover, s(£()) — —oo and so (recall that Fi(z) = piz + 0(|z|%) as
4l - 0)

$i(s(€D)) = s(£9)) + log p; + o(1).
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Now consider the differences £() — ¢U). If v < m or if N(z,w) < v then (at least for
L .. )
large 7) |z~ 'y;| > |yj| —m, and consequently n; >, (E? ) _ E? )) > 1; it follows that in this
1=1
case
L
n;

(E9) — D)y (s(£9)) = —oo.
=1 .

This proves (3.6). If, on the other hand, v = m = N (z,w) then (for large j) |z~ 'y;| =
ly;| — m and so }_ é,(j) =), E‘g ). Consequently, in this case
i

L3

(n; — m)p(ED) — njp(eY))

L
= —mp(ED) +n; 3 (&7 ~ €7 i(s(ED) - s(ED))

1=1
14
= - Z log p;, + o(1).
=1

|
To complete the proof of (3.7) we need only note that if v =m = N (z,w) and k; — k < o0
then k; = l::j eventually. ///

For z,y € § define
Qr (za y) = bz—ly/by

where b,-1, and by are as in (2.13).
PROPOSITION 8: Let (n;,y) €T where y € § and n; — oco. Then for each (m,z) €T

Jim K(n,,y)(m,z) = R"Qr(z,Y).

j—oo
PROOF: This is an immediate consequence of Cor. 1.

Propositions 6-8 identify all possible limits of the functions Ky y) where (n,y) €T.

The limit functions are as follows:
(3.8) K@ w)(m, z) £ A" Q) (z,w) ,0<A< R, weEA;
(3'9) K(R,y) (m, :B) = RmQR(x) y) yY € 9;

and for w € A,

. (ps,Pig ---Pin)~ ' fm=|z|= N(z,w)
(3.10) Kouw)(m,z) = and z = a;,a;, ... i, ;
0 otherwise.
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PROPOSITION 9: Each of the functions K() v), K(r,y)» Kow) 15 @ nonnegative, har-

monic function for the space-time process Yy.

PROOF: It is easily verified by direct computation that Ko ) is harmonic. It is also
possible to prove directly that K ») and K(g,y) are harmonic, but it is easier to proceed

indirectly, using Props. 6-7. Let (n;,y;) be as in Prop. 6, with y; — w € A; then

K(yw)(m,z) = lim K, y,)(m, 2)

= lim "5 () /5" 35).

j—o0
But

L
p* =) (z71yr) = 3 pip* ™™ (@27t y5) + pep™ T (27 My)
1=1 7

SO

L
K wy(m,z) = Zp,-K(,\’w)(m +1,za;) + peK () w)(m + 1, 2),

1=1
proving that K, ) is harmonic. A similar argument, using Prop. 7, shows that K(g ) is

harmonic. /]

Having identified the space-time Martin boundary, we now identify the set B, of

extreme points of the boundary (the “space of exits”, in the terminology of [Dy]).
PROPOSITION 10: B, = {K(,\,w):o <A<R,weA}

PROOF: First consider K(g,) where y € G; we will show that K(g ) is not an ex-
treme point by exhibiting it as a nontrivial convex combination of nonnegative harmonic

functions. By the Markov property,

L
p*("'—m) (z"ly) = pep*(n_l_m) (:z:_ly) + Zpip*(n—l—m) (z_lyai)’

1=1

L
p*™(y) = pep* ™ V() + > pip* ™1 (yas),

1=1

and by Cor. 1,
P*(n_l)(yai)/l’*n(y) — Rbya, [by,

p*"Y(y)/p*"(v) — R,
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hence

L
PR+ ZP{R(bya.- [by) = 1.

1=1
Therefore, it follows from Prop. 8 and (3.2) that
K(R,y)(m, ) = p.RK(R,y)(m, z)
L
+ Z PiR(byq, /by) K(r,ya;)(m, z).
=1

This shows that K(g,,) is a convex combination of the functions K(g yq,), 1 = 1,2,..., L.

Since the functions K(g,,), ¥ € §, are distinct, it follows that K(g ) ¢ Be.

Thus, all elements of B, are to be found among the functions K, ), where0 < A< R
and w € A. We will show that all of these functions are extreme points. Consider first
K(o,») where w € A; we have

K(0,,)(0,€) =1,

so each K(o,,) is “normalized” ([KSK], sec. 10-6). Hence, to prove that K(o,) € B. it
suffices to prove that Ko ) is minimal harmonic, i.e., that if h(m,z) is a nonnegative
harmonic function satisfying 0 < h < K(o,») on I then there exists a constant 0 < ¢ <1
such that h = ¢Ko). So suppose 0 < h < K(o,), where h is harmonic and w =
@i, @i, ... € A. By definition, Ko )(m,z) = 0 unless z = a;,a;, ...4a;,, in which case
Kow)(m,z) = (pi,pi, ---Pi,,)"!. Consequently, h(m,z) = 0 unless z = a;,ai, ... a;,.

But A is harmonic; therefore, for each m > 0
h(m,a;,as, ...a;,) = p,’m“h(m +1,ai, a4, ...0;, 05, ,.).

It follows that h is a scalar multiple of K(o ). This proves that for eachw € A, Ko ) € Be.

Finally, consider K(» ), where 0 < A < R and w € A. We will show that K, ) is
not a nontrivial convex combination of the functions Kys o), 0 < A < R and w' € A.

Suppose to the contrary that

K(A,w) = / K(Al,wl)dl/(A,,w’)o
[0,R]xA

22



for some probability measure v on [0, R] X A. Evaluating both sides at the arguments
(0,€), (1,¢€),..., using (3.8), (3.10), and appealing to the fact that a probability distribution

on [0, R] is uniquely determined by its moments, we find that
y{(M,w"): X # A} =0;

thus
Kow) = /A K(»wydv(w')

for some probability measure v on A. It follows that
Qx(z,w) = / Qa(z,w)dv(w') Vzeg.
A

We will now show that the only such representation of @, is the trivial one, i.e., v is
the unit point mass at w. Write w = a;, @, ...; fix m > 1, and consider z = a;, a;, ... a;

By (3.1), for any w' € A

m"*

QA (:B, w’) < Q/\ (:D, (.U)

with equality iff N(z,w’) = m (recall that F;(A) < 1 for each ¢ =1,2,..., L, by Prop. 1).
Consequently

v{w':N(z,w') =m} =1.
But m > 1 is arbitrary; by letting m — oo we find that v({w}) = 1.

This proves that K, ., is not a nontrival convex combination of the functions Ky ),
where 0 < X < R, w’ € A. Since these are the only candidates for extreme points, and
every nonnegative harmonic function is a convex combination of extreme points ([KKS],

sec. 10-5 to 10-7), it follows that K ,) € Be. ///
In summary, our results are as follows.

THEOREM 2: The space-time Martin boundary s

M = ([0, R] x A) U ({R} x §).
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The topology on [0,R] x (A U §) s the product topology, with (A U G) having the word
topology (the topology of letter-by-letter convergence); the topology on M is that induced
by [0,R] x (AU G). The space of ezits for the space-time process ts

- Be = [0, R] x A.
Thus every nonnegative, space-time harmonic function h(m,z) has a uniqug representation
h(n,z) = / K 0y (m, 2)dv (A, w)
[0,R]xA
= / A"Qi(z,w)dr (A, w)
(0,R]xA

+ / K(ow)(n,z)dv(0,w),
A

where v is a finite, positive Borel measure on [0, R] X A.
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