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ABSTRACT

A generalization for the theory of comparison of experiments is given to the case of
sequential experiments.

INTRODUCTION

The theory of comparison of experiments deals with the following problem. Suppose
two kinds of observations are available to a statistician. The observations are of two random
variables having two different laws of distribution depending on the same parameter set.
Some inference should be made with a resulting loss depending on the true parameter which
is unknown. The statistician should choose which observation to take before making the
inference. Usuaily one observation is better than the other depending on the type of loss
and on the prior information. In some cases, one observation is better than the other

regardless what the loss or the prior information are. The last case is of a special interest.

Previous research on comparison of experiments has been confined to nonsequential
experiments. In this work we will examine the problem in the case of comparison of two

sequential experiments.



The concept of experiment is defined by a sample space X, o algebra BX, and a collec-
tion of measures Fy € O. Let (X, BX, Fy) and (Y,BY,Gy) 6 € O be two experiments. A
criterion to détermine whether one experiment is more informative than (sufficient for) the
other was suggested by Bohnenblust, Shapley and Sherman [2] and is the following: X is a
sufficient experiment for Y, if for every action space A, loss function L(6,a) § € © a € A,
and procedure 6 depending on Y, there exists a procedure §' depending on X such that

the associated risk functions satisfy R(6,6') < R(8,§) for every 6.

Blackwell [1] considered the same problem and suggested the following criterion: X is
a sufficient experiment for Y if there exist a markov kernel § such that V A € BY ,Gy(A) =

J 6(Alz)dFy(z).

The last criterion in words: The distribution of Y under 6 can be achieved by a
randomization after observing X without knowing 6. Blackwell [1] and later LeCam [9]
showed the equivalence of those two criteria. Two important references for the work done

on the subject are Torgerson [12] and Strasser [11].

In Section 1 we will formulate a general sequential decision problem. Section 2 ana-
logues to Blackwell and B.S.S. criteria are defined for sequential experiments. Equivalence
between the crite?ia, is proved. In Section 3 two motivating examples are given. In Section
4 two main theorems are given. In the first theorem, for two sequential experiments {X;}
and {Y;} it is proved that: If for every fixed size experiment (X1,...,X,) is sufficient for
(Y1,...,Y%) and for every n (Xi,...,X,) has a complete sufficient statistics, then {X;}
is sequentially sufficient for {Y;}. The second theorem gives a necessary and sufficient
condition for a sequence X3, X>2 to be sequentially sufficient for Y3,Y3, where Y7 = X,
and Y3 = X;. In Section 5 applications are given to the case of comparison of sequential

exponential experiments, that is when the distributions involved belong to an exponential

2



family.
Section 1: Formulation of a Sequential Procedure

In this formulation we will follow closely Brown [3]. Let Xi,...,X,, m < co be a
sequence of random variables distributed according to the law Fy(dzy,...,dz,) 0 € O.
Suppose a statistician, while observing the process, may choose at each stage n < m an
action a,. Finally thereis aloss L(6,a1,...,an) incurred from taking the action ai, ..., an

when 6 is the true parameter.

We will now state this more formally. Let Xi,...,X,m < co be a sequence of r.v.
Denote BZ the o algebra generated by X,,, B a trivial o field, B()fl) the o algebra generated
by X1,-..,Xn, and BX the o algebra generated by X1,...,Xm. Let Fo(dz1,...,dzs) be

a parametrized family of distributions on the product space x X;; with the o-algebra BX.

Assume there exists a set A C K C )"é K, of possible sequences of actions. K

n=0
consists of actions that are taken without observations like start sampling or do not start
sampling. Give K the Tychonoff topology. Let A, be the Borel field on K, A(,) the Borel

field on )12 K;, A the Borel field on K.
=0

1=
Definition 1: A sequential decision procedure is a set of conditional measures {6, : n =

0,...,m} satisfying for n > 1

(i) éx(z,a) is a probability measure on K. Here z = z1,...,7,m and @ = ag,...,an. &

is a probability measure on K.
(i) 6.(C|-,-) s B()fz) X A(n—1) measurable for each C € A,.
(ili) 6n(C|-, @) is B(n) measurable for each a € A,C € A,.

Let L(0,a1,...,am) be a loss function which for every 6, is A measurable.



A set {6,} = A, determines a stochastic process on the space (n)zl X n) X (n{T_’(lo K n) ,
with the o algebra BX x A and measure Hyga (dz1,...,dzm,dag,...,day). The description
of this process in words is: Choose an action ag with distribution determined by 6.
Observe X; with distribution as the marginal of Fy(dz,,.. .) on X;. Then choose a; with
distribution é,(da;|z1,a0) and so on. It is shown in [3] that this process is well defined.

Denote the marginal of Hg A on A as pga(dao, ... ,dany).
Definition 2: A sequential decision procedure such that pga(A4) = 1 for each 6 will be

called an available sequential decision procedure. Here A C K = )1? K, assumed to be
n=0

compact and hence measurable.

Definition 3: The risk function is defined:
) R(6,A) = / L(6,a1,...,am)duon(as, .. ., am).

Assumptions:

(1) L(8;,-) is continuous for each 8, and L(-,-) is bounded.
(ii) A is compact.
(iii) m < o0
(iv) Fy < v (Fp is dominated by a measure v).
Under the above assumptions it is proved in [3] that:

Theorem 1: There exists a minimax procedure, and a least favorable sequence of priors

supported on finite subsets of ©.

In the second part of the next section, we will explain how ordinary or common types

of sequential procedures are included in this formulation.
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Section 2

In this section the notion of sufficient experiment initiated by Blackwell [1] will be
introduced. A generalization of a fundamental theorem by LeCam in comparison of ex-

periments is then given, for the case of sequential experiments.

Definition 1: A triple (X, B%, Fy 6 € ©) is called an experiment.

Definition 2: A sequential experiment is defined by ( )"f X:,BX,F; 6 € ©).
=1

When there is no ambiguity we will refer to these experiments as the experiment X

and the sequential experiment {X;}.

Definition 3: An experiment (X, BX, Fy 8 € O) is sufficient for (Y,BY,Gy 6 € ©) denoted
X DY if and only if for every action space A, loss function L(6,a) § € © a € A, and

decision procedure 6 depending on Y, there exists a procedure §' depending on X such

that: R(6,6') < R(6,6) for every 6.
Theorem 1: LeCam [7].

Suppose Y is Borelian and Fy < V. Then X D Y if and only if there is a function

§(B|z) B € BY,z € X such that:

(i) For each z € X, 6(-|z) is a probability measure on Y.
(ii) For each B € BY,§(B|-) is BX measurable.
(iii) For each B € BY,Gy¢(B) = [ 6(Blz)dFy().

Conditions i, ii define 6(:|-) to be a Markov kernel. When 1i, ii and iii are satisfied we

shall say: Experiment Y is a randomization of X.

Definition 3a:  (xX;,BX,Fy) is sequentially sufficient for (xY;,BY,G4) denoted



{X;} C{Y:} if and only if: For any action space A C K = xK,, loss function

seq '
L(8,a1,...,an) and available sequential decision procedure A = {6, } depending on {Y;},
there exists an available A’ = {6}, } depending on {X;} such that the associated risk func-

tions satisfy R(8,A') < R(8,A) for each 6.
Denote Fy the restriction of Fy to B(y).

Theorem la: Suppose Fg <« v" for every n, and Yi,...,Y, is Borelian. Then

{X;} C {¥:} if and only if:
seq

(i) There exists {6,} = A satisfying the three conditions in Definition 1.1 where

Yo X...X Ym,B,}:,B(};),BY play the role of K, An, A(n), A.

(ii) pea(dyr,---,dym) = Go(dy1,...,dym) for each 6.

Proof: We will follow the ideas in LeCam’s proof. The proof of the if part is easy, we will

prove the only if part.

First assume m < oco. We may assume w.lo.g. that Y, x ... x Y, is a compact
polish space, since Y; X ... X Yy, is Borelian so that there is an one to one bimeasurable
map of xY; into [0, 1], and we may consider the closure of this map by defining v(c) = 0
for C the set of all points added by the closure. Take the action space A to be identical

to the sample space XY;. Consider the decision rule based on {Y;}A = {é,} where:

1 Yn € E
0 otherwise

6"(E|y1"" )ymayla'“,ym) = {
Define an auxiliary sequential experiment (xX;, BX, Flo,1)); in the auxiliary experi-

ment the parameter set consists of all pairs (8, L) where § € © and L(6,y1,...,Ym) is a loss

function such that L(6,-) is continuous bounded by 1 for each 6. Here F(4 1y(A) = Fy(A)



for every A € BY. Define the loss in the auxiliary problem as:
E(O D)1,y ym) = LO0) = [ L6,90dG0(w) w =11, 3m:

Let P be a finitely supported prior on the auxiliary parameter set. We index the
parameters with positive prior as (6x,Li) k = 1,..., K. Now re-index them as ;, XL;,: =

1,...,I j=1,...,J; in the obvious way so that 8; # 6 for j # k.

The Bayes risk B(p), and the Bayes procedure {62} = A? in the auxiliary problem

with prior P satisfy:
B(P) = [ R(®:,Ly), A7)dP(®;, L)

= / [ / L;(8;,y)due; ar(y) — / L(6;,y)dGo; (y)] dP(6;, L;)

= 5| [ DLk y)dnaas ) — L6, )G ()P 69| PO

=3 [[ 5600 s ) - G0 PO
Here L* is implicitly defined. Now the last expression can be written as:

B(p) = R R(6: A7) — R(6;, A)

here the risk R(6, -) is with respect to L*. By hypothesis there exists A’ such that R(6;A')—
R(8;,A) < 0 for each 6;, hence B(p) < 0.

By Theorem 1.1 there exists a least favorable sequence of priors {P,} such that the

minimax value m satisfy m = sup B(P,). m < 0 since B(P,) < 0 for every py.
' {Pn}

We conclude: There exists A™ = {6} minimax procedure such that:

[ 26,0010 < [ L61)60)

for every 8 and continuous bounded L. Thus ug am(dy) = Ge(dy).
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In the case m = o0o. We conclude by previous considerations that there exists an
infinite sequence {A"} where A = {61,...},A? = {6%,62,...},... such that for every
n pean(dy) = G3(dy). By diagonalization argument we can construct a subsequence A™*

that approaches a limit A™ in the same sense as [3]. It follows now that: pgam = Gy. O

In this work we consider somewhat artificially wide and general class of sequential
decision problems, as formulated in Section 1. The reason is that we feel the proofs of the
main theorems are easier and more natural using the general definitions; also in view of
Theorem 1 Section 4, it seems that we should not expect additional interesting examples
of “Sequential-Sufficiency” if we consider a narrower class of decision problems. In the
remaining of this section we will examine what happens when we narrow ourselves to

special types of sequential decision problems. First some definitions.
Let X1,...,Xm m < oo be a sequence of random variables.

Definition 4: A stopping rule N is a random variable whose range is (0,1,...), satisfying

the conditions: The event (N < k) belongs to B(x). By = o(X1,...,Xk).

Definition 5: The o algebra related to a stopping rule N, denoted By, is the set:
{AlA € o(X1,..., Xm),AN(N =k)EBx) VE=0,1,2,...}
where By is a trivial o algebra.

Commonly the theory deals with procedures in the following setting. A set A of
terminal actions is given, with loss function L(6,4) § € ©,d € A. The available pro-
cedures are all the pairs <N,§> where N is a stopping rule and 6 is a Markov kernel
from (ié?l X, B( N),Fo) to A. The loss incurred by an <N, §> procedure which takes n

observations and a terminal action @& is:
1 L(8,n,d) =c-n+ L(8,d) ¢ > 0.
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We will now point out why this setting is a special case of the general setting described
in Section 1. Define K, the available actions at stage n to be AU {{S} U {C}}, i.e. we
are adding two points to A. The set A C n)ZO K, of the available sequences consists,of all
sequences of the form (C1,Cs,...,Cn_1,8n, Sn+1,Sn+2,-..), here C; = C,Sp4; = S and
dn € A. The meaning of the action C; is to continue sampling and S,4; are some trivial

actions allowed after a terminal action d,. Finally the loss:

L(6,C1,...,Cac1,Gny Sut1,...) = c-n+ L(8,dy).

Definition 6: We will say that (xX;, BX, Fy) is “sequentially sufficient for (xY;, BY,Gy)
for <N,6> problems” if and only if for every action space A, loss function L(,n,a) of
the form 1, and procedure <N, §> depending on {Y;}, there exists a procedure <N’ §'>

depending on X; such that:
E¢L(6,N',8") < EgL(6, N, )
for every 6.

Theorem 2: Assume Fg? € v™ V n. Then {X;} is sufficient for {Y;} for <N, é> problems,
denoted {X;} 2 {Y;} if and only if for any stopping rule N depending on {Y;}, there
<N,86>

exists a stopping rule N' depending on {X;} such that:
(i) Eo(N') < Eo(N)

(i) (xX;, B(nvy,Fg) 2 (xXi, B(ny,Ge). (The sufficiency here is in the nonsequential

sense. )

Proof: The idea of the proof: For a given stopping rule N depending on Y;, take A to be

identical with B(yy. Then consider the auxiliary experiment (xX i, BX, Fgx Lxc) 0 € O,L

loss function, ¢ > 0. Now similarly to Theorem 1, one can get the result (see [6]).
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The following example will be of two sequential experiments, in which {X;} is not

sequentially sufficient for {Y;}, but it is sequentially sufficient for <N, §> problems.

Example 1: The example involves a two stage sequential experiment and a parameter set

consisting of two parameters 8y and 6, .
The distribution of X7, X5:

Under 6§y X; =0, X2=0

Under 01 X1 = 0, X2 =1
The distribution of Y7, Ya:

Under 8y Y; ~ Bernoulli (%), Y,=0

Under 6y Yy ~ Bernoulli (%), Y>=0

Obviously X7, X2 is not sequentially sufficient for Y7,Y>. In order to show X, X,
is sequentially sufficient for Y;,Y2 for < N,8 > problems we have to show: For every
stopping rule N depending on Yi,Y3, there exists, N' depending on X;,X> such that:
(X1 x X2,B(nny, Fy) 2 (Y1 X Y2, BNy, Go) and such that Eg(IN) D Eg(N') for 6 = 6
and 6 = 6;. It is easy to see that we need only to consider stopping rules N of the form:
with probability (1 — p) take no observations, with probability p take one observation.
The corresponding N’ will be: Take no observations with probability 1 — 123-, take two

observations with probability %.

The resulting experiment induced by N, has the following distribution under 6y and

61. (The sufficient statistics z for (Y1,Yn) is defined to be 2 when N = 0)

2 1-P 2 1-P
200 P2 Alo P2
1 p.2 1 P.3
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The resulting experiment induced by N' (define z similarly).

9 1-2 2 1-2%

8 2 g

zN{O £ z~< 0 0
10 1 £

One can check the following;:
(i) Eo(N') = Eo(N)

(i1) ‘The experiment induced by N can be randomized from the experiment induced by N'
with the Markov kernel: §(2/2) = t—£,6(0/2) = 2(2—1:,),6(1/2) = 2(2—{1,-)-, 8(1/1) =
2

8, 6(0/1) = £, 6(1/0) = 2, 6(0/0) = &. ie (X1 X X2,Bnny,Fg) 2 (V1 X
Y2, B(ny, Go)-

Section 3

In the two examples given in this section we will investigate the following: For two se-
quential experiments we consider the relation where
(X1 x...xXn, B()fl), Fo) D (Y1 x...x Yn,B(};), Gy) for every n. The first example will show
this relation does not imply {X;} is sequentially sufficient for {Y;}. The second example
will indicate that sequential sufficiency might be implied by sufficiency for every fixed n
under some additional conditions. These examples will motivate us for Theorem 1 and

Theorem 2 in the next section.

Example 1: Let Y;,Y> be independent r.v. with distribution:
Under 6,Y; ~ Bernoulli (}),Y2 ~ Bernoulli (1)

Under 6,Y; ~ Bernoulli (2),Y; ~ Beérnoulli ()

Let X; = Y5 and X3 =Y;. Here X; D Y;, the Markov kernel from the experiment X,
to ¥7 is: 6(1/1) = 3,6(1/0) = £,6(0/1) = £,6(0/0) = 2. Obviously (X1, X2) 2 (¥1,Y2).
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We will describe a sequential decision problem where (X1, X2) is not sequentially
sufficient for Y;,Y,. Suppose the cost of first observation is 0, and the cost of the second
observation is ¢ > 0. The terminal actions are “#;” and “6y”. Define the loss function
L(60,6:) = 1,L(61,60) = a,L(-,-) = 0 otherwise. Let §° be the following procedure
depending on {Y;}. Observe Y1, if ¥; = 0 decide 6p; if ¥; = 1 take another observation.

Then decide 6, if Y2 = 1, decide 6, if Y2 = 0. The risk associated with §° is:

R(60,68°) == -c+ c+ ca+=-a==--c+=--a.

1
.=, R(6,,6°) =
4’ (61,67)

Wil
D=

Lol

1
4

c;all—l
Wl
OOIN'
[JCRR ]

In the following we will show that for a suitable choice of a and ¢, there is no §! depending

on {X;} that improves upon §° for every .

It can be shown [6] that the following are the only admissible nonrandomized proce-

dures and their associated risks r = (R(6o, 6), R(6;, 6)).

6*: Decide 6; with probability one, r; = (1,0).

8%: Decide 6, with probability one, r2 = (0, a)

83: Decide 6y if X; = 0,6, if X; =1,r3 = (4,4a)

6%: Decide 6y if X; = 0, if X; = 1 observe X3. Decide 8; if Xo = 1. ry = (4c+ 5 4c-}— a)
6%: Decide 6, if X; = 0, if X; = 1 observe X5. Decide 8; if X5 = i. r5 = (%c+-§-, ic+ %a).

Take a = 75 and ¢ = 755. Then r; = (1,0),rz = (0,15),7s = (3, 5)re = (535 +

1'123,4?T0+1_12')7r5 = (Z%6+%,4_(1)()'+'i;—0) and To = (R(90a60)>R(01760) = (300 +13 1za 300 + 20)
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Figure 1: Risk points rg,...,7s

In order to show the risk point ro cannot be achieved by a randomized procedure, it

is enough to check that no p,q > 0 p+ ¢ = 1, exists such that:

1 1 1 1 1
P'Z+(J(4—OO+E) S%_I_E
' 1 3 1 2 1
P'4—0+Q(m+2—0) S%+2—0
which is indeed the case.
Remark 1: Giving a cost ¢ = 1o for the first observation does not change the result, it

only adds a few more admissible procedures and corresponding computations. Hence we

can conclude: X; D Y7 and (X3,X2) 2 (¥1,Y2) does not imply that {X;} 2 {Yi}.
<N,6>
Before starting the next example the following definitions are needed.

Definition 1: Let (D,BP, Fy) and (Y,BY,Gg) be two experiments. The experiment con-
sisting of two independent experiments Y and D is the following: Smaple space D x Y, o

algebra generated by BP x BY, and the product measure Fy x Gy.

Definition 2: For two experiments X and V, X =Y iff X DY and Y D X.
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Example 2: Let X; ~ N(0,1) X2 ~ N(§,2),Y; = X,,Y, = X;. X; are independent.
Here we have X; D Y, because Y; can be randomized in the following way from Xj.
Let Z ~ N(0,1), then X3 + Z ~ N(0,2), i.e. no matter what 6 is X; + Z has the same
distribution as Y;. Obviously X7, X, = Y7,Y5.

We will explain now why X;.X, Slg)qYl,Yz. X1 = (Y{, D) where (Y{, D) is the exper-
‘iment consisting of two independent experiments Y ~ N(6,2) and D ~ N(6,2). Thus:
X1, X, s?q(Y{D)’Xz Sgq(Yl'D),Yl. Similarly Y;Y> S§qY17(Y1'D)- Hence it is enough to
show (Y{D), 11 quY], (Y{D). The latest is easy because an experimenter observing at the
first stage (Y7, D) may ignore D and act as if only Y was observed, thus can do as good as
an experimenter observing Y;. In the second stage, the first experimenter observes D and

Y1, and can do as good as the second experimenter who observes (Y{, D) at that stage.

In the last example, we have shown a case where X; are independent, Y; are indepen-

dent and {X;} D {Y:}, other than the obvious case where X; D Y; for each i.
seq
Section 4

Convention: In this section, for a given measure H(dz1,...dzn), H(dz;i,,...,dz;,) will be

understood as the marginal of H(dz1,...,dz,) on the o algebra generated by (X;,, .., Xi, )-

Let ({X;},BX,Fy 0 € ©) and ({Y;},BY,G¢ 6 € O) be two sequential experiments.
Let S, be a sufficient statistic for X1,...,Xn,n = 1,2,... . Let Y(,) = Y1,...,Y,. Let

Fy(ds1,dsa,...) be the induced measure on S; X Sz X ... .

Theorem 1: Suppose S, is boundly complete n =1,2,.... Then {S,} D {Y.} if and only
seq

if Sp 2 Y(n) for every n.

Before proving the theorem we need the following lemmas and definitions.
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Definition 1: Let {X;} and {Y¥;} be two sequential experiments. Let T;, be a sequence of
Markov kernels from (S, B°") to (Y(n),B(};)). The sequence will be called compatible if

and only if:
(1) Tn(Ak|Sn) = E(Te(Ax|Sk)|Sn) Ak € B,

for every n,k 1 <k <n.

Lemma 1: Suppose Sy, 2 Y(,) for every n, and suppose Sy is boundedly complete. Let T,
be the Markov kernel from the experiment S, to Y(n), ie T, satisfles
J Tn(Aklsn)Fo(dsn) = Go(Ar), Ar € Biiyn = 1,2,... (by completeness T;, is unique).

Then the sequence T, is compatible.

Proof: By assumption [ T, (Ak|sn)Fs(dsn) = Gg(Ax). Also:

/ [/ Tk(Aklsk)F(dSklsn)] Fo(dsy) = /Tk(Ak|sk)F9(dsk) = Go(Ap).

Here F(dsk|sm) is independent of 6 by sufficiency. Now (1) follows from bounded com-

pletenss.

Lemma 2: Let {X;} and {Y;} be two sequential experiments. Let {S,} be a sequence of
sufficient statistics for Xi,...,Xn,n = 1,2,.... Assume there exists a sequence of Markov

kernels T, satisfying:
(i) T, is a compatible sequence
(1) [To(Anlsn)Fo(dsn) = Gg(Arn), An € BE’;).
Then {S,} 2 {Y.}.
seq

Proof: Define 61(dy1]s1) = Ti(dy1|s1). Define 8,(dy(n)|sn,Y(n-1)) to be the conditional

distribution formed from T,(dy(s)|sn) by conditioning on Y{,_;). We will postpone to
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Lemma 3 the proof that &,(-|-,-) satisfy the conditions in Definition 1.1. Here y,,BY, B();)

play the role of an,An, A(n) in Definition 1.1.

Consider the process described in Section 1 induced by {S,} and A = {6,}. Denote
the measure on this process Hg a(ds1, dy1,ds2,dys,...). The marginal Hg a(dy1,...,dyx)
was denoted pg A in Seciton 1. By Theorem 2.1a in order to establish the proof of this
lemma, it is enough to show that pg A = Go(dyi,dys,...). By Kolmogorov consistency
it is enough to show for every n Gg(dy1,...,dyn) = po,a(dy1,...,dys). Suppose we have

shown for every k < n that:

Hoga(dyry) = / Ti(dy(x)|sk)Ho,a(dsk)

We will show it for n. This will imply He a(dyn)) = Ge(dy(n)), because obviously
Hg a(dsn) = F(dsy), and now Hg a(dy(n)) = Ge(dy(n)) follows from (ii).
HO,A(dsn—la dsn,dy(n—l)y dyn)
= FB(dsn—l)Tn—l (dy(n—l)|3(n—1)F0(3n|3(n—1)6n(dyn|3n7y(n—l))

= F(dsn—l 'sn)Tn—l(dy(n—l)|3(n—-1)F0(d3n)6n(dyn|3m y(n—l))'
The first equality follows from the induction hypothesis upon realizing that Fy(ds,—1) =

Hg n(dsn—1). The second equality follows because:
Fy(dsn—1)Fe(dsp|sn—1) = F(dsn—1|sn)Fs(dsn).

From the compatibility assumption it follows that:

/Tn—l(dy(n—l)lsn—l)F(ds(n—l)Isn) = Tn(dy(n—l)lsn)-

Thus:

/ H&,A(dsn—la dsn, dy(n—l)) dyn) -
Sn—l

= Tn(dy(n—1)|52)8n(dYn|sn, Y(n—1)) Fo(dsz)
= Tn(dy(n)lsn)FB(d‘sn)'
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Finally:

/ / HO,A(dsn-—la dsn’ dy(n—1)7dy'n.)
Sn Sn—l

= [ Tulduaylsn)Fa(dsa) = Goldyiny).
This completes the proof, except for Lemma 3 below.
Lemma 3: 6,(dyn|sn,Y(n—1)) satisfies the conditions in Definition 1.1, i.e.:
(i) An(|8n,Y(n—1)) is a probability measure on BY .
(i1) 6a(A[-,-) is B(‘S;l) X B(};_l) measurable, 4 € BY.
(iii) 6n(A|3n,-) is B(};_l) measurable.

Proof:

(i) is immediate from the existence of the conditional distribution for the distribution

Tn(dy(n)|sa) conditioning on Y(,_;).

(i) Consider the following probability space: Sample space Sy, X Y{5), Borel field generated

by Bi» x BY | and measure Hy 1;, Where:

Hoir, (A1 x Az) = [ Tu(dalon)Foldsn), s € B3, Ay € B,y
Ay

By construction Th(A|s,) = Her1,(Alss) a.e. Hence there exists a version of the

conditional distribution such that Hg 1, (|srn) = Th(A|ssn). Thus:
Hy 1, (AlSn, Y(n-1)) = To(A|3n,Y(n-1)) = 6n(Alsn,Y(n-1)) a.e.

Now 6,(4]-,-) is B(‘S;;') X B(};_l) measurable, because Hg T, (A", -) is.

(i) This part follows because if f(z,y) is measurable with respect to the Borel field

BX x BY then f(z,-) is measurable BY.
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Proof of Theorem 1: From Lemma 1 and Lemma 2 it is easy to conclude the proof. O
In the remaining of this section we will prove a factorization theorem.

Consider Example 2 in Section 3. We have shown that if X ~ N(6,02) and ¥ ~
N(8,02) 0% < 02 then (X,Y)qu(Y,X ). Now it can also be deduced from Theorem 1.
Originally it was shown by a factorization of the experiment X, i.e. showing that X is
equivalent to two independent experiments Y’ ~ N(6,02) and D ~ N(8,02%). In the next
theorem of this section we will show that this factorization criterion is necessary for a

sequence X, X3 to be sequentially sufficient for Y;,Ys where Y; = X, and Y3 = X];.

First some notations and other preliminaries. Suppose (Xl,Xz)qu(Yl,Yg). Con-
sider the experiment ((Xl,Xg,Yl,Yg),BX1X2Y1Y2,HgA(dwld:vzdyldyz)) where Hya is the
measure induced by the relevant 61(dy1|z1) and 82(dyz|z1,2,y1). We will refer in the
sequel to experiments that are induced from the experiment (X;,X>,Y1,Y2) in the fol-
lowing way: For each 6 there is a conditional distribution Hg a(dz1,dz2|Y7 = y2) and
an experiment ((Xy,X2), BX1X2, Hya(dz1,dza]ys = y1)). Denote such an experiment as

(X1, X2|Y1 = y1).

Remark 1: In the experiment (X3, X3,Y3,Y2), (X1, X2) is a sufficient statistic. The reason
is that the distribution of Y3, Y> conditional on X 1 = z1 and Xy = x4 is independent of 4.
The Hellinger Transform

Let (X, BX, Fy) be an experiment, {\} the set of all distributions on the parameter set {6}

with finite support. Here the value of A(:) at a point 8 is the point mass of the distribution

A.
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Definition 2: The measure valued functional
A(9)
Hx = [ 7, £O@an(e), ) € )

where fo(z) = 572} is the Hellinger transform of the experiment X.
The following can be shown (Strasser [11]).

(a) X DY implies Hx(\) < Hy () for every A € {A}.

(b) X =Y if and only if Hx(A) = Hy(A) for every A € {A}.

(¢) X and Y are independent implies H x,y)(A) = Hx(A) - Hy (}).

Another general fact we will use (Strasser [11]) is: For dominated families Fy and

Gg 0 € O.

(d) (X,BX,Fy 8§ € ©) D (Y,BY,Gy 6 € O) if and only if for every finite subset ©

(X,BX,Fy 6 c ) D (Y,BY,Gy 6 € O).

Lemma 4: Suppose (X1,X2) 2 (¥1,Y2). Then (X1, X2|Y: = y) 2 (Y2|Y1 = y) for almost
seq

every y.

Proof: Let A € BY2 then:
Hon(AlY1=y) = /HO,A(Alxl,$2ay1)dH0,A(3317372|Y1 =y).

By sufficiency (Remark 1) Hg a(A|z1,22,y1) = Ha(A|z1,22,%1) is independent of 6 and
can be viewed as the desired Markov kernel between the experiments.
Theorem 2: Let X;,X> and Y7,Y2 be two sequential experiments. Assume:

(i) X; ¢ =1,2 are independent, and Y; ¢ = 1,2 are independent.

(ii) X; ~Y; and X, ~ V5.
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Then (X1,X2) D (¥1,Y3) if and only if X; =~ (Y7, D) where (Y1, D) is the experiment
seq

consisting of two independent experiments ¥; and D.

Proof: By (d) it is enough to prove X; = (Y7, D) for every experiment with finite parameter
space © C ©. Applying Lemma 4 we get: (X1, X2|Y1 =w1) 2 (Ya|Y1 = y1) a.e. Hopa(dyr).
Our first step is to show that (X3,X2|Y7 = y1) = (Y2]Y1 = 1) a.e. Since (Xi1,X2)

is sufficient for (Xi,X32,Y1) (Remark 1), by (b) H(x, x,)(}) = H(x,,x,,v;)(A) for every

A € {A}. Thus
H(Xlxz)(A) = /0g6 h9($17 T2, yl)A(O)dn(‘Tla $2,y1)
where 7 is any measure dominating Hg a(dz1,dz2,dy;,dyz) and hg = d—};’:"ﬁ. Now

dHga(z1,z2|Y1 = y1) _ ho(z1,2,y1)
dn(zy1,z2Y1 = y1) Yo(y1)

Where \Ijo(yl) = fh09$1,$2,y1)d7](.'171,$2|y—1 = yl) Notice that \Ilg(yl) — dIZi’(A?l(ly;l)

H(x, x,)(X) can be written now as:

. RO (¢ )T,
() HoxxaN) = [ 70O (un) 5528 dn oy, 72 Ys = v )dn(u) =
€O

/ Hox xam=mo w30 (y1)dn(ys)-

Suppose (X1, X2|Y1 =y1) 2 X1 and X; 2 (X1, X2|Y1 = y1) on a set of positive mea-
sure 7n(dy). We will show this implies there exists A¢ such that

H(x, x,|vi=y:)(A0) < Hx, (o) on a set with positive measure n(dy; ) which will imply:

(ii) fH(X1,X2|Y1=y1)()‘) Og(:) qlzo(O)(yl)dn(yl) < HX1(A0)HY1 ()‘0) = HX1(’\0)HX2()‘0)'

(1) and (ii) lead to the contradiction H(x, x,)(Xo) < H(x,,x,)(*0). Now we will show
the existence of such X\g. Let © = (61,-..,0,), consider the following measure space:

Sample space R x Y;, where R" is the n dimension Euclidean space, with the obvious ¢
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algebra and measure which is the product of n(dy;) and Lebesgue. Let A = {(),41)|) €
R™ y1 € Y1, H(x, x,|Y,=91)(A) < Hx,(A)}. By assumption and using (a) and (b) there
exists a set of positive measure n(dy;) satisfying: H(x, x,|v,=y,)(}) < Hx,(\) for some
A € {A}. Since the Hellinger transform is a continuous function if H(x, x,|v;=4,)(") <
Hx,(-) for some A, the strict inequality holds for a set of positive Lebesgue measure.
Then by Fubbini’s theorem A has a positive measure, and using Fubbini’s theorem again
we deduce there exists Ag such that Hix, x,|v;=y4,)(A0) < Hx,(Xo) on a set of positive
measure 7(dy;). As noted, this leads to a contradiction. Hence (X;,X2|Y; = y1) = X;

almost everywhere n(dy;).

Since by assumption X3 is independent of X3, and by construction Y; is independent of
X2, we may conclude: (X, X,|Y: = y1) = ((X1]Y:1 = 11), X2), where the last experiment

consists of two independent experiments (X;|Y; = y1) and X,. By (b) and (c) we get:

Hx,(A) = Hix, x,|vi=y1)(A) = Hix, v, =91)(A) - Hx,(X)

for every A and almost every y;. Hence there exists y? such that H X1IY1=y§’)(/\) =

H(x,,x,|Vy=y,)(}) for every A and almost every y;. Denote the experiment (X;]¥; = 4?)

as D.
Hx,)(A) = H(x,,v:)(N)
=/ 7w h(z1,y1)*Odn(z:]y1)dn(y:)
0cd
= Hp(A) - Hx,(A)
By (b) we conclude X3 =~ (X3, D). O
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Section 5

In this section we will show how the theory is applied for experiments (X, BX, Fy)

when Fj is an exponential family. The following is an immediate corollary of Theorem 4.1.

Corollary 1: Let {X;}2, and {Y;}7, m < oo be two sequential experiments with param-

eter set © C R*. Suppose:

(i) There exists a sequence of sufficient statistics X(,) and Y{,) such that
dFon(:E(n)) = exp(0 *L(n) — \P(e))dun(w(n))

(ii) © has non void interior. Then {X;} O {Y;} if and only if X,y 2 ¥{4) for every n.
seq
Proof: This is true because X(y) is complete and sufficient when © has non-void interior.

Example 1: Consider the linear experiments:

Y 2
( : )=X1-ﬂ+81 and ( : ) =X;-B+e2 &i~N(0,0%])
Yo Zn

Here the unknown parameter § = 3. Hansen and Torgerson [7], showed that (¥1,...,¥;,) D
(Z1,...,2m) if and only if ((X]X1)—(X}X2)) is positive semi-definite. If we consider {¥;}
and {Z;} as sequential experiments, the conditions of corollary 1 are satisfied and we can de-
duce the following: (Y1,...,Yn) qu(Zh eeeyZm) if and only if for every
n ((Xf")'Xl(n)) - (Xé"),Xén))) is positive semi-definite. Here X (™ is the matrix consisting

of the first n rows of X.

Another application gives a slight improvement of the following Theorem 1. Theorem

1 was proved independently by W. Ehnn and P.W. Miiller [5] and by A. Janssen [8].

Theorem 1: Let (X, BX, Fy) and (Y, BY,Gp)f € © be two experiments. Suppose Fy and Gy
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are exponential families and © has non-void interior. Assume X and Y are the canonical

observations and O is the canonical parameter set. Then X 2 Y implies:

(i) X = (Y, D) where (Y, D) is an experiment consisting of two independent experiments

(Y,BY,Gy) and (D, B, Kj).
(ii) Ko is an exponential family.

Theorem la: The conclusion of Theorem 1 remains valid if we replace the condition that
© has non-void interior by the (weaker) condition that X +Y is boundedly complete when

X,Y are independent.

Proof: (i) Consider the two stages sequential experiments X,Y and Y, X where X and Y

are independent. By Theorem 4.1 (X,Y) D (Y, X), hence by Theorem 4.2 X = (Y, D).
seq
(ii) Consider the measure Hy s(dz,dy) induced by é;(dy|z), then
Hy,5(dz,dy) = exp( - ¢ — ¥(6))é1(dy|z)du(z),

where Fy(dz) = exp(0 -z — ¥(0))du(z). From the proof of Theorem 4.2 D ~ (X|Y =

Yo0). Denote w(dz,dy) = é6(dy|z)p(dz). Then:

dKy _ dHg s(X|Y =yo) _ exp(8 - z — ¥(8))w(dz|Y = yo)
dp dp Jexp(6 -z — ¥(8))w(dz]Y = yo)

Remark 1: Theorem la is true also if Y = (¥3,...,Y,) each ¥; € R¥ is a canonical

observation from an exponential family.

Monotonicity of Bayes Sequential Tests. Another application of the theory involves
generalizing Sobel’s result [10] about monotonicity of Bayes sequential tests as stated in

the following Theorem 2.

Let {X;} be a sequence of r.v. distributed Fy(dz;,dz2,...). Let S, be a sequence of

sufficient statistics distributed Fj'(ds»),8 € R. Let Hy : 6 < 69, Hy : 8 > 6. Consider an
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<N, 6> setting in which the space of terminal actions consists of two actions Hy and Hj.
Assume loss function L(8, H;,n) = ¢-n + L(6, H;), where I}(G, Hj) is non decreasing and

L(6, Hy) is non increasing as a function of 6.

Definition 1: An <N, §> procedure is called monotone, if at the n'th stage there exists
an, and b, such that the procedure decides Hy if S, < a,,H; if S, > b,, takes at least
one more observation if S, € (an,bs). The procedure either takes one more observation

or decides Hy if Sy, = a,,. The procedure either takes one more observation or decides Hy

if Sp = by,

Theorem 2: (Sobel [10]) Let Y,,n = 1,...,m < oo be a sequence of independent real valued

random variables with distribution Fg'(dyn), F§' is an exponential family. S, = 5 Y a
i=1

sufficient statistics. Then for the testing problem described above every Bayes procedure

is monotone.

Theorem 2a: Replace the condition Y; are independent by the condition: There exists
a sequence of sufficient statistics Sy, Sa,... such that the distributions Fj(ds,) are an
exponential family with S, being the canonical observations. Assume further that the
canonical parameter set © has a non-void interior. Then thé conclusion of Theorem 2

remains valid.

Example 2: Let (Y3,...,Yn) be a multivariate normal distributed vector with EY; = 0,1 =

1,...,m, and covariance matrix ¥ # I.6 unknown, ¥ known.

Example 3: Let Y = (Y3,...,Y,) be a multivariate normal distributed vector with FY = §

and covariance matrix 024,02 is an unknown real valued parameter, § and A are known.
Examples 2 and 3 are not covered by Sobel’s theorem but are covered by Theorem 2a.

Comment: It can be shown that the cases covered by Theorem 2a are already covered by
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Brown Cohen and Strawderman [4]. The consideration involve arguments similar to the

following Lemmas 1 and 2, and a further argument about transitivity.
Lemma 1: Under the conditions of Theorem 2a:

(i) There exists a sequence of independent random variables X, ..., X,, such that the

distribution of X; under § Fy(dz;), is an exponential family with X; canonical obser-

vation, and (Xj,... ,Xm)sgq(Yl, N
(11) (Xl, eee ,Xm)sgq(sl, N ,Sm).

Proof: We will construct the sequence {X;}.X; = S1. Suppose X, ..., X,_; are already
defined and (Xy,...,Xn-1) ® Sp—1 € S,. By Remark 1 on Theorem la there exists an
experiment D such that D is independent of (X3,...,X,—1) and ((X1,...,Xn-1),D) =~
Syn. Denote X,, = D. By Theorem la D may be taken as a canonical observation from an

exponential family with canonical parameter set ©.

Now since (X1,...,Xn) = (S1,...,5n) for every n, we conclude by Theorem 4.1

(X} 3,(5} g (%),

seq

Lemma 2: Suppose (X, BX, Fp) ~ (Y, BY,G)y) 6 € ©. Assume
Fo(dz) = exp(8 - = — ¥(0))p(dz) and Go(dy) = exp(6 - y — p(6))v(dy),
Fy and Gy are minimal exponential families. Then there exist a constant C such that:
exp(f - z — ¥(6) = exp(f - (z + C) — p(9)).

Proof: It can be shown [11], that X ~ Y implies for 81,...,0,{exp(6; -z — ¥(§;)}", has
the same distribution as {exp(6; - y — ¥(6;)}%.; when X ~ y and Y ~ v. Hence both

distributions have the same support and for = in the support there exists y(z) such that
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0;-x—¥(8;) = 0;y(x)—p(0;),s =1,...,n0or ¥(0;) = p(6;)+6;(z —y(z)). We can conclude

now z — y(z) = C.

Proof of Theorem 2a: Let Hg ao(s1,...,5m,%1,...,Tm) be the measure induced by Fg(dsi)

and the relevant 61(z1|s1), 62(dz2|z1,51,92)... for sequences S; and X; as in Lemma 1.
~ k k

Let dHg a(sk, ¥ ;) be the joint distribution of Si and ¥ X; under Hy o. By Lemma 2
i=1 =1

k k
St + Cr = ¥ X, for some constant C}, because Sxy ~ ¥ X;.
=1 =1

The risk of a Bayes procedure based on {X;} is the same as the Bayes risk of a
procedure based on {S;}. By Sobel’s result at stage n, a Bayes procedure based on {X;}
keeps sampling if a, < % X; < by, which is equivalent to a, — Cp, < Sp < b, — C,.

i=1

Similarly for other actions.
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