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1 Introduction

The framework of time series modeling calls for an analysis which treats
the model parameters as evolving, non constant quantities. As the dynamic
model evolves through time, inferences about the parameters are updated
in response to the incoming data and possibly other external information.
This can be accomplished most naturally via a Bayesian approach.
Following the notation of Pole and West (1988) the general dynamic

model can be defined as:

Observation equation: y; = f;(6:) + v (1)

Evolution equation: 8; = g¢:(6:—1 + wy). (2)

Here f; and g; are known, non-linear functions and »; and w; are random
variables with arbitrary specified distribution.

This paper proposes an algorithm for the numerical evaluation of the
integrals required in the analysis of the general dynamic model. In Section
2.1 these integrals are stated and it is argued why it is in general impossible
to exactly evaluate them and why even numerical integration is difficult.

Sections 2.2 and 2.3 review some restricted versions of the dynamic model



for which an exact analysis is feasible. Section 3 states the proposed Monte
Carlo integration algorithm. The sample points required for the Monte
Carlo integrals are obtained by simulating the dynamic model starting with
a sample generated from the initial prior distribution. Section 3.2 gives the
algorithm used for the simulation of the dynamic model, leaving the imple-
mentation details for the simulation of the observation step for Section 3.3.
Section 4 contains an application of the algorithm to a model of advertising

awareness taken from West and Harrison (1989).



2 The Analysis of the Dynamic Model

2.1 The General Dynamic Model

The following notation will help to describe the analysis of the general dy-
namic model stated in (1) and (2): Let D; denote the information set at
time ¢ (t = 0,1,...), i.e. all information relevant to forming beliefs on the
parameter vector ;. Suppose that the model is closed to inputs of external
information, so that D;y; = {y;:} U D;. It will be assumed that all continu-
ous probability distributions have a density defined with respect to Lebesgue
measure, and p(X) will be used generically to denote the density for a ran-
dom variable X, and p(X|D) the density of X given D. Expressions of the
form (X|D) ~ N(u,0?) refer to the conditional distribution of X given D.

Much of the Bayesian analysis in the dynamic model can be done in terms
of integrals with respect to the distributions p(6;]D;—;) and p(6;|D;) at time
t=1,2,...T. The distribution p(8;|D;_;) reflects the beliefs about 8, prior
to observing y;. The density p(6;|D;) summarizes the updated beliefs after
observing the data y;. Since in terms of the isolated experiment at time #
P(6¢| D;—1) represents the prior distribution on 8; and p(#;|D;) the posterior
distribution, they will in the following be referred to as the prior at time ¢

and the posterior at time ¢.



Given the initial prior p(61|D¢), the unknown densities p(6;|D;) and

p(0:|D;—1) are recursively determined by

p(0:Dy) o p(8:|Ds—1)p(y:l6:) (3)

p(0:|Di1) = /P(9t|9t—1)P(0t—1|Dt—1)d9t—1, (4)

where p(y;|0;) is the known likelihood function implied by the sampling
model (1) and p(#:{6:—1) is determined by g;() and the distribution of w; in
the system equation (2).

Inference typically requires integration of the prior and/or posterior den-
sities. Examples include point estimation of the parameter vector based on

the information available at time ¢, namely
0: = E@D.) = [ 0m(6:|D1)ds,
and one-step ahead forecast distributions,
P(yt+1|th) = / P(Ye+1|0641)p(0t41| De)dOy 11

K-step ahead forecast densities p(Y;4+x|D;) are also be easily obtainable in

the framework of the suggested algorithm.



In general, we are interested in estimating integrals of the form

E(f(6)ID) = [ 18061/ D)ds, (5)

E(f(6:)|D¢-1)

/f(at)p(etlDt—l)dat- (6)

Here the integrands involve the unknown posterior density (3) or the prior
density (4). The absence of conjugate prior/likelihood pairs and the possibly
non-linear form of g; and f; in (1) and (2) make it in general impossible to
analytically derive expressions for the prior distribution (4) and the posterior
distribution (3) at time ¢. Therefore an exact evaluation of the integrals (5)
and (6) is impossible, and even numerical integration is very difficult, since
most schemes require evaluation of the integrand at specific points
Another feature which distinguishes the integration problem in the gen-
eral dynamic model from other applications is the sequential nature of the
problem, requiring estimation of a sequence of integrals over very closely

related densities.

2.2 The Normal Dynamic Linear Model

An exact analysis of the dynamic model is only possible if some restrictions

are imposed on the general dynamic model. The Bayesian analysis of dy-



namic models becomes most simple in the framework of the Kalman filter
(Kalman (1960)) with the linear evolution and observation equation, which
together with normal distributed noise terms and conjugate initial prior lead
to a sequence of conjugate prior/likelihood pairs, making the computational
burden of evaluating integrals of the form (5) or (6) trivial. This linear dy-
namic Bayesian model was described and further developed by e.g. Ho and
Lee (1964) and Harrison and Stevens (1976).

Using the notation of Pole, West and Harrison (1988) the basic normal

dynamic linear model (NDLM) can be stated as:

Observation Equation: y; = F;6; 4 14
v ~ N(0,Vp)
Evolution Equation: ; = G}f;—1 + w;
wg ~ N(0,)
t = 1,2,...

Here y; is the observation vector, F; a vector of regression variables, 8,
the parameter vector, G; the state transition matrix, V; the observation

variance and {J; the system variance. The quadruple M = {F;, Gy, V;, Q;}



fully specifies the model.

With conjugate initial prior (61|Do) ~ N(a1, R1) the prior p(6:|D;_1)
and posterior p(6;|D;) are normal with means and variances, which are de-
rived as follows by induction. Assume the prior at time ¢ is already given

by (0:|D¢—1) ~ N(at, R;). Then the posterior becomes:

(6:|Dy) ~ N(my, Cy),

with m¢ = a; + Ases, C; = Ry — AiQ1 A}, Q¢ = FIR,Ft + V;, Ay = R, FQ; "

and e; = y; — F/a;. The prior for the subsequent period is then given by

(0+1|D¢) ~ N(aiy1, Riq1),

where a; = Gymy—1 and Ry = G4Cy_1 G + ;. See West and Harrison (1989)
for a proof and more discussion. The NDLM covers a wide range of models,
allowing incorporation of trend and seasonal components in Gy, a regression
term in F; and possible intervention, just to name a few of the modeling

tools developed in West and Harrison (1989).



2.3 Extensions of the NDLM

Pole, West and Harrison (1988) extended the basic NDLM to allow for non-
linearities in the observation equation by introducing a ”guide relationship”
and assuming a normal prior at each step. The guide relationship is used as
an aid in determining the first two moments of the posterior, which together
with the normality assumption and the linear evolution suffices to specify
the next prior. Another extension of the NDLM is achieved by replacing the
normality assumption by a wider class of conjugate priors. Sorenson and
Alspach (1971) propose a discrete mixture of normals to represent observa-
tion and system noise term.

West, Harrison and Migon (1985) developed an algorithm to analyze dy-
namic generalized linear models (DGLM). The DGLM is an extension of the
NDLM, allowing any density from an ekponential family as sampling distri-
bution for the observation y; and specifying the distribution of the evolution
noise term only by its first and second order moments. Let 6, denote the
state vector at time ¢ and 7; the natural parameter of the exponential family

sampling distribution p(y;|n;). Then the observation equation is given by:

Observation model: p(y:|n;) ea:p{Vt“l[ytnt —a(n)]} (7)



glm) = A= F/b;, (8)

where V; is a known scale parameter, a(n) is a known function, F; is a
vector of regression variables, and g(.) is a known mapping between the
parameter 7; and the linear regression A;. The evolution equation specifies
the distribution of the evolution noise term only by its first and second

moments:

Evolution equation: ;11 = Gi0; + wy
E(wt) = 0
Var(w;) = Wi

The analysis proceeds by determining, at any time, only the first and second
moments of the prior and posterior for the state vector. The distribution of

(1¢|D¢—1) is assumed in a form conjugate to the likelihood p(y:|n:), namely

P(m| De—1) o< exp{si[zsm: — a(ne)]},

for some parameters s; and z;. This leads then to a sequence of simple

updating equations for the moments of the prior p(;|D;-1) and posterior

10



p(0:|D;), which would correspond to an analysis with fully specified distri-
butions, if the prior and posterior distributions were actually normal and
the forecast distribution p(7n;|D:—1) was actually conjugate to the sampling
distribution. See West and Harrison (1989), Section 14.3 for a complete
description of this approach.

The accessible range of models can be even further widened by aban-
doning the restriction to analytically tractable models and using numerical
integration methods. Pole and West (1988) propose an algorithm combin-
ing the computational convenience of conjugate models and the flexibility
of using numerical integration. They deal with models which are NDLM

conditional on a subset of parameters g:

M(B) = {F(8), G«(8), Vi(8B), u(B)}-

The model is analyzed by Gaussian quadrature with respect to 3, using the
analytical solution for {Fi(83),G:(B), Vi(B),%(B)} for fixed B’s. Gaussian
quadrature involves at each stage maintaining an optimal grid K; = {8}
which is used to estimate the posterior integrals and forecast densities.
When updating the grid K;, to K, the p(B:D;) and the moments of

the NDLM parameters conditional on the §’s need to be determined on the

11



new grid points. Pole and West (1988) suggest using spline interpolation.

Linear interpolation is used to maintain required positive definiteness of

Ct(ﬁ) = Var(0t|ﬂt, Dt)

12



3 The Algorithm

3.1 Monte Carlo Integration in the General Dynamic Model

In Section 1.1. the general dynamic model was stated as

Observation equation: 3, = fi(6;) + 1, 9)

Evolution equation: 8; = g4(6;—1 + w), (10)

with f; and g; known, non-linear functions and v; and w; random variables
with arbitrary specified distribution. As argued in Section 2.1, under this
model it is in general impossible to exactly evaluate the posterior integrals
(5) and prior integrals (6). Even numerical integration is difficult since
the posterior (3) and the prior (4) cannot be evaluated. The algorithms
mentioned in Sections 2.2 and 2.3 avoid this problem by either making dis-
tributional assumptions or by estimating density values, e.g. by spline in-
terpolation or linear interpolation.

One numerical integration approach which fits naturally into the dy-
namic model framework is Monte Carlo integration (with importance sam-
pling) as described, e.g., in Rubinstein(1981), van Dijk(1984) or Geweke(1989),

with the sample points for the Monte Carlo integration coming from a sim-

13



ulation of the dynamic model. A sample from the original prior p(61]Dyp) is
propagated step by step through the time series, thereby always maintain-
ing a sample from the prior and posterior at each time step; these can be
used for Monte Carlo estimates of prior and posterior integrals as desired.
The task of evaluating the posterior and prior is replaced by the problem
of simulating the observation and evolution steps by an appropriate process
applied to the sample points.

No restrictions on the functional form of the observation equation (1)
or on the system equation (2) are required, i.e., f; and g; can be any, not
necessarily linear, functions. Although no global assumptions about the
involved distributions will be necessary, the simulation of the observation
step will require that the prior p(6:]D:—1) be approximable by a normal

density over certain regions.

3.2 Simulating the Dynamic Model

In the following, iet 7¢ denote the prior p(#;|D;_1), p; the posterior p(8;|D;)
and I; the likelihood function p(y:0;) as a function of ;. The simulation
of the evolution step is simple: Assume a sample {7;,¢ = 1,...n} from the
posterior p;_ is available. Then these sample points are easily mapped into

a sample {6;,i = 1,...n} from 7 by 6; := g4(m; + w;), where the w; are

14



generated from the distribution given by the system equation (10).

The simulation of the observation step, i.e. the transformation of the
prior sample from 7; to a posterior sample from p;, would be conceptually
straightforward by an accept/reject procedure: Bayes’ theorem, p;(6;)
7¢(0;)1:(0;), implies that the prior sample could be transformed to a posterior
sample by deleting and retaining sample points in an accept/reject like way
with probabilities P(6; is accepted) o 1;(6;). This could be implemented by
generating u; ~ Uniform(0, 1) and comparing u; with P(6; is accepted): if
u; > P(0; is accepted) then delete 6; from the sample, otherwise keep 6; in
the sample. This only requires the evaluation of the likelihood function ;,
which is analytically available; the difficult evaluation of the densities 7; and
Pt is avoided. Unfortunately, each accept/reject step will typically lead to a
decrease in the sample size, making an unmodified implementation of this
approach impractical for simulation of a many-step dynamic model.

The proposed algorithm solves this problem by replacing the accept /reject
step by a two step procedure. First the prior sample is transformed into a
sample from an envelope density I, which is then in a second step used for
the accept/reject procedure. The envelope density as specified in Algorithms

1 and 2 is chosen such that

15



e a sample from I can be generated by expanding the available prior
sample by stratified additional sampling from 7, restricted to certain

regions L.,,

e the accept/reject weights are functions of /; only and

o the expected sample size after the accept/reject step is equal to the

original prior sample size.

The sets L,, are chosen as regions of high likelihood in a way formalized in
Algorithm 2.
The following specific algorithm is proposed:

Algorithm 1: Simulation of the General Dynamic Model

Initial Prior: Draw a sample from the initial prior: 6; ~ 71,7 =1,...n0.

Set Time: t:=1.

Observation Step: The details of the implementation of this step will be

explained in Algorithm 2.

Extension of Sample Size: By stratified additional sampling from

m; the sample {#;,7 = 1,...n0} is extended to a sample from a

16



density of the form:

M
leg= {f:f—-—' Z'}’mrt'Lm,Z')’m = 1}7

m=1

mi(z)/7e( L) ifz € Ly,

where ()| Lm :
0 otherwise

denotes 7 restricted to L,,. The regions L,, will be specified in
equation (11) in Algorithm 2.
Accept/Reject: The density I is now used as envelope density for

an accept/reject step which, results in a sample from the posterior

pi:

pi(%)

P(0; is deleted ) ox 1 — .

Posterior Sample: The posterior sample {6;,7 = 1,...n;} can now
be used for Monte Carlo estimates of posterior integrals. By
choosing I € G appropriately some minimum expected sample

size for the posterior sample can be guaranteed.

Evolution Step: Generate w;,i = 1,...n; and set 7; := 9:(6;) + w;. The
set {m,¢=1,...n¢} now forms a sample from 7,1, which can be used

to estimate prior integrals.

17



Iteration: Increment t:=t+ 1 and simulate the next observation step.

The estimates of the posterior integrals can be improved by using Monte
Carlo with importance sampling with the sample from the envelope density
I. The accept/reject weights p;/I would become the importance sampling
weights. This point will not be further explored here, since this is a refine-

ment of the algorithm which is not essential to the main idea.

3.3 Simulating Bayes’ Theorem

To simulate the observation step by Algorithm 1, it is still necessary to spec-

ify the choice of I € G. In the following, = will denote the prior p(#;|D:—1)

at time ¢, [ the likelihood function p(y:|6;) and p the posterior p(6;| D).
The envelope density of Algorithm 1, I = 3" 9 7|Lm, can alternatively

be written recursively as

Iy=m,..., 1, = apln_1 +(1—am)7r|Lm,...,I=IM.

This suggests that the available sample from 7 can be transformed into
a sample from Ips by iterative expansion of the sample size by drawing
additional sample points from 7|z,.

Simulation of the observation step, i.e. Bayes’ theorem, can then be done

18



by the following algorithm:
Algorithm 2: Simulation of Bayes’ Theorem
Assume that a sample {6;,7 = 1,...n} from the current prior = is avail-

able.

Initialization: Estimate l = E,l by £ Y71(6;) and set m := 1. Set the

initial accept/reject weights wo(6;) = p/Io = p/= to:

wo(0;) = 1(6;).

Iteration: The following steps iteratively expand the original prior sample

to a sample from the envelope density Ijs.

Additional Sampling: Increase the sample size by a factor 51-17: by

additional sampling from 7|z,,, where

Ly, = {0 : wy—1(0) > I}. (11)

This expands the current sample to a sample from I,,,.

19



Weights: The new weights p/I,, are given by:

Wy —1 if 6 g Lm
L x Wy, 1= (12)

mWm—1 iff € Lm

where

1—-ap 1 -1
m = (14
? ( 879 Im—-l(Lm)

Stopping Rule: Set m := m + 1 and continue iterating until m =

M, where

m T

l
M = min{m : < =1, 13
in{ k|=|1q1c_ l*} (13)

Here I* = sup({(0)).

Accept/Reject: Reject sample points with probability

s _ pi(6:) — 1 _
P(0; is deleted ) oc 1 06) ~ 1 — was.

Posterior Sample: The posterior sample {6;,i = 1,...n} can now be

used for Monte Carlo estimates of posterior integrals.

To derive the expression (12) for w,,, observe the following: The regions

Ly, are such that Lpys C ... C Ly, implying 7|zm = In—1lr,,. With this the

20



expression for I,, can be written as:

I, = aplp-1+ (1 - am)Im—lle

I if 0 & Lyn

Im—1(1+'1__am1m_1IW) = m_l/qm if @ € Ly,.

qm

From this, (12) follows.

The number of iterations (13) is chosen such that the expected sample
size of the posterior sample after the accept/reject step is greater than or
equal to the original prior sample size. This leads to the stopping rule (13)

(see appendix). If the a,, are chosen such that ¢, < % then obviously

%*

[
M= log(2)log7.

There remains the problem of generating from 7{r,,. This is the point at
which the simulation algorithm requires some approximation; in particular
it will be assumed that 7 can, on the regions L,,, be approximated by a
multivariate normal distribution restricted to L,,. Compared with the global
distributional assumptions and linearity restrictions on the functional form
of system and evolution equation that are required for available analytical

and numerical algorithms, this local approximation of the prior density «|ry,

21



seems quite weak. The bias which this approximation introduces into the
Monte Carlo integral estimates does not accumulate over time, since adding
the noise term w; in each evolution step amounts to ”discounting” the past
history at a certain rate, so that typically only the most recent observations
have a strong influence on the prior and posterior at any given point in time.

The following simple example illustrates the suggested algorithm:
Example:

Assume X ~ N(6,1), where § is unknown. Let the prior 7(8) be N(2,1).
Then, if z = —1 is observed, the likelihood is I(#) = ¢(8 — (—1)), where ¢(.)
denotes the standard normal density, giving the posterior p(8) as (8|z) ~
N(0.5,0.5).

Following Algorithm 2, we first drew a sample from the prior: 6; ~
N(2,1),i = 1,...100. In the first step of the iteration Ly = {I(6;) > I}
was the interval (—oo,1.29], where 1.29 was obtained as max{#6; : {(6;) >
I,i = 1,...100}. Since the likelihood function is analytically available, it
would obviously be possible to obtain Ly exactly. But the only penalty for
not accurately identifying L,, is that the expected final posterior sample
size will not exactly match the initial prior sample size. The parameter
a; was (rather arbitrarily) chosen such that ¢; evaluates to 1/2. With all

parameters set, the additional sample was taken from 7|L;, increasing the

22



total sample size to 122. The new points were added to the sample, and the
weights updated to wy(8) := wo(6)/2 = 1(8)/2, if 0 € L,, respectively left
unchanged w;(8) := wo(8) otherwise.

The stopping rule was determined by the ration [/I*, which was esti-
mated to be .076, based on the likelihood values I(6;) of the sampled points.
Although I* = sup(l(f)) could have been obtained analytically here, this
was not done, since underestimation of [* by taking the sample maximum
will only affect the posterior sample size.

The stopping criterion was not yet met. So the iteration continued with
Ly = {w; > I} = (—00,0.97). In the second iteration the sample size was
increased to 151. After the forth cycle the stopping criterion was met, and
a sample of 191 points resulted from the last envelope density Is. The final
accept/reject step reduced the sample size back to n = 106.

The graph in Figure 1 shows the prior density, the four envelope densities
and the posterior density, plotted proportional to the sample size; i.e. , if
one curve is above another, then a sample corresponding to the first curve
can always be transformed by accept/reject to a sample corresponding to
the second. The algorithm continues to expand the sample size until the
curve corresponding to the final envelope density I, is everywhere above the

posterior density; i.e., the envelope density sample can by accept/reject be
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0.0

Figure 1: Prior 7, envelope densities I, I5, I5, I4 and posterior p.

transformed to a posterior sample with expected sample size 100.
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4 A Model of Advertising Awareness

4.1 The Model

This non-linear, non-normal example is taken from West and Harrison (1989).
The number of individuals in a survey who are "aware” of certain TV com-
mercials is modeled. Awareness is measured by the proportion of the TV
viewers who have seen these TV commercials during a recent, fixed time
interval. The data was collected by questioning in weekly intervals sampled
members of the TV viewing population as to whether or not they have seen
the TV commercials in question. The survey was taken over a period of 75
weeks with a constant sample size of n = 66.

The variables involved are:
Y:: number of positive responses out of the sample size n
Xy: extent of advertising (measured in units called ”TVR”).

The time series for ¥; and X; are plotted in Figure 2 and 3.
The following parameters are used to model the total population aware-

ness at time t:

oy : lower threshold of awareness, i.e. the minimum level of awareness ex-

pected at time ¢.
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Figure 2: Extent of advertising in TVR.
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Figure 3: Awareness response as proportion: Y;/n; (weeks 42, 43 and 44
have missing observations).
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B¢ : upper threshold of awareness, i.e. the maximum level of awareness

expected at time .

L : effect of current and past weekly advertising, adding up with @; to the

total population awareness y; = F; + a4 at time t .

p: - decay of awareness: if X; = 0 then the effect of past advertising is

expected to decay exponentially by: F; = p;Fy1.

K¢ : penetration parameter: the meaning of this parameter becomes clear

from the evolution equation.

The deterministic part of the evolution equation is given by:

Ei = piErq + [1 — exp(—£:Xy)][B: — (e + peEr—1)]. (14)

The effect of past advertising is decaying by the factor p;. The effect of
current advertising is proportional to [1 — exp(—x:X;)] and bounded above
by [8: — (ot + peE_1)].

Let 0; = (ay, Bt, Ft, p1, ki)' denote the parameter vector at time ¢. As-

sume a multivariate normal evolution noise with a covariance matrix corre-

27



sponding to a discount factor of 0.97:

Wy o~ N(O, Ut) with Ut = 003Ct,

where C; is the variance of the current posterior p(6;|D;). The concept of

using a discount factor to specify W; corresponds to specifying the relative

increase of the current ”uncertainty” C;. See West and Harrison (1989),

section 2.4.2 for a more complete justification.

The complete model takes the form:

Observation equation: p(Yi|p:)
He
Evolution equation: ;44

Wi

p (= )Y
o+ F;

9(0: + wy)
N(0,Uy)

66 and t = 1,...75,

where g() is the identity in a4, B, p+ and k; and determined by (14) for E;.

This is a non-linear, non-normal dynamic model with a system equation in

the form of (10) and a sampling model slightly more general than (9).
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Following West and Harrison the initial prior is chosen as

6o|Do ~ N(mg,Co)

mg = (0.1,0.85,0.9,.02,0.3)'
[-6.25 625 0 0 0

6.25 406.25 0 0 0

Co = 0.0001| g 0 1 0 0
0 0 0 225 0
0 0 00 100

The initial distribution is denoted here by p(6p|Do) rather than p(6;|Do) as
in the description of Algorithm 1, because it models the beliefs on 8 before

the first evolution step.

4.2 Analysis as a Dynamic Generalized Linear Model

In their analysis of the advertising awareness model, West and Harrison first

linearized the evolution equation:

0; = gi(me—1) + G * (6p—1 + wr — myy),

29



where

mi1 = E(0;—1|D¢—1)
(?gt(z)

az Imt—l ¢

The linearized model was then analyzed as a dynamic generalized linear
model, following the DGLM algorithm described in Section 2.3 The sampling
model (7) of the DGLM specializes to (The analysis is easier in terms of the

parameter u; rather than the natural parameter n; = log(u:/(1 — pe).):

p(Yi|pe) ~  Binomial(pe,n)

Mt = (1,0,0,0,1)10t = o+ Et.

Using the updating equations of the DGLM, as given e.g. in West and Har-
rison (1989) in Section 14.3.3., it is then straightforward to derive for each
week E(6;|D;_1), E(6:|D;) and other quantities of interest in the analysis of
the model. In the next section the resulting data analysis is compared with

the analysis obtained from the simulation algorithm.
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4.3 Analysis by Simulation

The same model was analyzed with the simulation algorithm suggested in
Section 3. The simulation was started with a sample of size n = 100 from
the initial distribution p(fy|Do). (The prior specified by West and Harrison
models the beliefs on 6 before the first evolution step. Therefore we have
to start with p(6y| Do), rather than p(6|Do), as used in Algorithm 1.) By
simulating the first evolution step, this sample was then transformed into a
sample from the prior distribution p(6;|Dg). Then the information updating
in the first observation step is simulated by Algorithm 2, leading to a sample
from the posterior p(61|D;1). From there the process iterates through all time
steps, making at any time ¢ a prior and a posterior sample available, which
can be used to estimate prior and posterior integrals of the form (6) and (5).

The one step ahead forecast function gives the expected response in week

t + 1, based on the currently available information D;:

Ji = E(u41|Dy) = /(Ott+1 + Et41)p(0:| Ds_1)dfi41.

This is an integral of the form (6) and can be estimated by a Monte Carlo
integral using the sample points from p(6;|D;_1). The forecasts are shown

in Figure 4. The solid line plots the estimates of f;; the dotted trajectory is
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Figure 4: One step ahead forecasts.

the estimate of f; using the dynamic generalized linear model. The actual
responses are plotted as points. Figure 5 shows the estimated trajectory
of the lower threshold parameter o;. The solid line plots estimates of the
posterior mean E(a;|D;), with the dashed lines representing one posterior
standard deviation margins, i.e. E(a¢D;) + o and E(oy|D;) — o, where

o2

= var(ay|D;). (The posterior variance should be distinguished from the
numerical variance, i.e. mean squared error, of the Monte Carlo estimator

of E(cy|D;), which is 0?/n, where n = 100 is the number of sample points.)

The dotted graph is the posterior estimate from the analysis as a DGLM.
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Figure 5: Lower threshold oy.

The DGLM estimates are well within the one posterior standard deviation
margins of the simulation estimate. Around week 30 the posterior on ay
shifts to a slightly higher level. The DGLM analysis adjusts to this new level
only towards the end of the campaign, when the exponentially decreasing

response values give increasingly sharper information on the lower threshold.

Figures 6 through 8 give the same plots for the parameters 8;, p; and ;.
Again, the estimates from the DGLM model and the simulation estimates

stay always within one posterior standard deviation. The only noticeable
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Figure 6: Upper threshold 5.

difference occurs in the estimate for §; around week 40. This downward
jump in the trajectory of f; corresponds to an overestimation of ; in the
same time period. (The model takes a long time to readjust the posterior
estimates, because the weeks 42, 43 and 44 have missing response values.)
The observed minor discrepancies between the DGLM analysis and the
simulation analysis are due to approximations made in both algorithms.
In Figure 9 the beta density implicitly assumed for p(p41]|D40) in the
DGLM model is compared with a density estimate obtained from the sam-

ple points, which have been generated by the simulation algorithm. Figure
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Figure 7: Decay parameter p;.

10 plots a density estimate for the posterior p(k40|Dao) together with the
corresponding normal density. In both cases the unimodal beta, respectively
normal distribution does not adequately reproduce the multimodal density.
This does not contradict the DGLM, since this algorithm is designed for
problems where the prior distributions and the evolution noise are not spec-

ified with densities, but only specified by their first and second moments.
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Figure 8: Penetration parameter p;.
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Figure 9: Density estimate for p(u41|Dao).
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Figure 10: Density estimate for p(k40|Dao)-
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5 Conclusion

While the simulation of the evolution step is a straightforward implementa-
tion of the system equation, the observation equation, i.e. Bayes’ theorem,
lacks such a natural interpretation as a mapping from points of a prior sam-
ple to points of a posterior sample. In this paper a two step procedure was
used, first expanding the prior sample into a sample from an envelope den-
sity and then contracting by accept/reject to a sample from the posterior.
This approach works well in the context of the dynamic model where the
prior is essentially the posterior from the previous step and is typically not
significantly changed by updating with the likelihood. For the simulation
algorithm this means that only a moderate expansion of the sample size is
required. In the application in Section 4 it was only rarely necessary to take

more than one iteration step in the construction of the envelope density.
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Appendix

Stopping Rule for the Iterative Construction of the Envelope Den-
sity

The expected proportion of retained sample points in the accept/reject
procedure is @/w*, where @ = E,, wps and w* = sup(was). Let X|4 denote

E(X|A) and pp, = Ln(Ly). Then @ and w* are given by:

Wn = (1= pm)Wn|Ls, + pm WL,
= (1 - pm)wm-1lLe, + fm@mWm—1|Lm

- amw'n;—l

*

wy, = max(l, gnwk_;).

Then the expected proportion of retained sample points after shrinking

takes the form:

1 _ m
— ~
max([]1" gl*, 1) =

Qg.

Since the sample size after the m-th step is increased by a factor 1/[] s
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the following stopping rule will give an expected posterior sample size equal

to the original prior sample size:

m -
l
M = min{m : qu < l_*}
1
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