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Abstract

Let S : p X p have a nonsingular Wishart distribution with unknown matrix ¥ and n
degrees of freedom, n > p. For estimating ¥ a family of minimax estimators, with respect
to the entropy loss, is presented. These estimators are of the form 5(8) = R®(L)R?
where R is orthogonal, L and ¢ are diagonal and RLR! = S. Conditions under which
the components of ® and L follow the same order relation are stated (i.e. writing L =
diag ((£1,--.,£p)?) and @ = diag ((¢1,--. ,©p)t) we have p; > ... > @, if and only if
6 >...24).

Key words and phrases: combinatoric, convexity, dominate, equivariant, isotonic re-
gression, minimax, risk.



1. Introduction

Let S:p X p have a nonsingular Wishart distribution with unknown matrix ¥ and
n degrees of freedom (S ~ Wp(X,n)), n > p. Consider the problem of estimating X
using a strictly convex loss function £ invariant with respect to the general linear group of
transformations (G¢(p)). The best equivariant estimator (£), with respect to the group
of lower triangular matrices with positive diagonal elements (G7), is minimax and has

constant risk (cf. Kiefer 1957). Moreover, £ has the form
»M(8) = TDT!

where T € G}, TT* = S, D = diag(d), d = (dy,...,dp)’ and d does not depend on S.
The optimal choice for d varies with £. Corresponding to any G € G¢(p) define G*SM a5

(G*EM)(S) = G 1EM(GSGH G .

It follows that G*3™ and $M have the same risk function. Suppose now that G is

randomly distributed independently of S. Define X* as

£*(5) = E[(G*£™) ()]s

The strict convexity of £ combined with the constant risk of G*$™ imply that $*
dominates £M as long as P;[£* = G*£M] < 1 for almost all G € G¢(p). Eaton (1970)
made this observation and suggested using the uniform distribution on the orthogonal
group (0(p)) as a distribution for G. We shall denote the corresponding estimator nU.

This estimator is orthogonally equivariant. It has the form
32U (S) = R®(R? (1.1)

where R € 0(p), RLR! = S, L = diag(f) with £ = (£y,...,6,)", &4 >£2>...> £, >0
and ® = diag(p) with ¢ = (©1,---,9p)’. Sharma and Krishnamoorthy (1983) carried
out the computation of © for p = 2. When p > 2 no simple expressions of ¢ are available.

Takemura (1984) derived a series expansion for p = 3. He also provided the decomposition
o) = LW(L)d (1.2)
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and showed that W is doubly stochastic.

Let A = (A1,...,Ap)t with Ay > Xz > ... > A, > 0 be the eigenvalues of ¥. Given an
orthogonally equivariant estimator ¥ of &, £(S) = R diag(p)R?, o estimates A. At first
hand, since Ay > A2 > ... > X, we should have p; > 2 > ... > ¢, which we shall call the
ordering property. On the other hand, we know (Takemura 1984) that £; /n overestimate
A1 and £,/n underestimate A,. This fact suggests having ¥; < ¥, < ... < ¥, where
ps; = V;£;. This requirement has the effect of shrinking the estimates of A; towards each
other. Let us call it the shrinkage property. For p = 2 and d; < dy £V is minimax and .
satisfies the ordering and the shrinkage properties. When p > 2andd; <...<d, U still
minimax and it is conjectured that 1V satisfies the ordering and the shrinkage properties
as well. The other orthogonally equivariant minimax estimators in the literature (Stein
1977, Dey and Srinivasan 1985, 1986) do not satisfy the ordering property. Modifying
these estimators using isotonic regression is suggested by Stein (cf. Lin and Perlman 1985).
However it is not proven that the resulting estimators still minimax. For sure, the modified

estimators are inadmissible.

In this article we propose a minimax orthogonally equivariant estimator %7 of ¥
which satisfies the ordering and the shrinkage properties. The estimator 337 is based on
a representation of U derived in section 2. This representation involves expectations of
ratios. Replacing expectations of ratios by ratios of expectations leads to 5f. 37 has the

form

£1(S) = R diag(e” (¢)) R?

where ! (£) = L WI(L)d and W approximates W. The minimaxity, ordering and shrink-
age properties of %! are demonstrated in section 3. F inally, in section 4, a family of

estimators is generated from 37, These estimators have the form
£*(S) = R diag(p"(¢)) R*

where p"(¢) = L W*(L)d, h is a function and W*(L) = WI( diag((h(£1),..-,R(£))?).



2. A representation for £V

Suppose that we want to compute £ explicitly. Since 3V is orthogonally equivariant
it is sufficient to evaluate £V at L = diag(¢) with £; > ... > £, > 0. Let LV/2 =
diag((l}ﬂ,...,ezl,/z)t). From section 1 we know that £U(L) = E[G*£M(L)|L] where
G is uniformly distributed on O(p). We also know that V(L) = diag(L W(L)d). By
manipulating E[G*£M(L)|L] we shall find a representation for W. The result is presented

in theorem 2.1. Before proving this result we need the following lemma.
Lemma 2.1. (G*£M)(L) = Ll/zrfbrLl/2 with GLY/2 = UT, U € G}, T € 0(p).
Proof. (G*£M)(L) = G-1EM(GLGYH G

— L1/2(GL1/2)—12‘3M((GL1/2)(GLl/z)t)(GLl/z)—l‘Ll/z

= LU MUt Ut TLY?, GLY? = UT, U € G, T € 0(p)

= LY21*DrLY/?. (£M is equivariant) O

We need also to introduce new notations and recall the Binet-Cauchy’s theorem (cf.

Gantmacher 1959). Let

P
Sk=) dj, k=1,...,p,
=k
Dy = diag (1,...,1,0,...,0) where tr(Dg) =k, k=1,...,p,
Gj: the k X p matrix consisting of the k first rows of G, k =1,...,p,
L; = diag ((€1,...,4i—1, 0, Liy1,...,£,)%), i=1,...,p,

Lij=Li+LJ'_L1 z;z’:_y, z.aj:la""p'

Theorem (Binet~Cauchy). If C = AB with A:p X g and B: ¢ X r then

C<i.1 i.k)= Z A<i1 z'k)B(n.zl mk)
Jr e Jk m; ... mg il Jk

1<m; <...<mi <q

h C 2.'1 e zk>= det i i Vmon= .
where <]1 cer Ik € ((c’mJn) ’ 1;---,k)
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Theorem 2.1. W(L) = EQ(L) where ¢;; = 1 — det™'(G1LGY) det(G1L:GY), qix =
det™'(Gx—1LGE_,) det (Gk—1L;G%_,) — det™!(GxLGL) det (GxL:Gt) for i = 1,...,p,
k=2,...,p and G is uniformly distributed on 0(p).

Proof. We have SU(L) = E[(G*SM)(L)|L] = diag (p(£)) and ©(f) = LW (L)d. From
lemma 2.1 (G*£M)(L) = LY*T*DTLY? with GLY? = UT, U € G£, T € 0(p). If we

express I'' DT in terms of Dy we get
T'DT =) &I'DiT' =Y 6kPe= ) di(Px — Pi_1)
k k k

where the P, matrices are idempotent and correspond to the orthogonal projections of

RP onto the linear spaces spanned by the rows of GxL'/2, k = 1,...,p. Therefore P; =

LY2G (G LGL)~ G LY/2 for k = 1,...,p and Py = 0. Denoting by p;x the (4,7) element

of Py the (7,7) element of (G*f]M) (L) becomes £; Y di(pik — pik—1) and gix = pix — pPik—1.
k

After straightforward computations we get

"k
G2<1. 2 e f“)e,-ne,-j
1<i5<. . <ix <p L L j=2 )
Pik = T 2 P . ,k=1,...,p (2.1)
s el i
1<i1 <...<ix <p 1 2 ... k) 2
=1— det™!(GrLGL) det (GrLiGL). 0

Note that pjo =0and p;p =1fori=1,...,p.

Example: If p =2 then F p;; = (l}/z + Z;/z)_l Z:/z-

3. A minimax estimator

In section 2, the difficulty in computing 3 explicitly was due to the fact that we
could not find a simple formula for the expectation of p;;, 4,5 = 1,...,p. Following
expression (2.1) the p;; are ratios. In this section we consider a crude approximation of
the expectation of p;; which consists in taking the ratio of the expectations instead of the

expectation of the ratio. Let
wh (L) = tr,:_l_l(L)trk_l(L,-) - tr;l(L)trk(L,’) (3.1)
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where

1 ifk=0
k
trx(L) = > Il &; ifked{l,...,p} (3.2)
1<i1 <<k <p j=1
0 otherwise

and set

£1(L) = R diag (¢'(0)) R*
with p!(¢) = L WI(L)d. Define also W' as ¥/(¢) = W!(L)d. The approximation W’
turns out to be equal to W when evaluated at L = ¢I, ¢ > 0. In this particular case

SI(el) = $Y(cI) = ¢ tr(D)/pI. As W, W is also doubly stochastic.

In the following, the shrinkage, ordering and minimax properties of 327 will be demon-
strated. The proofs use some results concerning the function trx. These results are tech-

nical and are reported to the appendix, section 5.

Theorem 3.1. W/ is doubly stochastic.
Proof. Y- wf (L) = try ' (L) X{tre—1(L:) — trx(Li)} = (p—k+1) — (p— k) = 1.
1 t

Zw{k(L) = Z{tr,:_ll(L)trk_l(L,-)—tr,:l(L)trk(L,-)} = tral(L)tro(Li)—tr;l(L)trp(Li) =1.
k k

wii (L) = trp 2 (L)tre—1(Ls) — try (L)bre(Ls)
= {trk_l(L)trk(L)}_l{trk_l(L,')trk(L) — trg—1(L)tre(Ls)}
= {trk__l(L)trk(L)}“ll,-{tri_l(L,-) - trk(Li)trk_z(Li)}

> 0 by lemma 5.1d). O

Theorem 3.2. If d; <dy <...<dp then d; <¥{ < U] <...< U] < d,.

p—1
Proof. ¥/(¢) = Y wl(L)dr = Y (tr7 ' (L)trk(L:))(dk+1—dk) +d1 which is nondecreasing
k

in 7 by lemma 5.1 ¢). Moreover, \II{ (€) is a convex combination of di,...,d, therefore

di <] <dpfori=1,...,p.



Theorem 3.3 (ordering property). ol (€) > ©;5 T(#) if and only if £; > ¢;.

Proof. In order to prove this result we must show that £; = ¢; implies ©!(¢) = <p} (¢)
and also £; > £; implies p](£) > ©}(£). I & = £; then trx(L;) = tre(L;) for k=0,...,p
and pf(€) = pj(f). If & > ¢; then & w] (L) — Lwl (L) = (€ — )/tz(L) > 0 by
lemma 5.2a) and fiw}, (L) — £jw],(L) > O for k = 2,...,p by lemma 5.2b) therefore
o1 — o38) = Dlteuhy (D) — Gk (D)de >0, al

To evaluate the precision of 57 .a common loss function used is the entropy loss Lg
given by £o(Z, %) = tr(E‘lf]) —log(det(£~15)) — p. The optimal choice of D correspond-
ing to Lo is given by d; = (n+p+ 1 —2¢)~! and the minimax risk is the risk of M which
is given by

R(Z,EM) = Z[log(d)+Elog(xn i+1)]

(cf. James and Stein (1961)). In order to show that $:7 is minimax for £, we shall use the
unbiased estimator £ of an orthogonally equivariant estimator proposed by Stein (1977).
We shall show that R(Z,£7) — R(Z, £M) < 0. Following Stein (1977),

R(z, 8- ( ,EM) = ( (n—p+1) Z\III(Z +ZZ£\111£ _e.\pf(ﬁ)_

g (3.3)

+zZe 2 \I/I(e Z[log(w’(a — log(dy)].

Theorem 3.4. ! is minimax for Lo.

Proof. Substituting in expression (3.3) and using lemmas 5.1, 5.2 and theorem 3.1 we get

REEN—RE,EM) =(n—p+1)) dr+2) (p-k)de—p
k k

—2 ; Z_: 121;_((1%) (1 - __irr_’;((l]:i))> (di+1 — dk) — 2; [log (Zk: w{k(L)dk) - log(di)]

k=1
——22P:§tr’°(L‘) g ) Z lo Zw Zw L) log(ds)
T L (D) trg(L) ) EH T k) & i ii(L) log (ds)
< 0 by the concavity of the function log and the Jensen 1nequa.11ty. O



4. A family of minimax estimators

Consider a function h:R. — Ry, let h; = h(L), k() = (h1(f),...,kp(€))! and
H = dia.g(iz,). According to section 3 define ¥* = ¥!o h, oh = 4,00, Wh=WIlo h and
finally

$:*(8) = R diag (p"(£))R?

where R € 0(p), L = diag (¢), {1 > €2 > ... >{,and S = RLR*. When p=2 and h is
given by h(z) = /z we get &% = £U and £*(cI) = £Y(cI) no matter what h and p are.
In section 3, the case h equal the identity has been covered. In this section, assuming some

regularity conditions, we prove the validity of theorems 3.1 to 3.4 when the superscripts I

are replaced by h.

Theorem 4.1. W” is doubly stochastic.

Theorem 4.2. The relation d; < ... < d, implies d; < \Il'l‘ <...< \II;‘ < d, if and only

if h is nondecreasing.
The proofs of theorems 4.1 and 4.2 are replications of the proofs of theorems 3.1 and 3.2

respectively.

Theorem 4.3. If zh(z) and z/h(z) are nondecreasing in z then p}*(€) > ”(£) is equivalent
to £; > ;.

Proof. We have {wfy (L) — £jw} (L) = (&hi — £k;)/tr(H) > 0 if £; > ¢;. Using lemma,

5.3 and reproducing the proof of theorem 3.3 we get the proof of this theorem. [
. . thy—£;h;

Theorem 4.4. If h satisfies the relation Z‘_:Z,-a%‘,\I’f‘(l) < Zt:>§: @f—dwijlg-j—; (Th(e) —

@’ (£)) for all £ then 3% is minimax for Lo.



Proof. From expression (3.3) we have

5.5 2084 = 0 p ) S wt0 + 103 SO Z 6T
iy
—p+2Zaa—e£w?(e)—Z_nog(w?(e))—log(d,-n
=(n—p+1) E\I,I _l_ZZ h —Z.\Iﬂ(h) _

iy

+ZZ @ _,3 : _L )(‘I’Z‘(l)—‘Ifj-‘(E))+2Zi:e,~a%\I/§*(e)

- Z [log (Z wf‘k(L)dk) - Zw{‘k(L) log(dk)
k
< ZZ i e L hhf O - + 22@,-6%\1;?(@)

<0 by assumptions combined with Jensen’s inequality. O

Corollary 4.1. 3V is minimax for p=2.

Proof. If h(z) = vz and p = 2 then £V = £* and Y65, Uh() = Fapah),
(23 (6) — ¥5(0)). O

Corollary 4.2. I h is differentiable and h(z)/z is nondecreasing in z then 3% is minimax

for Lo.

Proof. We have h/ > 0 by assumptions so

2 h
higg VHO =

0
ah

\I/I rk(H ( tri(H;)

m) W) (st — di) < 0

uM

Furthermore, since h is increasing (¥?(¢) — ¥%(£))/(h: — h;) < 0 by theorem 4.2 and
(€:hj — £;h;)/(€; — £;) < O by assumptions therefore XE>§: Té%ﬁ%(\pf (&) —Tk(0) >

S AU 0



5. Appendix

Let A = diag(A) with A = (A1,...,Ap)% Ai >0, ¢ =1,...,pand L = diag({) with
£; > ...> £, > 0. Consider also the functions W1, tr; defined by expressions 3.1 and 3.2

and W defined at the beginning of section 4.

Lemma 5.1.
2) 2 tr(A) = (- k)trk(A) and E;g: tri(Ai;) = (p— k) (p — k& — L)trx(A).
b) tra(A) = Astrr_1(As) + tre(As).
c) tri(Ai) — tre(4;) = (A — Ad)tre—1(Ass)-

d) tri(A) — trg—1(A)tre4a1(4) > 0.
e) Ai 3 trk(Ai) — trk(A.’) (1 trk!A;!)-

A Tre(a) —  tre(a) 77 tre(a)

Proof. The proofs of a) and b) are essentially combinatoric and are omitted. The proof

of ¢) is a direct application of b).

d) If k & {1,...,p — 1} the proof is trivial. In order to complete the proof for k €
{1,...,p—1} define A(m;,m2) and ¢ as A(mi,mz) = {(ea1,--+ Cim, > 0215+ -+, Q2m,)
1< ajn < ... <oagm <p, 1< a,< ... <am <p {a11,-- -, 1m; } N

{az1,...,02m,} = ¢} and ¢(m) = (m +1)~*(%7). By a combinatoric argument we

get
k 2 m,
tr2(A) — tre— 1 (A)trea(A) = ) e(k—ms3) > HII». 61
mo=0V2k—p A(2(k—mg2),me) r=18=1

which is always greater or equal to zero.

d trk(A,;) _ _/\itrk(Ai)trk_l(Ai) _ _trk(Ai) (1 trk(Ai)> . 0

2 A‘a,\,- trg(A) tr2(A) B ORSE

try (A)
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Lemma 5.2.
a) (Lwh (L) — Lw] (L)) /(& — &) = tril (L)brk_1(Lss) — try  (L)tr(Lsj).
b) (Gwji(L) — Lw]i(L))/ (& — &) 2 0.

) XY (Lwfi (L) — Gw] (L))/ (& — &) = (p — k).

>3
Proof.

a) (Gwf (L) — Gwii(L))/ (& — &)

)-
e ll(LL)) R R Ul R IR
{ itre—1(Ls) — €itre—1(L; )} {eitl‘k(Li)—ejtrk(Lj)}

@ —e Yerx_1(L) (€ — )i (L)

_ {trk(Lj) — tri (L) } B {trk+1(Lj) — tey1(Li)
L — &)1 (L) (€ — £;)tri(L)

_tre—1(Lij) _ trg(Lis)
o trg—1(L) tri (L)

} by lemma 5.1b)

by lemma 5.1c).

b) If £ = p then Lw] (L) = Z,-'wfk(L). ForO<k<p

tre—1(Liy)  tre(Lej) _ tre—y(Lej)tre—1(Li)  tre(Lij)tre(Ls)

tre—1(L) tri(L) B tre—1(L:)trg—1(L) trg(Li)trg (L)
[opatte—a(Ls) | p ooy tre(Li)
= wji(Li)——— (L) —=% >
ka( ) trk_l(L) +w1.k( ) tl‘k(L,‘) 2 0.
¢) The proof of ¢) is immediate from lemmas 5.1a) and 5.2a). O

Lemma 5.3. If zh(z) and z/h(z) are nondecreasing in = then (£;w}, —Liwh)/(t:i—£;) 20
fork=1,...,p, & #¢;.

Proof. In order to prove lemma 5.1d) we introduced the sets A(my,m3). Consider the

partition of A(my,m2) given by

A(mq,m2,(1,0)) ={(11s--+»Q1m, , Q215+, 02m,;) € A(m1,m2):¢ & {@11,--+, Ximy, Q¥215- -+, A2my I}
A(my,ma,(1,1)) ={(a11,. .. s X1my > €215. .+, O2m,) € A(my,m2):1 € {a11,...,01m, }}

A(my,ma, (7,2)) ={(a11,- -+ s Ximy s @215. .+, O2m, ) € A(my,m2):1 € {a21,...,02m, }}
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and let A(my,ma, (3,7), (5,8)) = A(m1,mz, (,7)) N A(m1,ma2, (5, 5)). Assume that £; > ¢;
SO Z;h:_’ > éjhjl.—' for r = 0,1,2 by assumptions. From the proof of theorem 3.1 and

expression (5.1) we get

k—1 2 m,
{tr—1(H)trg(H)Yswl (L) = > c(k—1—my) > Lhi [T I ..
mgo=0v2(k—1)—p A(2(k—1—m2),m2,(£,0)) r=1s=1

In order to reduce the notations, suppose that k and mgy are fixed from now on and let
B(i,7) = A(2(k — 1 — m2), ma, (¢,7)) and B((,r), (5,s)) = B(:,r) N B(j,s), r,s =0,1,2.
We have |

2 m, 2 2 m,

> eI TIre. =3 > am]lIl%.
B(1,0) r=le=1 t=0 B((4,0),(7,t)) r=1s=1
2 2 m,
=2 > ek LA
t=0 B((5,0),(#:%)) r=le=1
2 2 m,
>3, >, um]l]IA,
t=0 B((4,0), (%)) r=1s=1
2 m,
=2 ka1l I1 k.,
B(j,0 r=1s=1
therefore £;wl, (L) — £;w/y(L) > 0. O
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