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Abstract

Let S : 2 X 2 have a nonsingular Wishart distribution with unknown matrix ¥ and
n degrees of freedom. For estimating X two families of minimax estimators, with respect
to the entropy loss, are presented. These estimators are of the form f}(S’) = R®(L)R!
where R is orthogonal, L and ® are diagonal and RLR? = S. Conditions under which the
components of ® and L follow the same order relation are established (i.e. writing ® =
diag (p1,%2) and L = diag (£1,£;) with £; > £; we have p;1 > p2).
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1. Introduction.

In this paper we consider minimax estimators of the covariance matrix ¥ of a bivariate
normal population using the entropy loss £(£(Z,%) = tr(Z715) — log(det (1)) — 2).
The estimators we introduce are orthogonally equivariant and are based on a statistic
S which has a Wishart distribution with parameter ¥ and n degrees of freedom (S ~

W2(2,n)). As orthogonally equivariant our estimators are of the form
33(S) = R®({)R? (1.1)
where R is orthogonal, £ = (£1,£2)%, £; > £, > 0, ® = diag(p) and S = R diag(¢) R!.

Finding orthogonally equivariant estimators for ¥ and estimating the eigenvalues
(A1,A2; A1 > A2 > 0) of X are two closely related problems. Muirhead (1987) proposed
estimating A; by ©;, ¢ = 1,2. A reasonable condition on p1,ps is to impose ;1 > ps.
Such estimators will be called monotonic. When an estimator is not monotonic Stein sug-
gests modifying the estimate using isotonic regression. This modification is described in

detail in Lin and Perlman (1985).

The best equivariant estimator with respect to the group of lower triangular matrices
with positive diagonal elements (G’;) is minimax and has constant risk. This estimator

has the form

$r(8) = TDT?
where T € Gf, TT* = S, D = diag(d) and d* = (d1,ds) with d; = (n +1)~! and
d2 = (n — 1)~!. The minimax risk being

R(I, 1) = —log(d1dz) — E(log(x2_;) + log(x2)) (1.2)

(James and Stein 1961). Averaging 37 over the orthogonal group (cf Sharma and Krish-
namoorthy 1983 or Takemura 1984) we get the monotonic minimax estimator $o. This

estimator dominates ¥7 and, referring to expression (1.1), is given by
wi(f) = Li{w(t)d; + (1 — w(€))(2do — d;) (1.3)

with  w(l) = V& /(Vba+vVE) - (1.4)
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and do = (d; + d2)/2. The risk being substantially reduced in a neighborhood of the

identity maftrix.

Intuitively, keeping ¢1 and @2 close together lead to a small risk when ¥ is a multiple
of the identity matrix. For this reason, one might be interested in having flexibility on
the choice of ¢; and 2 within the class of monotonic minimax estimators. The purpose
of this article is to provide two classes of monotonic minimax estimators (C and D). The
estimators are obtained by modifying the definition of w in expression (1.4). The elements
of C are characterized by a function-h:Ry — R4 and are given by expressions (1.1) and
(1.3) with

w(f) = h({t1)/(h(t1) + h(¢2)) (1.5)

and denoted %7, Similarly, the elements of D are characterized by a function A:R; —
(—1,1) with
w(e) = (1 + h(ta/02))/2 (1.6)

and are denoted $*. Monotonicity and minimaxity properties of the elements of C and
D are studied in section 2 and 3 respectively. These properties are proven by solving
differential inequalities (cf Efron and Morris 1976 for an example). In order to prove
minimaxity, Stein’s technique is applied. In this technique, an unbiased estimator of the
risk of an orthogonal equivariant estimator is used. This estimator involves the functions

s and their derivatives.

2. Properties of C.

In the first section, we introduced the class C along with the notation ¢;. This class is
an extension of £9. Let p? be determined by expressions (1.3) and (1.5) and set o = £, T}
for 1 = 1,2. For any function h:R, — R, the point do is a middle point between ¥? and
U’ and the range of ¥’ is included in (d;,dz). The function k is a parameter indicating
how near ¥? is to d;. When k is nondecreasing, ¥* < dp and when h is nonincreasing,
U? > dy. Roughly speaking, the greater A is increasing, the more U2 is near to d;. An
intermediate case being \Il'f = do which corresponds to a function A which is flat. The

limiting cases are ¥* = d; and ¥? = d;. The case ¥ = d; has been proposed by Stein in
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a series of lectures given at the University of Washington, Seattle 1982. This estimator is

minimax (cf Dey and Srinivasan 1985).

Proposition 2.1. If h; and g are two functions from R to Ry, h2(z) = hi(z)g(z) and

g is nondecreasing then ¥*? < ¥,

Proof. From expressions (1.4) and (1.5) we have \Il';" = wyd; + (1 — w;)dy with w; =

(1 + hj(lz)/h,-(él))“l. Since dl < dz and £y > €3 > 0 we get

w0 (4 iiie) = (i) o

and ¥%, < %, QED.

Theorem 2.1. (monotonicity property). The relation (0% (€) — p%(£))/(£1 — £2) > 0 holds
for all £; > €2 > 0 if and only if h(z) = z"r(z) for some differentiable, nonincreasing

function r: Ry — R;.

Proof. Define the function r: Ry — Ry by r(z) = z7"h(z).

After computations we get

(©1(0) — 05(0)/ (€1 — £2) = (n — g()/(n* — 1) (2.1)

with g(€) = (€1 + £2)(h(€1) — h(£2))/{(R(£1) + R(£2))(¢1 — £2)}. In order to complete the

proof we shall prove the necessity and the sufficiency parts separately.

(Necessity). If (p?(£)—p%(£)) /(€1 —£2) > 0 holds for all £; > £2 > 0, then elim n—g(¢) =

2—+£;

n — %%lel = Elilog(l’l‘/h(ll)) > 0 for all £, > 0. Therefore h(z) = z™r(z) where

r:R4+ — R4 is nondecreasing.

(Sufficiency). If h(z) = z"r(z) where r:R; — Ry is nonincreasing then

(£ + £2) { 26043 (r(41) — r(£2)) (er —£3) }
(61— £2) (€3 + £3)(£3r(€1) + £37(€2)) ~ (£F + £3)

o (€1 + £2) (£ — £3)
- (1 - £2) (£ + £3)

n—g(l) =n—
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for all £; > £ > 0. This inequality combined with expression (2.1) indicates that it is
sufficient to consider h(z) = z" in order to complete the proof of the sufficiency part. If

h(z) = z™ then
(h(€1) + h(€2)) (&1 ~ £2)(n — g(£)) =(n — V(T = 577) + (n + 1) (G145 — £722)

=u(£)(say).

It remains to show that u(€) > 0 if £; > €2 > 0. First, notice that u(€) = 0 if
£; = £5 > 0. Secondly, notice that
o v =+ 1)t [1+ (n - 1)(&1/)" — n(a/€2)" 7] = (n + 1)€5¢(E1/L2) (say)

with £(1) = 0 and t/(z) = n{(n — 1)z"~%(z — 1) > 0 for z > 1. Therefore t is positive on
{z:z > 1}, u is positive for £; > £2 > 0 and p;(£) > p2(¥) for £; > €3 > 0. QED.

In order to prove the minimax property we shall use an estimate R(Z,3) of R(E, %)
for an orthogonally equivariant estimator 5 given in the form of expression (1.1). We also
define the function «a as

A A A

a(Z,2) = R(I,Er) — R(Z,2) (2.2)

where R(I, f)T) is given by expression (1.3). For £ fixed, 3 an orthogonally equivariant
estimator of E,a(E,f]) is a function depending on £ only. Therefore, an orthogonally

equivariant estimator 3 is minimax if «(Z, %) > 0.

Lemma 2.1. (Stein 1977). If 3 is an orthogonally equivariant estimator of ¥ then an

unbiased estimator R(X, %) of R(%,3) is given by

]é(E, 2) = (n — 1)(\1’1 + \1’2) + 2(@1‘1’1 — 62\112)/(61 — 62) -2

Jd 0
+2(€1:97;\111(£) + 225-2-;\112(2)) —log(¥1¥2) — E (log(xfl_l) + log(xi)) }

Let A be the function defined by

h'(£1)
h(¢€1)

+ £z

Ak, £) = w(l — w) (el h'(ez)) - <(1_"’)el _"’e2>.

h(£2) £ — L,



Theorem 2.2. If A(h,£) + ("24“1) log (1 + 47'%21_;1’?) > 0 for all £; > £; > 0 then & is

minimax.

Proof. Computations give a(Z,£%)(€) = 27 A(h,£) + log (1 + ‘l(—wn(zliyfz) > 0 for all
£, > £5 > 0 by assumptions. QED.

Corollary 2.1. If A(h,£) > 0 for all £; > £2 > 0 then £* is minimax.

Theorem 2.3. We have A(h,£) > 0 for all £; > €2 > 0 if and only if h(z) = /zv(z)

where v: R4 — Ry is differentiable and nondecreasing.

Proof. Let h(z) = y/zv(z). Computations give
Vet
(h(&1) + R(¢2))
It is clear that if v:Ry — Ry is nondecreasing then A(h,£) > 0 for all £; > £, > 0. On
the other hand if A(h,£) > 0 for all £; > £, > 0 then ZZIBI A(h,£) = 21"7'((2%‘)2 > 0 for all

£; > 0 which implies that v is nondecreasing. QED.

v?(£1) — v*(£2))
b1 — 4,

A(h,l) = 2 Zlv'(el)v(ﬁz) + Ezv'(ﬁg)v(el) + V214, (

3. Properties of D.

The class D is another extension of £o. In particular £ = £* for h(z) = (1++/z)/(1—
\/Z). More generally £* = 9 for h(z) = z* and g(z) = (1—2z%)/(1+z%). However C ¢ D
and D ¢ C. As before let gog‘ = Z,-\Il:-1 where tpf‘ are now given by expressions (1.3) and
(1.6), ¢ = 1,2 and let z = £3/¢;. For any function h:(0,1) — (~1.1), do is the middle
point between ¥% and W% and the range of ¥% is included in (dq,d2). When h(z) is
positive W*(£) > do and when h(z) is negative ¥*(¢) < do. Having h(z) = 0 implies
Uh(€) = Wk(€). The nearer h is to 1 the nearer ¥” is to d;. The limiting cases are

W% = dy,d; corresponding to h = 1, —1 respectively. Finally a useful expression for Uk is

Vh(0) = do — h(2)/(n? —1).

Theorem 3.1. (monotonicity property). The relation (% (€) — % (£))/(£1 — £2) > 0 holds
for all £; > £2 > 0 if and only if A(z) < n(1 — z)/(1 + z) for all z € (0,1).
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Proof. (p?(€) — ©2(£))/(t1 — £2) = (n? — 1) {n — A(z)(1 + z)/(1 — z)} > O for all
£; > £2 > 0 by assumptions. QED.
Let A be the function defined by

A(h,z) = h(z)(1 + z)/(1 — z) — 1 — 2zh'(2).
Theorem 3.2. If 2A(h,z) + log(1 + (1 — h2(z))/(n? — 1)) > 0 for all z € (0,1) then £*
is minimax.
Proof. Referring to expression (2.2) computations give
a(2,58)(8) = (n? — 1)1 (2A(h, z) + log(1 + (1 — h*(z))/(n® — 1))) > 0 for all z € (0,1)
by assumptions which implies that (X, flh)(li) > 0 for all £; > £2 > 0. QED.
Corollary 8.1. If A(h,z) > 0 for all £ € (0,1), then £* is minimax.

Theorem 3.3. The inequality A(h,z) > 0 holds for all z € (0,1) if and only if h(z) =
(1 —+/z)/(1 + /) + v(z)y/z/(1 — =) where v is differentiable and nonincreasing on (0, 1).

Proof. Let h(z) = (1 — v/z)/(1 + V=) + v(z)y/z/(1 — z). Computations give A(h,z) =
—2z+/zv'(2) /(1 — z) > 0 for all z € (0,1) by assumptions. QED.
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