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ABSTRACT

We consider the problem of sequentially estimating one parameter in a two- parameter
exponential family of distributions. Known members of this family are the normal, gamma
and the inverse Gaussian distribution. The asymptotic normality of the stopping variable
is established. We also provide approximations to its mean and to the regret associated

with it. The known results for the normal distribution follow as a particular case.



1. Introduction
Let

(1.1) f(z;0) = a(z)exp{6,U1(z) + 0:Ua(z) + c(0)}, 6 = (61,62),

be a density function (w.r.t. Lebesgue measure on R), which characterizes a regular
two-parameter exponential family of distributions, (see Brown (1986)), i.e.; the natural

parameter space O is defined by;
©={fecR?;e® = / a(z)ezp{6,: U (z) + 6:Us(z)} dz < oo},

so that © = int® # (. It is well known that for any 6 € © the r.v. U = (Uy,U;) has

moments of all orders. In particular, we denote;
(12) EG(U) = (“17#2), Hi = _ac(e)/aaia 1 =1,2

and

Vo(U) = (03j), o1 = —0c(8)/08;06;  i,j=1,2,

where V4(U) is the corresponding (positive definite) variance-covariance matrix.

Let X1,...,Xn, n > 1, be n independent identically distributed r.v.'s having a com-
mon density of the form (1.1). We set T}, = E;;l U:(X;) and denote by T, t=1,2
the usual average. The joint distribution of T = (T1:n,T2:n) is a member of the two-

parameter exponential family, and
(1.3) E¢(T) = (np1,np2),  Vo(T) = (noij) 45 =1,2.

In the present paper we consider a subfamily of (1.1), as was first introduced by Bar-Lev
and Reiser (1982) (henceforth referred to as BLR), in the context of construction of UMPU

tests. This subfamily is characterized by the following two assumptions:

ASSUMPTION A.1. The parameter 0 can be represented as; 6y = —6019'(pu2), where
Y (p2) = dip(p2)/dpa, for some function .

ASSUMPTION A.2. Us(z) = h(z), where h(z) is @ 1 — 1 function on the support of (1.1).

By using the mixed parametrization (61,82) — (61, p2), which is a homeomorphism
with (61, pu2) € ©1 X N2, (varying independently, respectively), it can be shown that under
Assumptions A.1- A.2 the following relations hold, (see BLR):



a) The variance of U, is given by:

1) —
(14) 0'22(9) = 6222 = 91¢I,2“2) ,(> 0)7

b) The functions ¢() and p1(8) when expressed by 6; and uz, have the following form:

(61, p2) = 6:1[u29’ (p2) — P(p2)] — G(61)
(1.5)
p1 = P(p2) + G'(61)

where G(6,) is an infinitely differentiable function on ©; for which G"(6,) > 0, for all

01 € ©;. Here G' and G" denote the first and second derivatives of G, respectively.
One of the immediate consequences of (1.4) (see BLR), is that either ©; C R~ or that
©1 C RT. ’

Suppose now, that on the basis of n independent observations zi,...,z, from (1.1),
we wish to estimate pus = Eg(Uz) in the presence of the nuisance parameter 6;. Let 6,
and fi2 denote the maximum likelihood estimators of 6; and pj, respectively. It is easy

to show that under the above assumptions, iz = T., and that 6, satisfies the equation:
(1.6) nG'(01) = Ty — n(Toin) = Zon .

It has been shown by BLR that the distribution of the statistic Z, is a member of the
one parameter exponential family of distributions having a cumulant generating function
Hn(ol) = nG(Gl) - G’(n01), 0, € @1, n > 2.

Suppose that the loss incurred by using Tb., as an estimate for g is:

LP(T2=n) = Pl’/’”(NZ)I(TZn - /‘2)2 +n,

where p > 0. The factor p|p"(p2)| represents the importance of the estimation error

relative to the cost of one observation.
;From (1.3) and (1.4) it follows that for a fixed §; € ©; the corresponding risk is:

Ry(n) = Eo[Ly(Ta:n)] = WF;J +n.

The optimal sample size which minimizes the risk is obtain by choosing an integer adjacent
to ng = (p/ |01|)12“, at which R,(n¢) = 2ny. However, since 6; is an unknown nuisance
parameter, this cannot be implemented. So one may use a random sample size N,, based

on the following stopping rule:

~

(1.7 N, =inf{n > mq ;16| > p/n*}



for some initial sample size mq , (mg > 2).
Since the function G'(6,) is strictly increasing on ©, it follows from (1.6) that the
stopping rule (1.7) has the following forms:

~

(z) If ©1 C R~ then; N, =inf{n > me ;Z, <nG'(£)},

(i2) If ©1 C R then; Kfp = inf{n > mo ;Z, > nG'(&)} .

In a recent paper (Bose and Boukai (1990), henceforth referred to as BB), we have
investigated the first order properties of the sequential estimation procedure based on N pe
Based on certain properties of Z,, it was shown that the two cases (i)-(ii) are symmetrical,
thus there is no loss of generality to assume that ©®; C R™. It was also shown that
N o/ = 1, w.p. 1 (as p — o0) and that under rather general conditions similar to

Assumptions A.3 and A.4 below;

(1.8) lim Rp(Vp) _

P Ry(m)

where RP(KT p) denotes the risk associated with the stopping variable N p- Thus the
suggested sequential estimation procedure is risk efficient. A crucial key in proving (1.8)
was a new independence result presented in BB (1990). We restate it here and for details

and proof, we refer the reader to BB.

THEOREM 1. Under the above assumptions, for all n > 2 and 8 € O, the random variables
(Z2,...,2Zy) are jointly independent of T.,, .

Remark 1.: Clearly the event {N p = n} is determined only by (Zn,,...,Z,), and there-

fore by Theorem 1 above is independent of Ty.,,.

Let us consider now a simple modification of the stopping rule N, in (¢) above. This

modification is intended to reduce bias incurred by underestimating ng using N p- Consider

the stopping variable:
(1.9) N, =inf{n > mg ; Zpa, < nG'(;—f)} ,

where we suppose that a, > 1, n > 1, are of the form a, = 14+ao/n+6,, with §, = o(1/n)
as n — oo. Notice that since a, > 1, the event {N, > k} implies {N, > k}, k> mq. It
can be easily verified that the first order result stated in (1.8) and the premise of Remark



1 remain valid with the modified stopping variable N,. In this paper we present some
asymptotic properties of the stopping variable N, (as p — c0) and of the risk associated
with it. In particular we establish the asymptotic normality of (appropriately normalized)
N, and obtain approximation to E¢(N,). Denoting by R(p,61) = R,(N,) — Ry(ng), the
so called regret, (i.e.; the additional risk incurred by the sequential estimation procedure

based on N, instead of ng) we also show that
lim R(p,61) = [461G"(61)]7" ,
p—o0

which is positive for all §; € ©;. These types of results are usually referred to as second

order approximations.

Sequential estimation procedures similar to the one discussed here have been considered
by several researchers. For the estimation of the mean of a normal population, Robbins
(1959) suggested a stopping rule N, based on the successive estimates of the population
variance. So that the estimate Z, of the mean and the event {N = n} are independent
for every n. This property was heavily exploited by most researcher who worked on the
normal problem. Starr (1966) showed that for the normal case the first order property
(1.8) holds iff me > 3. Woodroofe and Starr (1969) found that the regret is bounded.
Woodroofe (1977) has used second order approximations to study the regret and proved
that R(p) — 1, as p — oo if mg > 6.

Extensions of this procedure to nonnormal cases are also discussed in the literature. Starr
and Woodroofe (1972) deal with the negative exponential distribution and proved results
on the regret. A survey of results concerning sequential estimation procedures for the
negative exponential distribution, with and without a truncation parameter, can be found
in Mukhopadhyay (1988). Aras (1987, 1989) provided first and second order results for the
case of censored data from negative exponential distribution. Ghosh and Mukhpadhyay
(1979) and Chow and Yu (1981), with a ”distribution free” approach, allowed the initial
sample size mg to be a function of p and to — oo as p — 0o. They show the risk efliciency
of the estimation procedure when the distributions are unspecified and as mg — oo.

It should be pointed out that the normal distribution and the ("nonregular”) truncated
negative exponential distribution were the only cases known to have the independence
property mentioned above. In this paper we utilize the result of Theorem 1 to obtain
second order approximations for the regret and the mean of our stopping time in the
general case discussed. These approximations are based on results from nonlinear renewal
theory (developed mainly by Lai and Siegmund (1977, 1979) and Woodroofe (1977)),
detialed in Woodroofe (1982).



2. Main results

Let 6; € Oy be fixed and Z, be as defined in (1.6). We will assume without loss of
generality that ©; C R™, so that N, is as defined in (1.9) above, G'(6;) > 0 on ©; and
0<Zn-1<2Z, as., (see Lemma 2.2 in BB).

As was shown by Starr (1966) and by Woodroofe (1977, 1982), the initial sample size my
plays a crucial role in an attempt to analyze the risk as well as the regret associated with
N,. It was also shown, (see Woodroofe (1977), pp. 987), that the left tail behavior of the
underlying c.d.f. is also crucial in the risk’s assessments. For the general case discussed
here, we impose the following two natural conditions on the model at hand. The first
condition is imposed on the function G'. Notice that G' determines both; the boundary
for the stopping rule N,, as well as the moments of Z,. The second condition is imposed

to ensure an appropriate initial sample size my.

ASSUMPTION A.3. For some v > 1/2, sup;4)4,|27G'(—7) < M < 0.

ASSUMPTION A.4. . The initial sample size mq is such that ¥V 6; € ©1, Eq (Z,F) < o
—3
for some B > @0
In the following two theorems we present the main results of this paper. Their proofs are
based on several lemmas presented in Section 3. These theorems pertain to the asymptotic
mean of N, and its regret, as the cost p of the sampling error relative to the cost of one
observation tends to infinity. It is understood that the two statements {p — oo} and

{no — oo} are equivalent. In the following we set 7%(6;) = —26:G"(61), (> 0).

LEMMA 1. As ng — o

e Wp=mo) o0 G
(2.1) Ny =t N, T8 -

Proof: The proof of the Lemma is deferred to Section 3.

THEOREM 2. Suppose that G' and my satisfy conditions A.3 and A.4. Then

1 .G"(61)
T2(91) [ 2

E(Np) =Ny + bo - — 91G"’(01) - T(BI)G'(Ol)aO] + 0(1) ’

where by is
1 G"(61) >

1 ~ ~
b= 3+ 5m0,) k; ZE(SkI[Sk <),




and g’k, k > 1, are partial sums of i.i.d. r.vs. defined in (3.6) below.

Proof: The assertion follows immediately from Lemmas 2 and 4 below and Theorem 4.5
in Woodroofe (1982). |

THEOREM 3. If Assumptions A.3, and A.4 with § > 5/(2y — 1) hold, then

. B G”(91)
A R0 = T35y

Proof: Let R,(N,) denote the risk associated with the stopping time N,. Then

Ry(N,) = P[¢’I(#2)|E((T2:N,, - Mz)2 + N,,) .

By using the relation n2 = p/|6;|, and (1.4) along with the independence result stated in
2
Theorem 1, we obtain that R,(N,) = E(g% + N, p) . Accordingly the regret R may be

written as:

R(p, 01) = E(‘% + Np) - 2n0 = nOE[u(_]—T\;f) - u(l)] 9

where u(z) = £+ 1/z. By using a second order Taylor series expansion of u(z) about the

point 1, we get that,
Ny _ (N, 2.1\3
W) - u(1) = (G- 1DA(3)

where b is some intermediate point with [b—1| <|N,/ng—1|, b— 1 a.s. and b> 7 on
the set {N, > n¢/2}. Accordingly

G”(Gl)

E[no(u(f—:) — (L[N, > no/2]] = E[N,’;‘?(%)"I[N,, > no/2l] > Tt

as ng — 00, by Lemma 1, Lemma 6 and Lemma 7. On the other hand, since on the set
{N, <ng/2} with ng >1, 0< (u(%ﬁ-) —u(1)) < eng, for some constant ¢ > 0, it follows
that

E[no(u(]:—:) — w(W)I[N, < n0/2]] < enP(N, < no/2) .

By Lemma 3 and Remark 4, the right side of the above inequality tends to 0 as ng — oo,

provided that g > (—2;5:1—) . This completes the proof. |

Remark 2:
a) Known members of the exponential family discussed here are the (two-parameter) Nor-

mal, Gamma and Inverse Gaussian distributions (with 8 being an interior point), (see



Examples 5.1-5.3 in BLR and the discussion in BB). In all of these cases, explicit ex-
pressions for the statistic Z,, and the function G are readily available. It can be shown
that in these three cases, Assumption A.3 holds with v = 1 and Assumption A.4 is
satisfied with mo > 1 + 28. So that the second order result of Theorem 3 requires an
initial sample size mo > 12. For specific cases the initial sample size can be reduced.
For instance, Woodroofe (1977) has shown that in the normal case mo > 6 is suffices.

b) It is interesting to observe that for the normal case and for the inverse Gaussian case

1

G"(6,1)/7%(61) is independent of #; and is equal to 5. However, for the gamma case

the limiting regret depends on 6; .

3. Auxiliary results and proofs
Let Z, be as defined in (1.6), Z, = Ty.n —n%)(To:n) ,n > 2. In the following lemma we

state some of the large sample properties of Z,.

LEMMA 2. For each 6, € ©,, as n — 00,
() Z, = Z./n X35 G'(6,),
(ii) v/7(Zn — G'(61)) = N(0, G"(61))

Proof: (i) follows by the strong law of large numbers and (1.5). To prove (ii) we expand
Y(Ty.n) about g, to get

¢(T2:n) = 71[’(/1'2) + (T2:n - ”2)¢,(ﬂ2) + En/n 9

where &, = n(To.n—p2)*¢" (1n)/2 , and py, is some intermediate point satisfying |pn — p2| <

ITgm — ,u2| . Accordingly, Z,, can be rewritten in the form:

(3.1) Zn=) Y;—tn,
i=1
where we have put

(3.2) Y; =Uu(X;) - ¢'(ﬂ2)U2(Xj) + (@' (p2)p2 —P(p2)), j=1,...,n.

Clearly, Yi,...,Y, are i.i.d. r.v.'s. Using (1.2)-(1.5), it follows that E(Y;) = G'(6:) and
Var(Y:) = G"(61). Next, observe that 3"(un) — 9"(p2) w.p. 1 as n — oo and that
VI (To:n — p2)? LN 0, so that £,/v/n LN 0, as n — oo. The proof of (ii) now follows
from Slutsky’s Theorem and the C.L.T.. |



Remark 3:
a) It can be easily shown that the marginal distribution of the rws. Y;, j = 1...n,
depends only on the parameter 6;. In fact, under Assumption A.1, one can use (1.1)

and (1.5) to show that the moments generating function My, (t), of V; is given by:
MY1 (t) = exp{G(t + 01) — G’(01)}, t+6,€0,;.

b) It can be verified that the sequence ¢, satisfies conditions 4.1 and 4.2 of Woodroofe -
(1982), (see Example 4.1(ii) there) and thus is said to be slowly changing.

LEMMA 3. Suppose that G'(-) and mg satisfy Assumptions A.3 and A.4. Then as p — oo

a) noP(N, <ng/2) — 0
and
b) B((F) 1IN, < nof2) 0.

Proof: The proof is carried along the same lines as the proof of Lemma B in BB and is
therefore omitted. |

Remark 4: It can be easily verified, by using the same arguments as in Lemma B of BB,
that for £ > 1,
nkP(N, <ng/2) =0 asp— oco.

provided that the condition on # in A.4 is replaced with § > g,yifll% .

Since G'(-) is monotone increasing on O, we can rewrite (1.9) as:
(3.3) N, =inf{n > mo ;n(—g(Znan))* > p* },
with g(u) = G'~(u). By using the relation ¢g(G'(61)) = 6, and a Taylor series expansion
about G'(6;) we get: '

n(Znan — G'(61))  1(Znan — G'(6))?

(349 nl-g(Znan)® = n(-6)F - S AT TS > Q(ra),

2 1
where Q(vn) = d_[ﬁ%géﬁﬁlb:‘y and 7, is some intermediate point satisfying

|Yn — G'(61)] < |Znan — G'(61)|. Using this and expression (3.1) for Z, in (3.4), we

immediately obtain

n(—g(Znan))*

= En = gn + En,
(—6;)%

(3.5)




where with &, = n(Ta.n — p2)%9"()/2 as in (3.1) and Y; as in (3.2) and with 7(6,) =
—26:G"(61), (> 0):

(36) Sa=3ofe, Fumi-(BZCOD sy,
v én _ Z_n(ao + nan) n(Znan - G,(el ))2
é-n - T(gl) T(91) + 2(_01)% Q(’Y‘n) :

So that by (3.3), (3.5), (and since no(—6;)% = p?);

(3.7) N, =inf{n > my ;En >ngt.

Clearly gn, n > 1, are partial sums of ¢.i.d. r.vs. with E(lﬂ;',) = 1 and V(}'\’ii) =
G"(61)/7%(81), ©>1. Also, by following Example 4.1 (ii) and Lemma 1.4 in Woodroofe
(1982), it is easily seen that En, n > 1 are slowly changing. Further, in light of Lemma 2
and the independence of T5., and Z,, one can easily observe that as n — oo: En 2, Vv,

where;

—

G"(01 )
2

(38) V [G’"(01 )‘/1 - V'z - 91 G"’(91 )V'z ot 7-(91)G’(01 )ao] s

~ 2(6y)

with V; and V5 being two :.:.d. X%l) random variables. In particular it follows that

Zn/\/r_z—’p—>0,as n — 0o.

Proof of Lemma 1 Since (3.5) and (3.7) hold, and Zn /\/n 2,0 and Zn are slowly chang-

ing, the result is an immediate consequence of Lemma 4.2 in Woodroofe (1982). |

Now, let ¢ > 0 and A, = {ITlm-—,u]| < € and |T2;n—,u2| <e€},andset V, = EnI[An],
In the following lemma we show that conditions 4.10-4.15 in Woodroofe (1982) are satisfied
by V, and the sets A,, n > 1. These conditions together with the result of Lemma 3 (a),

are required to establish Theorem 2.

LEMMA 4. Let A, and V,, be as above. Then:

(1) Y P(|J A% <o,

n=1 k>n



(2) ZP(V,, < —né) < 0o, forsome 6, 0<é6<1.

n=1

(3) Jmax |Vatk|, » > 1, is uniformly integrable .
SKESn

(4) Vo, 2V as n—> oo .

Proof: Since I[A,] — 1 w.p.1l. and Zn 2, V, (4) follows trivially. Since % is twice
differentiable we have that for a fixed uo

Y(@) — P(u2) = (z — p2)¢p'(z")

for some intermediate point z* between = and p2, and on |z — p2| <€, |P'(z*)]| < c(e)

for some constant c(€). Also on A, the functions ¢ and @ are bounded. Thus
|Vn| S Cln(len - l»tl)2 + czn(sz — '[],2)2 + c3,

for some constants c;, ¢ = 1,..,3 depending only on €, ¥ and Q. Now (2) and (3) follow
as in Example 4.3 of Woodroofe (1982) and relation (2.14) there. To prove (1) note that

o ! o — € e - €
< g — —_ g — —
;P(kgnfl k) < ;P(I,@c [Tk — | > 5) + ,; P(max |Tyx — pal > 3),

and each of these last two sums is finite by applying the reverse submartingale inequality
to the sequence {|T}.n — pi] ;n > 11}, ¢ =1,2. This completes the proof of the Lemma.
||

LEMMA 5. Let € > 1. Then for all n > nge,
P(N, >n) < e~(nmole,

for some constant ¢ > 0 depending on ¢ and G" .

Proof: Since P(N, > n) < P(Zna, > nG'(—-p/n?)), and an, = 1+ 1/n + 6y, the proof
follows exactly as that of Lemma A in BB. |

LEMMA 6. Let N, be as defined in (2.1). If Assumptions A.3 and A.4 hold, then as
g — 00,

E(NX*I[N, < no/2]) + E(N3*I[N, > 2n,]) — 0.



Proof: Clearly, on the set {N, <no/2}, N, 2 < ¢ny, a.s. for some constant c. Therefore,
E(N;2I[Np < n0/2]) < cenoP(N, < no/2) — 0,

as ng — oo, by Lemma 3. Also, since N;2 < (Np2/n0 + ng), we have;
1
E(NY*I[N, > 2no]) < ;—E(N,FI[N,, > 2ng]) + noP(N, > 2no).
0

By using Lemma 5, it follows that

B(NZIIN, 2 2n]) < = 3 ke (k2000 4 pgenoc

n
0 k=2no

which approaches 0 as ng — 00.

LEMMA 7. If Assumptions A.3 and A.4 hold, then N;ZI[no/Z <N, <2ng], ng>1, are
uniformly integrable and
Gll(ol)
lim E(N}?) = —+= =[462G"(6,)]7" .
-nolivnoo ( p ) T2(91) [ 1 ( 1)]
Proof: The second assertion is an immediate consequence of the first assertion and Lemma
1 and Lemma 6. As for the first assertion, it suffices to show that there exists a function

A(z) such that zA(z) is integrable (w.r. to Lebesgue measure on (0,00)), and
P(no/2 < N, <2ng ,|N;| > z) < A(z) ,

for all z and ng, (sufficiently large).

If 2 > ,/no/2, then clearly P(no/2 < N,<2n,N; < —:c) =0. If 0 <z <+/n/2, then
N, > no/2 and N} < —z imply that n¢/2 < N, <no — /noz.

Define Ip,.; = {k: no/2 < k < no — y/noz}. Thus,

g

(3.9) P(N, >

, N2 < —a:) < P(Zk < kG’(%), for some k € Iny:; ),

(since ar > 1). By using expression (1.5) for G'(61) and (1.6) for Zy, and since G" is
positive and continuous, it follows that the event Zx < kG'(T#) implies that

T — ks — k((Tox) — $(p2)) < k(G'( — G'(61)) < —|b1lev/mos
k?)



for sufficiently large = and no. Thus the right side of (3.9) is bounded by

P[lek — kpy < —+/nozey, for some k € Ino:z]

+ P[ — k(¥(To:) — ¥(p2)) < —/nozce, for some k € Ingia,
= I1 + I2 )

for some constants ¢; and ¢;. Now,

I <P[ max |Tux—kpa|> Voze | < Cz™*
1= [no/2<k5no| 1:k p| 0LCy ] = )
for some constant C, by the submartingale inequality. As for the second term I, note

that since 1 is twice differentiable, for any § > 0 there exsits a constant $(8) such that
|z — p2| < & implies |1h(z) — P(p2)| < B(8)lx — p2|. Let

A= {|Tox — p2| < ﬂ\/?m, for all k € I,,.; }.

Notice that /noz/k < 1 for k € I,,.; and by choosing B small, on the set A, for all
k c Ino:z

[#(Tss) — ()| < BLIBLPE < L2

Thus again;

I, < Tox — k VnozB ] < Cz™*
2 _P[no/xgﬂzakxsml bk — ko) > /nozf | < Cz™*,

for some constant C, by using the submartingale inequality. The same bound can be
obtain for P(no /2 < N, <2n9 ,N; > a:), z > 0, by similar arguments. This completes
the proof of the Lemma. |
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