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ABSTRACT

Let {X;} be i.i.d. {Fs}. We consider the testing problem H; : 8§ < 8y vs Hy : § > 6,
where sampling is done sequentially in batches with variable batch sizes.

For some parametric families {Fj}, and under natural cost structure, we character-
ize the Bayes procedures. This characterization of Bayes procedures lead to a similar
characterization of essentially complete class of procedures.

Introduction

Let {X,-}f;l,N < oo be a sequence of independent random variable. Assume X; ~ Fy

where Fp is a one dimensional exponential family.

Assume for each m = 1,2, ..., after observing X;,...,X,, the statistician may decide
one of the terminal decision H; : 8§ < 6y or H; : 6 > 6y, or may decide to sample one more
observation at a cost ¢1, or to sample a batch of two more observations at a cost c,. This
formulation will be generalized later (section 3) to treat problems in which more than two
batch sizes are allowed. We will assume that an initial set of observations X3,..., X7 I >0
is always given. It will be called the initial observation, and the first decision is made after
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observing it.

A little research was done about sequential decision problems in this sefting, for some
reference see [6] [10] for example. The purpose of this work is to characterize Bayes proce-
dures, the characterization is by monotonicity (see definition 1). The definition of mono-
tone procedures is a natural extension to the batch sample problem of the definition given

by Sobel [9], and Brown, Cohen, Strawderman [1], for monotone sequential procedures.
Section 1: Preliminaries

We will now describe the problem in a decision theoretic framework. Let A,, =
{d?*,d5*, b, b7*,n™} be the actions available at stage m. d™ should be interpreted as the
terminal decision H;, and b® as the decision to sample a further batch of size ;. The

meaning of the action n™ will be clear later.
Let the terminal loss L(6,d;),i = 1,2, be a real valued functions. Assume:

(7) L(6,d,) is non decreasing

(22) L(8,d;) is non increasing

We will consider decision rules based on sufficient statistics S, = X1 + ... + X,
Sm ~ Fg*,m = I,I +1,.... For reasons to be clear we add a point 7 to the real line,
denote R = RU(#). A decision rule is a collection of randomizations Om(+|8m) on Am—141,
Sm € Rm m = LI +1,I +2,.... The randomizations satisfy the following:
aEAE—I+1 bm(alsm) = L,6m(n|f) = 1,6m(n|sm) = 0if sm # n. A set D = {6,} and

a parameter §, determine a stochastic process on (A1 X Ry) X (A2 X Rr41) X ... . Its de-

scription is the following: Observe sy € R; according to the law FOI (ds), choose an action
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a; € A; according to the law é7(-|s;). If a; = bl, then observe a point sy, € Rriq ac-
cording to the distribution law of S;4; conditioning on S7 = sy, choose an action ay € A,
according to the law 6741(-|Sr4+1) and so on. If a; = b} then observe sy45 according to the
distribution law of S742, conditioning on St = sy, set sy41 = 7 and accordingly choose
the action nf*1, then choose an action a3 € A3 according to the law § 1+2(+|sr+2), and so
on. Thus the value 7™ indicates that at stage m — 1 a batch of size two was taken and the
“action” denoted n™ indicates that no “significant” new decision can be made at that stage
because it is only the first observation in a batch of size two. Finally if a; = d¥ i = 1,2,

setam=17a,ndsm=ﬁform>k.

In the case N < oo we will assume Ay_y = {d) 1,dY =1, 6N 1 nN-1} Ay = {4V,
dév N }. Denote the measure induced by 8 and D as Hyp; denote its marginal on A; x A; X

...XAN as ug,p. Let 7(6) be a prior distribution, and denote Hy p(da) = [ Hy p(da)dn(9).

For a sequence a = (a1,a2,...) € A1 X A2 X ..., let k be the first index such that
ar = df or ar = d§. Let ny be the number of indices i such that a; = b% 7 < k, let ny be

the number of indices i such that a; = b,¢ < k. Define the loss function:
f}(ﬁ, (a1,a2,...)) =c1-ny +co - na + L(6, az).

Define the risk function:
R(6,D) = / £(6,a)dus.p(a).

A Bayes procedures D° satisfy for some prior:

Min / R(6, D)dr(8) = / R(6, D°)dn(6).



Total-Positivity

The concept of total-positivity will be used in the sequel, and we will review some

facts about it now. Some references on this subject are [2] and [7].

Definition 1.1: The function ¢(z) : R — R changes signs at most n times if and only
if there exist —co = ap < a1 < ... < @py1 = oo such that p(z) preserves its sign on

(ai,ait1),i =0,...,n, i.e., it is either non negative or non positive.
Let {Gg} 6 € © C R be a family of distributions on the real line.

Definition 1.2: {Gs} is TP, if for any function ¢(z), that changes signs at most n — 1

times, L(0) = Egp(z) changes signs at most n — 1 times, and if it does change sign n — 1
times, then it does so in the same order as ¢. {Gg} is ST P, if in addition for any ¢ as
above which is not identically zero, the function L(6) changes sign at most n — 1 times in
the stronger sense that there are —oo < a3 < ...< ap_1 < oo as in Definition 1 such that

L(6) can be zero only at a;,1 =1,...,n— 1.

Suppose X; ~ Fg 6 € O are ii.d., {Fs} is an exponential family and = () is a prior

distribution on ©. Denote:
dV.s(x:-l-i’n) = dy(n+i’n)(3n+i|5’n = sn)

the conditional distribution of S;,+; given S, = s, and a prior 7(6).

In the sequel we will require {V§:+i’n)} to be ST P3 with respect to the parameter s,,.

Denote F§n+i’n)(dsn+,‘|5n = 8p), the conditional distribution of S,; given S,, = s.,.

Proposition 1.1: Suppose for some §, € O, {Fg:+i’n)(dsn+i|5n = $,)} is (S)T'P,, with
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respect to the parameter s,, then for every m(9) {1/53'“’”)} is (S)T'P,.
Proof: [5].

Proposition 1.2: For the cases where {Fy} are: Binomial § = P, Poisson with § = X its

expectation, Geometric § = P, Exponential § = A, A\~! its expectation, Normal 8 = y its

expectation, dFG(.:"’")(danSn = 8p,) is ST Py (i.e., STP, for every n).
Section 2: Main Theorem

Definition 2.1: A batch sampling sequential decision procedure is monotone if for every
ém € D there exist numbers —oo < CJ* < CF* < C* < C* < oo such that 6, (ds|sm) =1
if Sm < O 6m(b1|sm) = 1if s € (CP,CF) U (CPF,CF), Sm(be|sm) = 1if s, €
(C7,C3) and 6,(d2|sm) = 1if sy > CF", for almost every real number s,, under Hy .
Randomization are allowed when Sy, = CT between the actions taken for s,, € (CT.4,C))
and sm € (C*,CTy,). (Obvious modification in the randomization description is needed

when CT = C%,,.)

Theorem 1: Assume {V,S:: +im) } in STP; for every m and for ¢ = 1,2. Then every Bayes

procedure in a batch sampling problem is monotone.

We will first consider the case of finite horizon, i.e. when the number of available

observations N, is finite. First some notations and lemmas. Denote:

(s = [ 16, d:)dn(01Sm = 5)
In words pi*(s) is the conditional on S, = s additional expected loss for deciding the
terminal decision d;; here 7(6|s,, = s) is the posterior distribution of 4. (“Additional” to
the cost of sampling so far.) Let 3™+ "(s) be the conditional on Sy, = s expected additional
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loss for a Bayes procedure among those that sample at least one more batch after observing
Sm = s, where the number of available observations is N = m +n,n # 0 n < co. Define

BN(s) = 1\1[111%(,0;”(3)) if N > m. Then:

ﬂ$+n(3m) — 1\_/[11% [/ Min [c,- + ﬁzi-?(s),cz. +p’17'+i(s),c; +p12n+i(s)] du(m+i,m)(3|3m)

Lemma 1: pP*(s) is non decreasing and pJ* is non increasing.
Proof: Sobel [9].
Lemma 2: pP(sm) = [ p7T(s)du(™+om) (s5,,).

Proof: Sobel [9].

Lemma 3:
(2) Brt™(5,,) — pT(5m) is monotone decreasing.
(22) Brt™(5,,) — p5(8m) is monotone increasing.

Proof: The proof is similar to B.C.S. [1]. It is by induction on n. The general induction

step is a s follows:

(idd) Bt™(5m) — PP (5m) =
= B(sm) = [ ARSI (sls)
- gg;g{ [ Min [es+ BRERG) - o) i+ ATH(S) - (),

d,/(m+i,m)(3|sm)}

The first function in the internal brackets is monotone increasing by the induction
hypothesis, the second is monotone decreasing by Lemma 1, and the third is a constant.
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Hence the function Min [-, -, -] is non decreasing. The family {du(mi’m)} is STP; and thus

Sm

stochastically increasing. Therefore

gi(sm) = / Min [, -, -]du(m+i’m)(s|sm)

(m+i,m)

is non decreasing. The fact that {dv,,, } is STP; implies easily that for every real

number w, ¢;(8) — w is zero at most at one point and hence ¢;(s) is monotone increasing.

This implies B2 (sy) = M}r;(g,-(sm)) is monotone increasing. Similarly we can prove
i=1,

the other part.
Remarks on Lemma 3.

(i) Lemma 3 is still valid in the more general case when sampling a batch of size ¢ at

stage m costs c[* > 0.

(ii) Lemma 3 is still valid in the more general case in which at some stages, only one size

of a batch is allowed.

Notice the interesting case is when ¢; < ¢y < 2¢;; otherwise the best policy is to
always sample a size one batch, or always to sample a size two batch. Thus we assume

wlog c1 < ey < 2c.

The following notations are needed for the proof of the next lemma. Let r™*"(D/s)
be the conditional on S, = s additional expected Bayes loss, v&hen there are n re-
maining observations Sm+1,...,Sm4n using the procedure D,n < oco. Let AT*7(s) =
rrtn(D?|sp,) — rmt®(DY|s,, ), where D! is the procedure that takes a batch of size 7 after
observing Sy, and then proceeds optimally. Denote by #™+"(D?|s.,+1) the conditional ex-
pected additional loss using D? conditional upon Sm41 = Sm41 When there are n remaining
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observations Spy+1,. .., Sm+n. Denote:

At ™(smt1) = Fut™(D?|sma1) — Pt ™ (DY sm1), 1 < oo

Lemma 2.4: ATt"(s,,) changes signs at most twice, and if it does, then there exists
(al*,a3*) such that the function is negative if and only if s, € (al*,aJ*). Moreover A™+7(.)

can be zero only at its crossing points.

Proof: Notice that:
AR (sm) = /A1mn+"(3m+1)d'/(m+1’n)(3m+1lsm)-

By STP; of {dV,(Z'H’m)} it is enough to show A™+%(.) changes signs at most twice and

in the right order.

Examine the following auxiliary problem, which is a variant of a batch-sampling prob-
lem. Prior 7(6) as in the original problexﬁ, the initial observation is Xj,..., X ,41; the
available actions are A; = {d},d;,b7,b},r} and Ay = {d{,dy,b{,bJ,77} for 1 < J. dJ,b]
and n” have the usual meaning. The action r € A; has the meaning of sampling a batch

of size one at a cost ¢ — ¢;. The cost of a batch of size one using bIJ is ¢, of a batch of size

two using by is ¢z as in the original problem. The terminal loss is L(6, d;) = ¢; + L(6, d;).

Notice that: At the first decision stage in the auxiliary problem, the conditional loss
conditioning on S;m41 = $m+1 and given that the Bayes action only among {d3, d}, 8}, b3}
is taken (respectively, given that the action r is taken) is Fm*"(D1|s) (respectively, is

Fm+n(D?]s)). Paying attention to these definitions we conclude:

P (DY) 2 FR(D?]s)
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if and only if the Bayes action in the auxiliary problem given Sp,4+1 = $y41 is 7.

The Bayes action in the auxiliary problem cannot be vb}, the action m is better since
¢z — ¢1 < c¢1; the Bayes action in the auxiliary problem can neither be b, because it is
better to take the action r and then either to stop or to take b2. Hence in the auxiliary
problem we need only to consider Bayes action among A} = {d},d},r}. From the remarks
following Lemma 3 we conclude: The Bayes action in the auxiliary problem is r if and only
if spy1 € (E{'H'I,E;"H) for certain E{”'H < E;""'l. Thus Am+n(sm+1) changes signs at

most twice, and the proof follows. O

Proof of Theorem 1: For the case n < 0o, the proof follows from Lemmas 1, 3, 4. In the case

n = oo, we consider the M truncated sequential decision problem. As in Chow Robbins
and Siegmund [3] B2(s) = A}linoo BM(s). Since BM(s) — pI*(s) is monotone increasing for
every M < oo, we get: B3°(s) — p7*(s) is nondecreasing. Now the equa;cion (iii) in Lemma
3 is true also for n = co. Hence we can conclude as in Lemma 3 that 82(s) — pT*(s) is
monotone increasing. Similarly for B°(s) — p*(s). As in Lemma 4, we conclude A%(s)
changes sign at most twice, and by ST P; of duﬁj*l’"‘), A%(s) changes sign at most twice

and it is zero only at its crossing points. The proof now follows.
Proposition 3.1: The class of monotone procedures is an essentially complete class.

Proof: This can be shown as in [1] and [9]. The reason is that every admissible procedure

is a limit of Bayes rules, and limit of monotone procedures is a monotone procedure. [

Section 4: Generalization

Suppose at each stage the size of the next samplecanbe 1,2,..., M. Define by,..., by,



Dl ...,DM and rm*+7"(D|s) in the obvious analogy to the definition in Section 2. Suppose

the cost of a batch of size ¢ is p+ ¢ - 4.
Theorem 2: Suppose {duf.:“’m)} is ST P; for every m and . Then:

i) For £ > k,7m*"(D*|s) — #™*"(D*|s) changes signs at most twice, and if it does it is

first positive. Moreover the function is zero only at its crossing points.

ii) If the available batches at stage m are of size 1,2,...,min(n, M), then the Bayes

. s m
action is bmin(n,M

y if and only if s, € (ET*, ET*) for certain Ef* < EJ*.

We find it convenient to deal with a slightly wider class of batch sampling problems
to be described. The available batches at each stage m are 1,2,... ,min(M,n) but at the
first stage the available batches are of size 1,...,M;. M; < min(M,n). Also the cost of a

batch size i is p+¢-¢, but at the first stage the cost of the batch size M; is cu, < pte- M.

We will denote the cost of a batch of size 1, c;.

Proof of the Theorem: (ii) follows from (i), Lemma 1 and a modification of Lemma 3 to

the multi batch case.

(i) The proof is very similar to that of Lemma 4. We will briefly describe it. We use a
double induction argument. Suppose we have proved (i) for every pair £, k £ > k such

that £ < L, we will prove it for £ = L.

The proof for £ = L will be by induction on the number of remaining observations n,

assuming the total number is N = m + n. Define:

ATH(s) = rp ™ (Ds) — ™ (D¥|s)
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Define #™t7(D¥|s) the risk using D* conditional on Smtx = s. Similarly define

#mtn (DE|s). Denote:
Aptn(s) = Fnt™(D¥s) = Fnt™(D"]s).

Then:

By STP; it is enough to show Am+"(sm+k) changes signs twice. Consider the auxiliary
problem with initial observations X1, . .., Xm+k, actions Ay = {d,d3,b},...,b4,,7}, A7 =
{d,di,b,..., bﬂ,fj }J > 1, M; = {M, N—J}, terminal loss function L(6,d;) = cr+L(8, d;).
The action r has the meaning of taking a batch of size £ —k at a cost ¢, = c¢,— P —c-k.
Notice that ¢, < p+c-£ and hence ¢,—x < p+c- (£ — k). It is easy to see from
the cost structure that the actions bg_g,be—g+1,. .. are inadmissible and in the auxiliary
problem we may consider only A} = {d%,d%, B,...,be_k—1,7}. Asin Lemma 4 AmH+7(s)
is negative if and only if the Bayes action conditional upon Sm4r = s is r. By induction
hypothesis there exist an interval (E***, EJ**¥) such that the Bayes action is r if and
only if smix € (EM™H¥, EM+F). The proof now follows by STPs of {V§:+k’m)}. For the

case n = oo we proceed as in Theorem 1. t

We will now extend the definition of monotonicity to the multi choice sequential batch

sampling problem.

Definition 4.1: A multi choice sequential batch sampling problem, with largest available
batch of size M, is monotone if there exist numbers —oo < E* < ... < E' < B' <
... < B < oo such that 6,(b7|s) = 1if s € (E*, E},) U (B%,,B*), 6m(dT[s) = 1 if
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s € (—00, E?), 6m(dF|s) = 1if s € (B*,00). Obvious randomizations are allowed when

S$m = E" or s, = B".

Theorem 2 together with Lemmas 1 and 3 modified for the multi choice problem,
do not yield a monotonicity theorem. The following structure does not contradict them:
Let oo < E™ < E* < EP* < E* < 00;6m(b*|s) = 1if s € (E*,E*), 6 (b|s) = 1 if
s € (B, EM), 6 (b3 |s) = 1if s € (B, ET), 6(d*|s) =11if s € (—o0, E?), 6(d5*|s) =1

if s € (Ef*,00).

When the problem has enough symmetry, a monotonicity theorem can be proved for

the multi batch problem as in the following two examples.

Example 1: Consider a multi-batch sampling problem where Y; ~ N(6,1)H; : 6§ < 0 v.s.

H, : 6 > 0, the prior 7(6) is N(g,0?) and the loss is 0 — 1.

Example 2: Consider the problem in Example 1 only with the following different loss func-

tion

Ko, = {10 1020

0 otherwise
Here ©; = {0|6 < 0} ©2 = {6]¢ > 0}. This problem was considered by Chernoff [4] and

other authors in the ordinary sequential framework.

The following consideration applies for both problems. There exists a value s° such
that if the first observation is s° then 7(6|s°) is symmetric around 0. A Bayes procedure
should obviously be symmetric around s°. This fact together with Lemmas 1 and 3 and

Theorem 2 yield the desired monotonicity.
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