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1. Introduction. We examine large sample decision theoretic properties associated with
the relative entropy or Kullback-Leibler distance between probability density functions for
independent and identically distributed random variables in smooth finite dimensional
parametric families. We derive an asymptotic expression for the Bayes risk of the Bayes esti-
mator and for the minimax risk. Among smooth priors, Jeffreys’ prior uniquely achieves the
asymptotic minimax value. Also, the convergence of the Bayes risk is shown to be equivalent
to a strengthened Bayesian central limit theorem. Indeed, it is shown that the standardized
posterior density converges to the normal density in the relative entropy sense.

Given a parametric family of probability density functions {pg: 6 € Q}, Q ¥ R?, with
respect to a fixed dominating measure A(dx) on a separable metric space X, with probability
measures assumed to be defined on the Borel subsets of X, we denote the density of n

n
independent outcomes x” = (x1,....x,,) by pg(x™) = IT pg(x;). A quantity of interest to us is
i=1

the relative entropy D (pg | | g,), between the density functions p§(x™) and an arbitrary joint
density function g, (x™), with respect to the same dominating measure A" (x").

A game-theoretic interpretation is that one player, Nature, picks 6 € Q and assigns the
joint density pg for each n, while a second player, the statistician, chooses ¢,, for each n. We
let the relative entropy D (pg | | g,) be the risk to the statistician, or, in game-theoretic termi-
nology, the ‘payoff’ to nature. For prior probability density functions w(8), 0 € Q with
respect to Lebesgue measure on R, the Bayes strategy, which is to minimize
low®D@Z11 q,)d6, is achieved by choosing g¢,(x") =m”(x"), where
my(x") = IQ po(x™)w(8) dO. Note that m,’(X") is the marginal density for X" = (X;,....X,,)
associated with the joint density w(0)pg(x™) in which pg(x™) is the conditional density func-
tion for X" given 0 and w is the prior.

Here we are interested in the asymptotics associated with the Bayes strategy. The quanti-
ties that we examine in this paper include the risk of the Bayes strategy,

R,0,w)=D@gll m)), (1.1)
its corresponding Bayes risk,
R,(w) = S{ R,(®, w)w(©)d8, (12)
and the minimax value,
R, = i;:fesg%D s !l g,). (1.3)

Here D (p 1| q) denotes the relative entropy or Kullback-Leibler distance which for densities p
and q is defined to be
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D@l q)=E, log 24X)

qX)’

A statistical interpretation of D (pg || m,’) is as the cumulative risk of a sequence of
Bayes estimators. Indeed, let g (x) be the predictive density given by

@) =mPX, =x 1 X1 = mp&X*ympy | (X5,

for k=2,...n. For n=1, py(x) = mY (x). Then, as in Clarke and Barron (1990a) or Aitchison
(1975), it is seen that g}, is the Bayes estimator of the density of X, based on X k-1 under rela-
tive entropy loss. The cumulative risk of this sequence of estimators for k=1,2,..n is
D (g || m}). Indeed, by the chain rule for relative entropy ,

Y E, D@l &) = 3 E,, log Do)
0 = —
- Pl my X, | X571
peXy) - - - peXy)
=EP0 log w w n-1
mY X e om¥ (X, | X*)
peX™)

(o)
po 8 ™
D@L m?).

Consequently, in a sequential estimation context, R, (6, w), R,(w), and R, may be interpreted
as the cumulative risk of the Bayes estimators, the cumulative Bayes risk, and the cumulative
minimax risk, respectively.

In this paper we determine, under suitable conditions, asymptotic expressions for the
quantities (1.1), (1.2), (1.3), and we find the asymptotically least favorable prior corresponding
to the minimax risk.

The asymptotic risk of the Bayes estimator R, (0, w) = D (pg | | m,}) is shown to satisfy

1
w(0)

R, (0, w)= %log % + log det 1(8) + log +o(l), (1.4)

in which the error, o (1), tends to zero as n — oo, uniformly on compact sets in the support of
the prior, where 7 (0) is the Fisher information matrix.

The Bayes risk, R,(w) = [ R, (0, w)w(0)d6, is obtained by averaging the risk with
respect to the prior w. It is seen that this Bayes risk is also Shannon’s mutual information
between the parameter 6 and the sample X ,...,.X,,. That is,

R,(w) =1(0; X"),



-4-

where, by definition, Shannon’s mutual information 7(®; X") is the relative entropy distance
between the joint density w (B)p(X™) and the product of marginals w(0)m,’(X™). The asymp-
totic expression we obtain for the Bayes risk is

d n 1

R,(w) = —log — + — _[ w(0) logdet /(0)dO+ H(w) + 0 (1), (1.5)

2 2re 2 g
where H(w) = ] w(0)log ( 1/w(0)) d6 is the entropy of the prior density w, and 0 (1) = 0 as
n — oo,

Moreover, we show that the asymptotically minimax risk is achieved by Jeffreys’ prior,
w* (0) = vdet 1 (0) ,
c
where ¢ = fQ Vdet I(0) d® is the normalizing constant. The corresponding asymptotic
minimax risk is
inf sup D@EI1 q,) = Llog =~ + log [ VASTT(B) d6 + o (1). (1.6)
qn 9 Q 2 2ne o
We also examine the asymptotic behavior of the posterior density for 6 given X". We
find that it is asymptotically normal in expected Kullback-Leibler distance, to wit,

E, Dw(ClI X"l ¢,) =0, 1.7)

where ¢, is a normal density with mean E(®| X") and variance cov(®l X"), and
w1 X*) =w(O)po(X™)/m, (X™) is the posterior density for 6 given X”. Note that the target
normal has mean an variance dependent on the random variables X", so that it tracks the pos-
terior but this does not mean that the posterior converges to a fixed normal. In Section 5, we
demonstrate a surprising connection between asymptotic of the posterior, convergence of poste-
rior covariances to the inverse of the Fisher information, and the asymptotics of I(®; X™).
Indeed, under conditions given in Theorem 4, we see that the bounds on the Bayes risk imply
the convergence of the posterior to the normal.

It is our goal that the quantities (1.1), (1.2) and (1.3), and their associated asymptotic
expansions (1.4), (1.5) and (1.6) be of interest to statisticians who concern themselves with
minimax estimation, Bayesian estimation, choice of a non-informative prior, and Bayesian cen-
tral limit theory; as well as to information-theorists who concern themselves with universal
data compression and channel capacity. The implications for the latter two topics will be dis-
cussed in detail in Clarke and Barron (1990b). Next we discuss how our work relates to some
statistical literature.

Schwarz (1978), Leonard (1982) and Haughton (1988) developed expansions similar to
(1.4) for model selection problems using a Bayesian criterion. Indeed, if we have a list of
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parametric families as hypotheses for the density of X", H, ={ p'é: 0 e R% J,fork=12,---
and if prior densities w;(0,) are assigned to each family, then a Bayesian criterion (minimal
average probability of error) reduces the problem to a list of simple hypotheses Hj: X"~ M,*.
Approximations to the expected value of log pgX™)/m,;*(X") which are of order
(d,/2) log n + O(1) reveal the role of the penalty term in the Schwarz criterion for model
selection. The results of Schwarz and Haughton were restricted to families of exponential
form.

Ibragimov and Hasminsky (1973) interpreted I(®; X™) as the information in a sample
about a parameter. They established the same asymptotic formula for it under somewhat dif-
ferent hypotheses, stated only in the one-dimensional parameter case. One of their conditions
A.IV ( expression 4.1) requires that pairs of densities pg and pg, ¢ asymptotically concentrate

on disjoint sets for large s in the sense that the affinity | \NPo(X)Pg 4 s X)Mdx) tends to zero as
§ — oo, uniformly in 6. This rules out many common families such as the Normal (0, 6) and
the Poisson (0). Also, Ibragimov and Hasminsky require ( in Condition A:IIl ) that the Fisher
information be bounded and bounded away from zero. The approach developed for Theorems
1 and 2 below avoids these restrictions and permits uniformly accurate expansions for the risk
D (p 1| m”) as well as the Bayes risk I(®; X") = [ w (@)D % || m)) d®.

The interpretation of Jeffreys’ prior as the choice maximizing an asymptotic expression
for I(®; X™) was given by Bernardo (1979). Our analysis gives rigorous justification for Jef-
freys’ prior as the unique continuous prior for which the Bayes strategy achieves the asymptot-
ically minimax relative entropy risk (Theorem 1). Bernardo’s framework for identifying refer-
ence priors is extended to multidimensional problems with nuisance parameters in Berger and
Bernardo (1989a, 1989b, and 1989c). In the absence of nuisance parameters the reference prior
criterion results in the Jeffreys’ prior.

Jeffreys’ (1961, Sec. 3.10) observed that (det / (6))1/ 2 is the Jacobian of the transformation
of the parameter space that makes Hellinger and relative entropy distances locally Euclidean
and proposed w" (0) = (det I(0))"%/c as a choice of prior which remains invariant under

reparametrization.

In the information theory context of universal data compression the quantities R, (0,w),
R, (w) and R, can be interpreted as the redundancy, average redundancy, and minimax redun-
dancy of universal codes, see Davisson (1973). Krichevsky and Trofimov (1981) studied
minimax redundancy in the multinomial case, obtaining R, = (d/2)log n + O (1) as its asymp-
totic expression. Rissanen (1986, 1987) showed that the redundancy R, (0, w) equals
(d/2)log n + o(log n) for smooth parametric families. The more exact asymptotics for
R,(0, w) derived in Clarke and Barron (1990a) in an information theory setting are here
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extended to give the asymptotics for the average and minimax redundancies R, (w) and R,,.

The characterization of R,(w) as a special case of Shannon’s mutual information
I(®; X™) leads to implications for channel coding with one sender and many receivers. The
applications of our work in this context will be examined in Clarke and Barron (1990b).

There are three main hypotheses which we use to prove (1.4). One is the finiteness of
expectations involving the first and second derivatives of the log-likelihood. Another is that
the relative entropy D(p !l pg) be twice continuously differentiable with positive definite
second derivative. The third is that the posterior distribution concentrate on neighborhoods of
the true value of the parameter at rate o (1/log n), regardless of which element of Q is true.
An alternative hypothesis involves a restriction on the type of parametrizations which are
allowed. We call this concept the soundness of the parametric family and formally define it in
Section 2.

The hypotheses used to prove (1.5) are somewhat different. For the upper bound we
impose what amounts to a tail condition on the rate of decrease of the prior so that an informa-
tion theoretic identity can be applied. For the lower bound we use a maximum entropy argu-
ment and assume that

n cov(®! X™*) - 1(6,)"! (1.8)

in Pg probability, for each 6, in Q. In a follow up result we give conditions which will
ensure (1.8) and are readily verifiable for many examples.

The outline for the remainder of this paper is as follows. Section 2 states the conditions
and four main results which are subsequently proved in sections 3 through 5. Some implica-
tions for parametric density estimation and the merging of Bayesian beliefs is examined in
Section 6.

2. Formal Statements of Conditions and Main Results. So as to facilitate the state-
ments of upper and lower bounds, which typically have slightly different hypotheses, we give a
list of conditions to which it will be convenient to refer.

Expectations, E, are taken with respect to pg unless denoted otherwise. In particular, E,,
denotes expectation with respect to the mixture distribution with density m,, =m,’, and Eg =
is the expectation with respect to the joint distribution. We write p (X | 9) for pg(X) when
convenient. Also, we assume that the parameter space Q has nonvoid interior and that its
boundary has d dimensional Lebesgue measure zero.
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Condition 1: The density p(x | 0) is twice continuously differentiable at © for almost every
x, and there is a & = 8(0) so that for each j .k from I to d
2

| a—logp(XI 0) 12+8

E S
{1 o Soh1 < 5 06700

is finite and continuous on a neighborhood of © for some positive &, and for each j from 1 to
d

El ilogp(x 1 6) 12%% < oo
d0;
is finite and continuous on a neighborhobd of 6.
There are two information matrices, which typically coincide, which we use here. One is
the Fisher information which we take to be defined by

d
I0) = El5g-log p(X | 0)50—Tog pCX | O] o1
J

and the other is the second derivative of the relative entropy
J(9)=[—§-2——D(p ll pe) lor=elj
ae,j 36", 0!l Do) o =0ljr=1..4d-
When Condition 1 is satisfied the relative entropy is twice continuously differentiable and J (9)
is seen to equal the matrix with entries —E ¢ 079,00 ; log p(X | 8). The entries of /(8) will be
denoted by i ik (), and the entries of the empirical estimate / ¥ (6) will be denoted

D TR
i;1(0) = " El 36,36, log p (x; | 9).

Condition 2: I(0) is positive definite and coincides with J (0).
Under Condition 1, condition 2 will be satisfied provided that | 9%06;06; p (X | ) A(dx) = 0.
See, e.g. Lehmann (1983), Lemma 2.6.1.
We next give a condition on the parametrization of the parametric family.
Condition 3: The parametric family is sound at ©, in the sense that the convergence of
parameter values is equivalent to the weak convergence of the distributions they index in the
collection of all probabilities on X. That is,
d

8’ — 0 if and only if Pg — P,

where the parameter values converge in the Euclidean metric.

We say that the whole parametric family is sound if and only if it is sound for each value of
the parameter.
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The weakest condition that we can use in our argument is phrased in terms of posterior
convergence. It is that the posterior probability of any open set N containing the true value 0
is bounded away from unity with probability o (1/log n). More formally, we mean that for any
open set N containing 6, given & > 0 we have that Pg{W®°| X") > &} = o(1/log n) where
W (-1X™) is the posterior distribution of 6 given X". Condition 3 is stronger than posterior
convergence at rate o(1l/log n), indeed it implies posterior convergence at rate O (1/r) as in
Clarke and Barron (1990a).

We believe that soundness is an acceptable hypothesis; it appears to be fundamental in the
sense that without some such property there is no connection between the parameter being
estimated and the distribution of the random variable being observed. A discussion of sound-
ness is in Clarke and Barron (1990a).

For future use we state a result from Clarke and Barron (1990a) which will be useful in
some of the proofs of our results here.

Theorem 0: Assume that conditions 1, 2, and 3 are satisfied for each © in the interior of the
support of the prior w. Then, for each such ©

PeX™) 1 _ d n
log ———— + —S17(©)7's, - — log 55 > log

1
5 1 1
mx® 2" 2 + —logdetJ(0), (2.1)

(9)
in P§ probability and in L{(Pg). Consequently,

R,(0,w)= -log T + %log det/ (6) + log

Wz 5 o,
Remark: These convergences do not require the full strength of condition 1. In fact, the con-
vergence in probability holds if the 2 + & is replaced by 1, and the convergence in L(Pg)
holds if the 2 + € is replaced by 2.

The statement of L(Pg) convergence implies that (1.4) is true pointwise in 8. The first
theorem extends that result by giving the minimax asymptotics in the compact case.
Theorem 1: Let w be any positive and continuous prior supported on a compact set K in the

interior of Q. Assume conditions 1, 2 and 3 are satisfied for each 0 in K. Then the risk of the
Bayes strategy satisfies the asymptotic upper bound

lrllI‘IEIE) sup R,(0,w) — ilog e — log —dv-it(é—;e)- <0. 2.2)
Averaging with respect to w, the Bayes risk satisfies the lower bound

liminf | [ R,(8, w) — —log Ndet78) 119 > . 2.3)

n—e g 2 w (9)



The asymptotic minimax risk satisfies
lim [R, — Zlog="— 1 =log | VLI (®) d6 . 2.4)
Jeffreys prior, w" (0) = Vdet I(8)/c with ¢ = IK vdet 1(0) dO, is the unique continuous and
positive prior on K for which the Bayes strategy achieves the asymptotic minimax value, that is
d n
li R,®, w") - =log —— ] = log [Ndet I(8)d 6. 2.5
i [ supR,(®, w') - Slog ="~ 1 = log [Vaet 1(8) @5)
Remark 1: The upper bound part of Theorem 1 can be obtained under weaker assumptions. In
particular, Condition 1 can be replaced by the requirement that log pg(X) be mean square dif-
ferentiable.

Remark 2: Uniform bounds on R, (0, w) for compact sets in Q can be obtained when w is not

compactly supported.

Remark 3: The (uniform) soundness on the compact set can be weakened to a uniform
o(1/log n) rate of convergence of the posterior distribution. Specifically, we believe that
sufficient conditions for uniform convergence of the posterior at rate o (1/log n) can be derived
from uniform versions of hypotheses used by Wald (1949). We conjecture that a uniform ver-
sion of those hypotheses will imply uniform consistency of the maximum likelihood estimator
which will in turn imply that for some o > 0 and some & > 0 we have

1
log n

Sup Po(W(B(8,001X™) > 8) = o ).

Theorem 1 is seen to immediately give an asymptotic formula for the Bayes risk of the
Bayes estimator under relative entropy loss when the parameter space is compact. Since the
supremum in expression (2.2) tends to zero, so also does the average with respect to w. Thus

we have
d n 1
IR,,(G, w)dO=—log — +HW) + —f (log det 1(0) ) w(©)do + o (1),
% 2 2Te 2%
a special case of (1.5).

The expansion for the Bayes risk can also be obtained for noncompact parameter spaces
under suitable additional hypotheses. All we need is the pointwise result (Theorem 0) and con-
ditions which allow us to take the limit of the integrals as an integral of the pointwise limits.
We find that it is often the case that the Bayes risk is finite for reasonable choices of the prior,
but the minimax value is infinite in noncompact parameter spaces due to the constant which
normalizes the Jeffreys prior.
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Let 6 denote the posterior mean, the coordinate-wise Bayes estimator of 0 under squared
error loss,

we@) = inf w(0),
0’ e B(6, )

1(0) = 1(8) + M (6),
where M is a small positive definite matrix such that
D®110)=D(gl! pg) < (8- 0)6)0 -8
for all 6 and 6" with 11 6 — 611 < e. Also, let
T,e={ 0: nl(6) e >2].

We use the fact that the Bayes risk of the Bayes estimator, I R, (0, w)w(0) dO, is the Shannon
mutual information between the parameter and the data which we denote by I(®;X"). This
allows us to prove the following for general parameter spaces.

Theorem 2: a)Assume that the Bayes risk for the estimation of © under squared error loss, is
of order O (1/n), that is, there exists a sequence of estimators 8 such that for each coordinate

0; of 0 = (01,...,.8,)F
limsup n Eg x»(®; — ;)% < oo, (2.6)

n —eo

where the expectation is taken with respect to the joint distribution for ® and X", and that for
each 0 in the support of the prior,

n cov(®l X"y — I71(0) Q7
in Pgo_probability. Assume also that

| 1log det 1(8) | w(8)d® < .
Q

Then we have the lower bound

limsup [ 1(®, X™) - ilog n ]

n — oo 2

o d 1
2 Jlog 5—+ = J log det 1(8) w(8) d0 + Hw). (2.8)

Consequently, the minimax value satisfies the same bound,

d d 1
inf - = 2 — log — +1 ) log det 1(6) d6 . 2.9
nf sup [R, = 5 logn 12 3 log .- +log | w(®) log det 10 29)

b) Suppose that (2.1) holds pointwise for 0 € Q, in the L{(Pg) mode of convergence and that
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there is an € > 0 so that

f w(®) log w:(e) 46 < o, (2.10)

and for some choice of M (0)

f w(®) log det T (6) d© < oo, (2.11)
and that

W(T, ¢) = o(log " ). | (2.12)
Then, we have the upper bound
liminf [ 7(®; X") — ilog nl< 4 log L + L I log det I(8) dO + H(w). (2.13)
n— oo 2 2 2me 2

Together, (2.8) and (2.13) characterize the Bayes risk. There is no easy upper bound on
the cumulative minimax risk in the noncompact case, because, as will be seen in the proof of
Theorem 1, it requires a bound which is uniform. By contrast, the lower bound (2.9) only
requires the average result (2.8).

The hypothesis (2.10) allows us to identify the entropy H(®) by providing an upper
bound. Hypothesis (2.11) allows a Laplace integration argument to go through uniformly on
the set T}, . The "prior consistency” condition, (2.12), ensures that T), . increases fast enough.

In Section 4 it will be seen that some of the assumptions are used only to identify the
constants so as to get the o (1) convergence corresponding to (2.9) and (2.13). Weaker condi-
tions will give O (1) or coarser bounds using the techniques in Clarke and Barron (1990a, Sec-
tion 5).

We note that if there is any estimator which has Bayes risk of order O (1/n) then the
Bayes estimator also has risk of order O (1/n) since, by definition, the Bayes estimator has
minimal Bayes risk.

The other key hypothesis for the lower bound was the convergence in probability of the
posterior covariance. This may be difficult to verify in some cases. While use of the MLE and
a result due to Bickel and Yahav (1969), will give one set of sufficient conditions as in Clarke
(1989) a weaker list of assumptions can be found, as is given in Theorem 3 below. The proof
is substantially due to Bickel, see Lehmann (1983), pages 454-465. There a result is proved
which improves on Bickel and Yahav (1969) in that hypotheses to ensure the consistency of
the MLE are only used to control the convergence of the posterior probability. Our result
reduces the hypotheses further by dealing with the posterior probability directly.
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The next two theorems treat asymptotic normality of the posterior. The first, Theorem 3,
gives convergence in a strong enough mode to yield ncov(®! X”) — I(0)} in P g probability
as required for Theorem 2. Let

1
5,(8) = — V log pg (X").

Theorem 3: Assume that w is positive and continuous on  and that for 0 in the interior
of Q Conditions 1, 2 and 3 are satisfied. Then,

[ w(T, +tNr | X")

472 - ¢I(6)(t) | dt — 0, (2.14)

Q

where Oy is the normal density with mean zero and covariance matrix I ). Suppose that

we also have

[ o7 0 w(®) do < w. (2.15)
Q

Then, for T,, = 0 + I"1(8)S,,(0) we have that
w(T, +tNn | X™)

feel 57 ~ dreyt) 1 dt >0 (2.16)
in P g probability. As a result we have
n
Joor) 2@xen 1XYD o dr -0 2.17)

nd/2

in P ¢ probability, where 6 = E(® X™).

Remark: In fact, in condition 1 we can choose & = 0. Also, the proof we give below will
extend from the second moment so as to give any posterior moment provided the prior moment
of that order exists. Indeed, the proof applies to a broad class of functions of the parameter,
those which are bounded on compact sets, are integrable with respect to the target normal and
with respect to the prior w, grow at a sub-exponential rate in probability, and allow the bound-
ing argument after (5.21) to go through.

In part a) of Theorem 2, where we want to use (2.17), we note that condition 1 with § =0
and condition 2 are already required since Theorem 0 has been assumed pointwise.

In their proof of (1.5) Ibragimov and Hasminsky (1973) used the asymptotic normality of
a specially constructed density ratio. Also, when Bernardo conjectured the lower bound part of
Theorem 2, he did so on the basis of asymptotic normality. We have also used a form of
asymptotic normality by way of assumption (2.7). We show a converse result, that asymptotic
normality can be obtained as a consequence of the validity of the asymptotic expansion for the
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Bayes risk, expression (1.5). The mode of convergence is expected Kullback-Leibler distance, a
mode which is either stronger than other modes which have been examined or is incomparable
with them.

Theorem 4: Assume that the conditions for the upper bound and lower bound in
Theorem 2 are satisfied. Then, we have that

lm EyD(Pg g || NE@®! X™), cov(®l X™))) =0 (2.18)

n — oo

If only the conditions of the upper bound are satisfied then the convergence in (2.18) is
equivalent to the convergence

Ey log det ncov(@®! X™) — | w(8) log det/ (8)! 4. (2.19)

The expected Kullback-Leibler distance dominates both L' distance and Hellinger dis-
tance, see Csiszar (1967). Thus we have conditions which guarantee the asymptotic normality
of the posterior in the sense that

lim ¢EI1M'l | W(9| Xn) - ¢E(e| X™), cov(81 Xn)(e) Il = O,

n— e

which means that, except for 0 in a set of arbitrarily small measure, the same result holds with
expectation defined by pg.

3. Proof of Theorem 1. In this section we prove Theorem 1 by showing how the proof
of Theorem 0 can be extended so as to be uniformly valid on compact sets K in the parameter
space. In Clarke and Barron (1990a) Section 4, three sets A4, (9, 8, €), B, (0, 8, €), and C, (0, J)
are introduced so as to prove Theorem 0. There, to control error terms, conditions were given
which ensured that the probabilities of their complements decreased to zero fast enough. To
prove Theorem 1 it is enough to demonstrate that those probabilities go to zero at the claimed
rate uniformly for compact sets in £2.

The error terms which must be controlled here are the same. Those which occur in the
lower bounding of D (pg | | m,) are given in Clarke and Barron (1990a) by expressions (4.8),
(4.9), and (4.10); and by expressions (4.12) and (4.13) for the upper bound. In order to be
tight, both the upper and lower bounds require that the modulus of continuity be bounded on
bounded sets and that the posterior probability in Condition 3 be uniformly o(1/log n). In
addition, it is seen that if (4.10) in Clarke and Barron (1990a) is controlled then the other terms
in the error for the lower bound pose no problem. To control (4.10) uniformly it is enough to
prove
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lim sup Pg4(AS(0)) logn =0 3.D
n-o>eo0ek
and
lim sup Po(BS) logn =0. (3.2)
n - 0¢e

It is also seen that (4.12) and (4.13) from Clarke and Barron (1990a) that the error term for the
upper bound tends to zero uniformly if

lim ~ sup PoBS) n = (3.3)
n—oo0be
lim - sup Po(Ciyn =0, (3.9)
n—o e 0
and
lim sup | nEq 1p, nc, sTenr-1)s,’® —dl =0. (3.5)

n—o>0ekK
Clearly, (3.3) implies (3.2).

Proving that conditions (3.1) through (3.5) are satisfied when K is a compact set in the
interior of Q amounts to extending a proof which has already been given. Therefore, we will
not go over all the details, we will merely show that the terms which arise can be controlled.

The next lemma is easy to prove; it will be used so as to control probabilities in (3.3) and
(3.4) and so as to identify constants as in (3.5).

Lemma 3.1: Let Wy, be a sequence of sets for 6 € K so that

lim sup Po(Wy,) =

n—ooBe

Let
n 8= \/_ Z X
be a sum of mean zero, i.i.d. random variables, satisfying
Sup EeX 2+¢€ ,

for some positive €. Then,

lim sup. Eg 1y,, Z25E =0.
n—»>00ek ’

Proof: By the Holder inequality we have that
Ee ]'W Z 2+¢ < Pe(Wen)E/(l + 8)[ Eezg(nl +§) ]1/(1 +e)-

By the second inequality in Ibragimov and Hasminsky (1981) page 186, we have that the right
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hand member is bounded from above by
c (E)PO(WG,n )E/(l + E)[ Ee I )(1,e | 2(1 +¢) ]1/(1 + 8),
where ¢ is a constant dependent only on e. This last expression tends to zero as n increases. O

Proof of Theorem 1: First we show how a uniform version of Theorem 0 implies the con-
clusions about the minimax value, expression (2.4), and about Jeffreys’ prior, expression (2.5).
We start with (2.4). The minimax risk is

R, =R(n,K, {Pe}) =inf sup D(PEII Q,),
0, 0e K

and we denote the maximin risk by

R,* =R*(n,K, {Po}) =sup inf D(PL 11 Q™)
w Q’l i
=sup D(Pg | 1M,).
w

The minimax risk is realized by the minimax estimator. We can upper bound the minimax risk
by replacing the minimax estimator with any other estimator, the Bayes estimator with respect
to Jeffreys prior, for instance. So, we have that

d d
Rn—Elogn Sesg%[D(Pglan)—Elogn],

in which case the right hand side is upper bounded by

2 tog =L + log [ T T(®) d6 + o (1)
2 2me X

by (2.2). The minimax risk is lower bounded by the maximin risk. In turn, it is lower
bounded by replacing the least favorable prior with any other prior, the Jeffrey’s prior for
instance. So, we have that

d d
R, - > logn 2R, * — -2—10g n
d
2 [ w;ODPoll M,,,) do - Slog n.
K
By (2.3), the right hand side has

~(d/2) log 2me + log [ VAt 1(8) d6 — o (1)
K

as a lower bound. Since the upper and lower bounds agree (2.4) is proved, the Jeffreys’ prior
is asymptotically least favorable, and the minimax estimator is the predictive density with
respect to the Jeffreys’ prior.
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It remains to verify that Theorem O holds uniformly on compact sets. Fix 6 € K. We
show that there is an open set containing © on which Theorem 0 holds uniformly. By the com-
pactness of K this will be enough since we may cover K by finitely many such open sets.

Next, we note that (3.3) and (3.4) imply (3.5), by use of the moment assumptions in Con-
dition 1 and Lemma 3.1. Proving (3.3) and (3.4) amounts to proving that the functions ¢, and
¢4 in expressions (4.16) and (4.17) in Clarke and Barron (1990a) are continuous as functions of
0. This, too, can be done by Lemma 3.1, and the moment assumptions in Condition 1 by
directly uniformizing the reasoning of Clarke and Barron (1990a) Section 4.

Now, it is enough to prove (3.1) for some open set containing 6.

We begin by noting that the assumption of soundness pointwise carries over to uniform
soundness of the parametric family on compact sets. Specifically, consider the mapping

g:9-—>Pe,

where the domain of g is a compact set K’ which contains K in its interior and the range of g
is the collection of all probability measures defined on X, endowed with the topology generated
by weak convergence. By Condition 3, g is continuous. Therefore, the image of g is compact
also. By soundness, g is one to one. So, g is a homeomorphism onto its image. By compact-
ness, g and its inverse are both uniformly continuous. '

Following Gray (1988), Section 8.2, we define the metric d; on probabilities from the
metric dx on X. Let G = {F,F,,.} be the countable field of sets generated by balls of the
form {x: dx(x, s;) < Vk } for j.k =1, 2,... where 51, §5,... is a countable dense sequence in
X. We define d; on probabilities P and Q by

dg(P, Q) = 21 2 P@F)-QFNI.
i=

Convergence in dg is stronger than convergence in the Prohorov metric which metrizes the
topology of weak convergence. However, we note that, when restricted to probabilities in the
parametric family, the topology of weak convergence metrized by the Prohorov metric is
equivalent to the topology metrized by dg. This can be seen as follows. Under conditions 1
and 2, 0’ — 0 implies D(Pg | | Pg) — 0, which is stronger than L, convergence. That implies
the convergence of Py to Pg setwise, which gives convergence in dg implying weak conver-
gence, which is equivalent to convergence of the parameter values, by soundness.

Next we observe that Propositions 6.1, and 6.3 from Clarke and Barron (1990a) carry over

to the present setting. By straightforward modifications of their proofs, Propositions (6.1) and
(6.3) now give us the following two facts.
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One: Since dg satisfies

sup P*{ dg(P,,P)>¢e} <e™ (3.6)

where r > 0, P\n is the empirical probability and the supremum is taken over all probability
measures on X and g is uniformly continuous, there exists an M; > 0, r > 0 and a critical
region C, so that given any 6’ € B(0, 1), and any & > O, the hypothesis test 8 = 6" versus
{0: 16 — 0" > &} has both probability of type one error and probability of type two error

—-nr

bounded above by e

We remark that we need a topology which is metrizable by a metric 4 which satisfies
(3.6). The metrizability cannot be avoided since the relative topology on the image of g is
metrizable, and some form of (3.6) cannot be avoided since errors must be controlled. The
form of the uniformity required so as to generalize Proposition 6.1 in Clarke and Barron
(1990a), namely given & > O there exists an € > 0 so that for any 6,0’ Q, 1 6 -0'1 > &
implies dg; (Pg, Pg) > €, forces us to use the topology generated by dg rather than the weaker
topology generated by weak convergence.

Two: Given 8 > 0, there exists 1, > 0 and r > 0 so that we have

Pe( | wOpar 1 9)do<e” [ w@pa"l6)de)=0(),
N@, %) N@, 8 "

uniformly for 0’ in any closed set in B (6, n,) contained in K. The boundary points of K are
no difficulty since any open set which contains one of them has positive prior probability.

From facts one and two we can conclude that there is an open set about 6, say B (6, 1),
with compact closure inside K’, so that for any 6" € B (0, 1) we have that the P g probability
of A, (0")°, the set on which we have posterior consistency fails, has probability decreasing at
rate O (1/n). Covering K with finitely many open sets B (0;, n;), i = 1,...,k we have the upper
bound

k

lim sup Po(4;(0) < max lim su(g Po(AS(0))
n — oo izl n 5~ 0eB T].
<o) lim 98"
n —eo n

This proves (3.1).

We now have that Theorem 0 holds uniformly on K, which implies both (2.2) and (2.3).
O
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4. Proof of Theorem 2. We start with the lower bound. We will be concerned with the
behavior of various quantities under the mixture distribution for X, and under the joint distri-
bution for ® and X,,..., X,,,.... It is here that we use the maximum entropy argument.

Lemma 4.1: Suppose that for each © we have that
[nX™) = f(0),

in Py« o. Then the convergence holds in the joint measure:

fnX™)-f(©) >0,
in Pe’ X= -
Proof: Let € > 0 and note:

Pg x| fnXD)-fO) > €)= J w (0)Py= o( | fn(XT) —F(0)1 > €)db,
Rd
which goes to zero by the dominated convergence theorem. &

The next idea we introduce so as to obtain a lower bound is a one sided version of uni-
form integrability. Following Chow and Teicher (1978) we say that a sequence of random
variables Y,, is uniformly integrable from above if and only if its positive part is uniformly
integrable. Equivalent to uniform integrability from above is the condition

lim supE Yn 1{Y,,>r}=0'

r > n

We only use uniform integrability from above since obtaining a lower bound on I(®, X") will
require us to upper bound the conditional entropy term which arises in its definition.

We next prove three lemmas. The first gives sufficient conditions which we will use to
show that log det ncov(®| X") is uniformly integrable from above. It is modeled on the proof
in Billingsley (1986), pg. 348.

Lemma 4.2: If a sequence of positive random variables Y,, satisfies

sup E Y, < oo,
n

then Z,, =log Y, is uniformly integrable from above.

Proof: Let g(r) =e”. Then, for r > 1, the function re™ is decreasing and consequently
we have the inequalities

an{Z,, >r)

0< EZ1 = E gZ
Sl:'p n+{Z, >r) Slrllp g( n) g(Zn)

r
< E g(Z).
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By assumption the expectation on the right is finite and r /g (r) converges to zero as r — oo, SO
the lemma is proved. U

The next lemma uses uniform integrability from above to identify how a limit of expecta-
tions is related to the expectation of the limit.

Lemma 4.3: IfY, is uniformly integrable from above and converges in probability to a

random variable Z, then

limsup £ Y, <E Z

n > oo
Proof: Write
EYn = EYnl{ Y, <r} + EYnl{ Y, >r}

For fixed r, the limit superior of the first term is bounded by E Z1,7 <, since the random
variables Y, 1,y . ,; are bounded above. For r large enough, the second term is finite by uni-

form integrability from above. As r increases, we have the result. U

Our fourth lemma is an identity which relates the Bayes risk of the Bayes estimator to
two other terms which are easier to analyze. We will see that one tends to the constant d/2,
pointwise in 0, as n increases. The other term has a form to which Laplace integration can be
applied readily. The asymptotically constant term involves an approximation to the posterior
which we denote

n,-nD@O1! 8"
o= 28—

n

where c,, is a normalizing constant.

Lemma 4.4 Assume Condition 1 is satisfied and that w has a density with respect to
Lebesgue measure. Then, we have
R, (0, w)+EgDW" 11 w(-1 X")) = —log [e™P®1 9@ g0 4.1)
R'l
Proof: Since Condition 1 is satisfied v is well defined for each n. Proving (4.1) is a cal-
culation. We note that Eg D(vI| w(-1 X™)) can be written in terms of v and the posterior
density for © given X". Using the definition of v and Bayes rule on the posterior gives an
expression which can be rearranged to yield (4.1).H

Now we use the four preceding lemmas to give a proof of part a) of Theorem 2. Here,
the operator E by itself means expectation with respect to the joint distribution.
Proof of Theorem 2, lower bound part: The Bayes risk R,(w) = JoD@E1 m)w(®) de is
equal to Shannon’s mutual information which we expand as the difference between the entropy
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of the prior H (w) = H (®) and its conditional entropy

Hwl X" = I J w0l x") log L dom(x") dx™,
X Q w(®! x™)
which we also denote by H (®1 X™). Therefore the Bayes risk is
I(©:X")=H(®)-H@®I| X")

=H@®) - [H@®! X" = x"ym (x"\dx™)
X’l

=H®) - [H®O - 61 X" =x")m(x"\dx")
X’l

> H(®) - % | me™) log [(2me)?det E,c) yny n(© — 8)(© — 6) ] Max™)
X'l

d n
=H(@®) + 2log o

- %fxn m(x") log det E, . zy\n (© — B)Vr (@ — 6)° Max™), (4.2)

where the inequality comes from the fact that the normal achieves the maximal entropy under a

covariance constraint.

We will show that log det ncov(6| X™) is uniformly integrable from above with respect
to the mixture by bounding it with a sum of functions each of which is uniformly integrable
from above. By Hadamard’s inequality we have the following bounds:

d
logdet[n cov(@®| X")1< Y log[n Var(®;1 X*) ] (4.3)

i=1
By assumption,

s 4

so, by Lemma 4.2 we have that each

is uniformly integrable from above. Thus, the right hand member of (4.3) is uniformly integr-
able from above. This implies that

log det [ n cov(®] X™) ]
is uniformly integrable from above, and therefore so is

log det [ n cov(®l X™) ] + log det 1(6).
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By assumption we have that
log det n [ cov(®l X") ]+ log det I(0) — O,
in Pya| o probability, for each © in the support of w, and therefore, by Lemma 4.1, in the joint

probability of (®, X*). Now, by Lemma 4.3,
limsup E,, [ log det ncov(®! X") 1< - f log det I"1@)w (8) d6.

n -0

Finally, from inequality (4.2), we have that

liminf [ 1(®; X™) - H(®) - -d—log ——']1 2 - limsup Ej; [ log det ncov(@l X")]

n — oo 27e n — oo

= f w(0) log det 1(0) d6,
Q

which proves part a) of the theorem.

Proof of Theorem 2, upper bound part: By application of Theorem 0 to the second term
on the left in equation (4.1) in Lemma 4.4, and Laplace integration on the right hand member
we know that the left hand member tends to d/2 in P probability for each 0. Integrating (4.1)
with respect to w we have that

[w®D®EZI1 M) de
Q

= [w@®Eo DI w1 X)) d6 - [ w(®) log [ e @ Oy (9 d’, (4.4)
Q Q Q

Since Eg D (vl w(-| X") is positive we can apply Fatou’s lemma to see that the limit inferior
of its integral with respect to w is bounded below by d/2 also. So, the first term on the right
in (4.4) is upper bounded by —d /2.

We upper bound the second term in (4.4) by

~Jw@®g | OO @)de 4o
Q 10-01 <¢

f w(0) log _[ g0 - &Y I©)0 - "y ©)de’ do

Q |0-06l <&

<— [ w®) log w,(6) do (4.5)
Q

[ w@ylog [ e PO-OTLOC-9 4y o 40 (4.6)
T,e 16-0'1<e

[ w@log [ PO-OTLOC-O, 0y 40 40 @47

Tre 10-01<¢
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Term (4.5) is finite for € small enough, by assumption. For given € sufficiently small we can
show that term (4.7) is upper bounded by a quantity which tends to zero as n increases.
Indeed, by the definition of T, . we have that (4.7) is upper bounded by
- [ w@®log [ e?de de=-w(T:,)log eV, (4.8)
T, le-@l<e

where V. is the volume of the ball in d dimensions of radius €. Now (4.8) tends to zero since
the prior probability of T, . does.

It is term (4.6) which provides the dependence on n. By recognizing the normal form of
the integral we see that it is '
- J w(0) log V2| I_E(O)I"mw(e) do - j w®) log P( | Zyl < &) do, 4.9)

T,, Toe

where Zg ~ N (O, (nl_ E(9))‘1). The first term in (4.9) gives us what we want since
W(T,e) 21-o0(l/log n). The second term in (4.9) is asymptotically upper bounded by an
arbitrarily small number. Indeed, it is

— [ w® 108 Q=PI Zgl >€)) a0
The

<-& | w(®)log (1 — (@) Ve?) ae. (4.10)
The
By the definition of T, . we have that 1/(nI— 8(9)82) < 1/2, so the logarithm in (4.10) is well
defined. Thus the integrand converges to zero pointwise, as a function of 0 and is bounded.
By the dominated convergence theorem the integral goes to zero as n increases.

Now, we have that for any n > 0, any € small enough, and » large,

[ R,®, w) w(®) d6 — % log 2= < (2 _ )= [ w(®) log w,(6) d6
Q T 2 Q

+ J w(0) log det I () dO + 1.

Next, we take the limit superior as n increases. Letting 1 go to zero and then letting € go to
zero finishes the proof of the upper bound. B

5. Proofs of Theorems 3 and 4. In this section we prove our two theorems concerning
posterior convergence. First, we give a proof of Theorem 3 since its conclusion is used as a
hypothesis for Theorem 2. Our proof is modeled on that due to Bickel, see Lehmann (1983),
but where Bickel’s proof essentially used the consistency of the MLE to prove that the integral
outside of an open set around 6 was negligible, we use posterior consistency as guaranteed by
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Condition 3.

One more point bears mention. In Bickel’s proof the standardized parameter is used.
Here we use the Jacobian transformation so that the result is phrased in terms of the actual
parameter. Indeed, the relation between the two forms is

w(OX™) +tHn | X"
nd/2

(| X™)dr = ) dt,

where T is the posterior for t = Vn (8 — 6(X")) and 6(X"™) is an estimator or 0, here either the
Bayes estimator & under squared error loss, or the pseudo - estimator of Bickel, T,,. In writing
7t | X™) for the posterior we assume that w is defined on all of R?. This can be done by let-
ting w be zero off of its domain of definition.

Proof of Theorem 3: We may write the posterior as
w(T, + ¢t Ye log p(X* | T, +tin)

n(tl X") = . ’
.fw(Tn+t/\/ﬁ)e log p(X |T,,+t/«/§)dt

which may be written as

e*Ow(T, +tNn)
C 2

n

@il X") =

where

u@)=logpX" 1 T, +tNn)-logpX"10,)
- 51; Vpx*16,)1®,)'VpX"le,),

and

C, =] e*w(T, +sAn) ds.
Rd

We assume that some 0, has been fixed so that T, =T, (6,). First we prove (2.14), that is, we
show

| 1~ 1 xmy — N3t T®, )00 ¥2(0,)e)1 dt — 0,
Rd

in Py probability, where ¢ is a normal density with mean zero and covariance matrix the

d x d identity matrix. The key step in the proof is proving that

J=[1e*Ow@, +tnn)—e 18" 2@ ) dt -0, .1)
Rd

in Pg probability. The convergence in (5.1) implies that
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C, = w(®,)\det2n 1(6,),

in Py probability, which we shall require for our result. Showing that J tends to zero under

our assumptions can be done as follows. Given 6 > 0, we decompose the parameter space into
three parts: | 1 <M for some large M, M <1t1 <8vVn, and | T1 >8+n. Next we
bound J by taking bounds on the integrals over those regions. This gives

J< sup | e OwT, + M) - e 12, g )i (5.2)
+ - | e*Ow (T, +tAn) —e™ @Iy @)1 dr (5.3)
M< it <8Vn -
+ - | e*Ow(T, +1Nn) — e 1CX20,)1 dr (5.4)
lel > &Vn

where M can be chosen by us. We show that a) with the exception of the "MLE consistency"
condition, B3 in Lehmann (1983) p. 455, Bickel’s conditions are implied by ours and that b)
the "MLE consistency" condition can be replaced by soundness, our Condition 3.

Since B3 was not used in showing that expressions (5.2) and (5.3) go to zero in Py  pro-

bability, Bickel’s reasoning can be applied to those terms if a) is proved. Reviewing Bickel’s
proof we see that the same technical assumptions have been made here. So, to prove a), it is
enough to prove that for each positive € there is a positive  so that

Po( | % E ()| >¢) — 0, (5.5)

su
{6: | e—gal < 3}
where E,, is defined by the Taylor expansion

logpX™1 0)—logp(X"186,)
=©-6,)VpX"l6,)- %(e - 0,) [nl(6,) + E,©)16 — 6,).

By adding and subtracting we upper bound the event in (5.5)

1
| — E,_(0)I
{0: 1 es—ug,,l <& n n®)

1 T
< B - - —
S0 Bicy P Eal POt 50 =006 =00

1 2 pX;!1 6)

+ s I — log ———
(0 10-b1<y 1 El s pX;16,)

+D(Pg |1 Pyl

+518,1 (5.6)
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So, it is enough to show that each term on the right of (5.6) tends to zero in probability. The
third does by Condition 1 by use of Chebyshev’s inequality. The first is made less than €/2 by
choice of & sufficiently small by use of the Taylor expansion which exists by Conditions 1 and
2. The second is upper bounded as follows.

We have that term 2 is upper bounded by

pX;10)

ln.
n | log —————— +D(Py || Py)l, 5.7
nZ o6 iy B paie, T PCel P 5.7)

so adding and subtracting

pX;10)

| log—————
gp(Xll eo)

E +D@®O,110) I 5.8
6°{e:|es—ug,,|<8} ® ) (5-8)

which tends to zero as d tends to zero, allows us to apply Chebyshev’s inequality to the differ-
ence between (5.7) and (5.8), provided that

pX;16) 2

Eg, o es_ugol <3 I logm 5.9)
is finite. We show that the finiteness of (5.9) is implied by Condition 1.
By the Taylor expansion we have that (5.9) is bounded by a the sum of
Eq d log pX | 0)12. (5.10)

s | —
i Iellgol <6 0,
over i. Adding and subtracting -a%log pX 1 0,) within the absolute values, expanding the
i
square and using a first order Taylor expansion on the difference of first derivatives gives the
upper bound which is the sum of

2
O _1og 2X1O 2 g | Do pxie,) 12

E
% o105 <5 36;00; ° hX18,) 09;
3 ? p(X16)
—~ log p(X | | 1 l. 11
+ Eo, | 09; 0§ X1 6,) 0 10501 <8 00,08, 8 pX18,) .10

over j. The first two terms in (5.11) are finite by condition 1. By applying the Cauchy-
Schwarz inequality, we see that the third is finite by Condition 1 also. Now, by Bickel’s argu-
ment we have that terms (5.2) and (5.3) go to zero as n increases.

We deal with (5.4) differently. Note that the second term in the integrand can be

neglected so that we are left with

[ e*Ow(, +tHn) d. (5.12)
lt] 2 &n
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Up to a factor which converges to a nonzero number, expression (5.12) is a posterior probabil-
ity. Indeed, it is
C, n(lt1 28 | X")=C,W( 6-T,(6,)1 23| X")

<C,W(0-0,126-16, —T,(0,)! X"). (5.13)
We will prove that

wW({e-6,l123-10, -T,©0,)! | X")
goes to zero in Py probability and that
Py (C, >K)<al(logK + D)
for some choice of @ and b. This will imply that expression (5.13) goes to zero in Pg proba-
bility. We have that for each K
P (C,W(16-6,1 28-16, —T,(8,)! | X*) >¢g)
<SPy KW(10-6,128-16, -T,(6,) | X")>¢&)+Pg(C, >K)

in which the first term in the upper bound goes to zero since the posterior probability con-
verges to zero, and the second term can be made arbitrarily small since C,, is bounded in pro-
bability.

That W(I 6 -6,128-16, —T,(0,)! | X") goes to zero in Pg_probability follows

from soundness. For, given n > 0, we have that
Po(W(16-6,1 28-16, -T,| 1 X") >n)
SPo,(W(16-6,1 >82)+Pg (16, T, >02). (5.14)
By soundness the first term in (5.14) goes to zero. The second term is
Po (1 I78,)S,0,)1 > 8/2),

which for y = y(8) small enough is upper bounded by

1 n d 1,0 n
Po (=1 ViogpX™18,)l >y) <Y Pg (= (55 logp X" | 0,))? > %)

d 1 d n
< Varg (— =—logp X" 1 6,))

1
Y l-é n 861
which is O (1/n). So, (5.14) tends to zero.

We show that C,, is bounded in probability. It can be written as

m (Xn ) —%S,, (ea )TI—I(ea )Sn (eo)
_—e
D (Xn I eo)

di2

n
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in which we recognize that the density ratio is the same as in Clarke and Barron (1990a),
expression (4.4). For given K large we have
mX™ 25,0, 179,54 (8,)

> Kn%2e ? ) (5.15)

Py (C, >K) =Py (—=22— >
% % px"18,)

to which we can apply (4.4). Expression (5.15) is upper bounded by intersecting with the set
on which (4.4) holds and with the complement of that set. This gives
ST 6,)S, ZST1©,)7S,

Py, ((4.4) violated) + Pg_(c (&, 8, 6,)e 21 ~® >K e? )  (5.16)
where ¢ is a function of the arguments listed. The first term in (5.16) goes to zero under our
assumptions as in Clarke and Barron (1990a) and the second term can be upper bounded by
Markov’s inequality. Taking logarithms inside the probability and rearranging gives

log K —log ¢
/1-¢)—-1

P ( -;—S,{rl(eo )S,, = )

which is upper bounded by d/2( 110/ ( 1" ‘e)lof f )L, This means that we have proved that (5.4)

goes to zero in Pg_probability. Thus we have that J goes to zero and that C,, goes to the con-
stant w (6, )\[2n/det (6,) and the proof of (2.14) is complete.

Next, we use (2.14) to prove that the posterior variance converges to that of the normal.
That follows if we prove that for each i, j from 1 to d that

Ji=J @+ 154501 7@t X™) - 3et1®,) o(~aet I©,)! dt
Rd

goes to zero in Py probability. We use the same sort of decomposition as before:

Ji £ | tsluBM A+ 1 g DI (1 X") —«[det 1(0,) ¢(z+/det 1(6,))I (5.17)
+ f a1+1 1t DI @ | X™) —«[det 1(8,)d(z~det 1(6,))! dt (5.18)
M<ltl<d'n
+ I a+1 4t DI @l X™) —+/det I(8,)d(zdet 1(6,))! dr. (5.19)
btl>8Vn

Since | f2;1 is bounded on bounded sets, Bickel’s reasoning for (5.2) applies to (5.17).
Analogously to (5.3), we can show that (5.18) tends to zero by showing that its integrand is
bounded above by an integrable function with Pg probability greater than 1 — €. Then (5.18)
can be made small in probability by choosing M large. It is enough to show that for given
€ > 0 there is a 8 > 0 and a finite C so that for n large

Po,(L+ 1 1;5;1)e*Ow (T, +tAn) < Ce 1O A fori t1 < SNM) 2 1 — €. (5.20)
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By (2.15), the prior moment condition, we can define a new prior
a+1 9,-9j Dw ()
= ’

w(0)
J

where k; ; is a normalizing constant. If we divide by &; ; inside the probability in (5.20) then
we can observe that Bickel’s proof continues to apply to (5.20) so that (5.18) goes to zero in
Pg, probability. Similarly, our asymptotically zero upper bound on (5.4) applies to (5.19) by

using the new prior w(0). So, the posterior variances converge as in (2.16).

To derive (2.17) we must relocate the posterior density at the Bayes estimator 6 rather
than at T,,. We have that

\n®-T,)=ENn ®-T,) X")
= [ \w©®-T,)w(®! X")do

Q

- RI,, u w(, +uln | X")%

= | u n(u! X")du (5.21)
Rd

which tends to zero in P probability since, under our hypotheses the posterior expectations

converge to those of the normal. Now, writing 0; for the i * component of 9, we have

w(T, +tAn 1 X")
“; tltj I nd/2 - ¢I(eo)—l(t)l dt
R

= (W © -0)+Vn @ - T, N ®; —8)+Vn @ -T,,)
Q
x | w@®l X") = (N (6 —8) +\n (8~ T,)1 d6 (5.22)

in which we use (5.21). This completes the proof of Theorem 3. U

To conclude this section we prove Theorem 4. This amounts to noting that when
moments match, a Kullback-Leibler number can be written as a difference of conditional entro-
pies.

Proof of theorem 4: Let Z =Zy, y» denote a random variable for which the conditional
distribution of Z given X" is normal with mean E(®| X") and variance matrix cov(®1 X").
Such a random variable can be defined by Bayes rule: use m, as the marginal for X* and
choose the conditional density for 0 to be N (E (@1 X"), cov(®| X")). By the definition of the

mutual information
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[®;X")y=Hw)-HZI| X")+[HZ| X")-Hw! X")]
=Hw) — %EM log (2me)? det cov(®1 X™)

+EyDw(-1 X®) 11 N(E(@®I X™), cov(®! X™))),

since (Z1 X™") and (®| X") have the same first two moments. By rearranging the expression
we find that

d n 1
=10; X")-HWw) - — log — - — flog det I1(0) w(0) dO
2 2ne 2 o

+ % (Ey log 2me)? det cov(®1 X*) — | log det 1(8)™1 w(8) d6). (5.23)
Q

From (5.23) the conclusions of the Proposition follow.H

The identity (5.23) shows that the convergence of the posterior to the normal in expected
Kullback-Leibler distance is equivalent to the validity of the asymptotic expansion for the
mutual information. The two terms on the left in expression (5.23) represent the upper and
lower bounds respectively.

6. Applications. In this section we give two applications of the theorems we have
proved. The first is for parametric density estimation we show that the quantity we have exam-
ined lower bounds the risk in parametric estimation. In the second we determine how much
influence the choice of prior can have on the estimator asymptotically.

In the parametric density estimation context, suppose we are given a parametric family
indexed by 0 and that 6, is the true value of the parameter. However, suppose that it is not the
parameter ‘per se’ that interests us. Rather, we are using the parametric family so as to iden-
tify the true density pg . One natural estimator of p(x | 6,) at any given x is the predictive

density g, (), which is the posterior mean of p (x | ©).

We use the Kullback-Leibler number as the loss function for parametric density estima-
tion and examine the behavior of the cumulative risk. Let §; for k£ =0,...,n—1 be a sequence
of density estimators. Each J; estimates the density of X}, given the data X k. Here, §, is a
fixed density function not dependent on the data. When 6, is true, the risk associated with
8 = 8, (x%)) is

Eq D (P11 8),
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and we denote the cumulative risk of n uses of an estimator §; for k =0,..,n—1 by
C(n,0,, 8). Itis the sum of the individual risks:

n-1
C(n,90,8)= EeoD(Peo” Slc)'
k=0

The sum of the Kullback-Leibler risks plays an important role in universal coding theory,
sequential estimation, hypothesis testing and portfolio selection theory, see Clarke and Barron
(1990a).

Just as the posterior mean of © is the Bayes estimator under squared error loss it turns out
that the posterior mean of p(x | ©) is the Bayes estimator under relative entropy loss, see also
Aitchison (1975). Indeed, we have the following.

Proposition 6.1: p\, is the Bayes estimator of the density function. The cumulative risk
of this estimator is

n—1
C(n,8,p,)= X Eo, Do, 11 &) =D P 11 M),
k=0

under the convention that p\(x) = mq(x1). Its cumulative Bayes risk is
fw®DE@PEII M,) de

and if the parameter space is compact the minimax risk is realized by choosing w to be the
Jeffreys prior which is least favorable. Consequently, under the conditions of Theorems 1 and
2, the cumulative risks are asymptotically approximated by (d/2)log n+c, and the average risk
(Un)Y, Eq D(pg,!| Py) and (1/n)3, Eq D(pg || Py) converge to zero at rate O(log n)in.

Proof: The characterization of the cumulative risk is as in Clarke and Barron (1990a).
The conclusions then follow by Theorems 1 and 2.0

We remark that under the conditions of Theorem 1 the individual risk terms
Eq D(Pg, 11 }5\,,) also converge to zero as n — 0. This follows from noting that

Eq D(Pg, || B,)=D (P || M,)-DPE 11 M,_y),

and applying Theorem 1 to each term on the right hand side. Thus, the predictive density is
consistent for the true density in expected Kullback- Leibler distance. In a similar fashion we
have that

[ EeD Pyl 1 B)w(©)d0 =0 (1).
Q

We next note that our results for Bayes parametric density estimation have implications
for Bayes parameter estimation. This is so because parameter estimation can be regarded as a
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special case of density estimation in which we restrict the estimator of the density to be of the
form p (x | 6(X™)). In the present context we have used the parametric family as a tool to gen-
erate an estimator, relinquishing information from the family about what the true value of the
parameter is. By enlarging the class of estimators we see that in terms of global optimality pro-
perties, the Bayes risk in parametric density estimation lower-bounds the Bayes risk in
parametric estimation:

inf £, Eq D11 8) 2 inf £, E D (Po! | Q).

Similarly, for the maximin risk we have

sup i%f fw(@)EgD®11 8)d6 = sup irQ1f fw(®EgDPgll Q)d6,

and for the minimax risk we have

ilgfs%p EqD@®II S)ZistngeD(Pell Q),

where & is an estimator of the parameter, Q is an estimator of the density and
D611 8) =D (Pgl! Pg) is the relative entropy loss for parameter estimation. The quantity in
Theorem 1 gives a lower bound on the minimax and maximin risk of parameter estimation; the
quantity in Theorem 2 gives an asymptotic lower bound on the Bayes risk of parameter estima-
tion.

Finally, we consider some other convergences which were studied by McCulloch (1986).
In particular we will see that the difference between two predictive densities, with respect to
different priors, converges to zero. First suppose that the true distribution is M,,, a mixture of
independent and identical distributions and that we estimate by another mixture, N, based on
the prior v which has the same support as w. If that support is compact then the Kullback-
Leibler distance between the true distribution and the estimator is

DWM,IIN,)= ID(POI | N,Ow(®©) do — J D(Pgll M, )w(0) db 6.1
K K
=Dw Il v)+o0(Q),
as n increases by applying Theorem 1 to each term. If the predictive distribution based on v is
denoted by Qk then by direct calculation we have that
EyD B! Oy) =D Myl Nppp) —D (M 11 Ny). (6.2)

So, as k — o we see that EyD (P || 0,) tends to zero, which means that except for 0 in a
set of arbitrarily small prior measure, we have that EgD (P, 11 O)) tends to zero in P g proba-
bility. In this sense predictive densities based on different priors are asymptotically
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indistinguishable.
We obtain similar behavior for the posteriors:
EyDw(CI X" v(IX")=Dwilv)-DM,!IN,)=0(l),
so, we have that
EgDw(CI X1 v(lIX") -0,
in the joint probability for X" and 6. Also, we have that
Dw(! X”)l vl X™) =0,

in the joint probability for X" and 6. From the recursion relation (6.2) we see that
Dw |l v)=YEuD@® I O,
1=0

where, under our convention E D (Py!] 0p =DMl Ny), so the number of times
EyD (15\,, Il Q\n) exceeds 1/n must have negligible cumulative effect.

The formula we have proved in Theorem 1 assumes that Pg is the true density. If the

mixture is the true density then estimating with an element of the parametric family is a poor
strategy. We see that if the prior v is unitmass at a point  in the support of w, then (6.1)
shows that

DM, 11 P3)=n[D@®118,)w(®)d6 —I(®; X"),

that is, the risk increases at rate » no matter what estimator we use, since we know the second
term on the right hand side behaves like (d/2) log n.
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