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1. INTRODUCTION. Let (X, : n > 1) be a sequence of random variables and let
Sn = X1 +...+ X,. Pyke and Root (1968) proved that if (X, : » > 1) is an independent
and identically distributed (i.i.d.) sequence and E(|X;|?) < oo for some 0 < p < 2, then
nlE(|S, — anl?) = 0 as n — oo where a, = 0if 0 < p < 1 and a, = nE(Xy) if
1 < p < 2. Chatterjee (1969) extended this result by assuming only that (X, : n > 1) is
dominated in distribution by a random variable X such that E(|X|P) < oo and taking a, =
kgl E(Xr|X1,...,Xk—1) if 1 £ p < 2. Chow (1971) strengthened this result by replacing

the domination condition by the condition of uniform integrability (UI) of (| X,|P : n > 1).

In a recent paper Chandra (1989), a new condition called “Cesaro uniformly integra-
bility” (CUI) was introduced. This condition is weaker than the usual UI condition and yet
was shown to be strong enough to derive Li-convergence in the weak law of large numbers
(WLLN). In this paper we establish L,-convergence, 0 < p < 2 for several types of inde-
pendent and dependent sequences under CUI. The dependent sequences include pairwise
independent sequences, martingale differences and L,-mixingale differences. It appears
that this CUI condition will be useful in deriving strong law of large numbers (SLLN),
more general than those known in the literature. See Chandra and Goswami (1989) for an

account of the progress made in this direction.

2. PRELIMINARIES. In this section we give the definition and basic properties of CUI
sequences and introduce the concept of L,-mixingales. The latter generalizes the concepts

of mixingales introduced by McLeish (1975) and its extension given by Andrews (1989).

Definition 2.1. A sequence of real valued random variables (X, : n > 1) on (2, 4, P) is



said to be Cesaro uniformly integrable (CUI) if

400  npn—oo

lim limsup (n_l kzi E[| Xk|I(|Xk] > a)]) =0.

Remark 2.2. In order that WLLN (or SLLN) holds for (X, : n > 1), it should be possible
to allow a few of the X,’s to take large values. The CUI condition is capable (at least to

a certain extent) of allowing such sequences. In this connection see Chandra (1989). A

In the following lemma, we collect the basic facts we will require about the above

condition.

Lemma 2.3. Let (X, : n > 1) and (¥, : n > 1) be two sequences of random variables on

(Q, A, P).
(i) (X, :n>1)is CULif and only if
a) limnsupn"1 k-z::I E(|Xk|) < oo and
b) given € > 0, there exists a § > 0 such that for any sequence of measurable sets
(An 0 2 1) with lim supn ™" él P(4x) < 8, limsupn~ kgl E[|X:|I(Ar)] < e.
(i) If (|Xgn|:n > 1) is CUI and |Yy| < |Xy| a.s. then (|Yy|:n > 1) is CUL
(iii) If for some p > 0, (| Xa|P : 7n > 1) and (|Ya|? : n > 1) are CUI then so is (| X, + Ya|? :
n > 1).

(iv) Let (Fn : n > 1) be a sequence of sub-sigma fields of A and p > 0. If (|[Xa|P:n > 1)
is CUI, then so is (Y, = E(|X,|?|Fz),n > 1).
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Proof. (i) is proved in Chandra (1989). (ii) is trivial. (iii) follows from the observation,

B(Xk + Yl I( X + Vil > )
< ZE[| Xk PI(1 Xk > 5]
+ 2BVl I([Yi] > )1
To prove (iv), note that since I(|Yz| > a) is Fi-measurable,
lim sup ™' ¥ E[|YlI(Yi| > a)] = lim sup n~ kél E[|X&[PI(|Yx| > o). (2.1)

Note that as a — o0,

limsupn~? ki P(|Y| > a) < |limsupn=? ki E(|Xx[P)| a=? — 0.
=1 n =1

Thus using the alternative criteria of CUI established in (i), the term in (2.1) — 0 as

a — oo since (| Xi[P : k > 1) is CUL O
Remark 2.4. The following implications relate the concepts of UI and CUI.
k
(Xk) Ul = (Xk) CUl = (Yk =k! E}l X,') UI.

The proof of this is easy using the criterion of Lemma 2.1 for CUI and the similar criterion

for UI. However, none of the reverse implications are true in general. To see this, let
Xok = —Xok_1 ~ N(0,(2k — 1)*/?),k =1,2,...

2
Then it is easy to see that (Y : k > 1) is UL However (2n)~! k£ E|Xi| ~ n®/* as n — oo.
=1

So (Xi : £ > 1) is not CUL For an example where CUI > UI see Chandra (1989). A

The concept of asymptotic martingales was introduced by McLeish (1975), who called
them mixingales. Andrews (1989) extended this concept to what he called L;-mixingales.
We extend these concepts below through the following definitions.
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Let (Xn : n > 1) be a sequence of random variables on (£, A, P) such that E(|X,|P) <
oo for some p > 1 and for each n > 1. Let (F, : n = 0,£1,42,...) be an increasing

sequence of sub-sigma fields of A. Let [| - ||, denote the L,-norm.

Definition 2.5. The pair {(X, : n > 1),(Fn : »n = 0,%1,...)} is called an L,-mixingale
difference sequence if there exist sequences of constants (¢, : n > 1) and (¥, : m > 0)

such that ¥,, — 0 as m — oo and
a) HE(anj:n-—m)”p <cp¥y, and
b) || Xn — E(Xn|Fotm)llp < cn¥mt1.

For some illuminating examples of L; and L. mixingale difference sequences in the

above sense, see Hall and Heyde (1980) and Andrews (1989).

kn
In the next sections C stands for a generic constant and S, will denote f) Xi, 3 or
i=1 k=1
kn ‘
Y an,Xn, as the case may be.
k=1

3. THE MAIN RESULTS. In this section we prove various Ly-convergence results. Qur
first result is an extension of a Theorem of Chow (1971) who proves the following result

with the assumption of Ul of the sequence (X, : n > 1) and deals with the case 0 < p < 1.
Theorem 3.1. Let 0 < p < 1 and (|X,|? : n > 1) be CUL Then n=1E(|S,|?) — 0.

Proof. For a > 0, define

Yo =X,I(|Xn|<a) n>1

Zp=Xn—Ys n>1.

5



Then
n'E(|S.|P) =n"'E (’ S Ze+ T Vi
k=1 k=1

)
Y anis

n
<n7! 3 E|Zi|P + n~ PP
k=1

iYk

=1

<n'E (‘ > Zk
k=1

)

So
limsupn~!E(|S,|?) < limsupn™! kﬁ E|Z|?
: -

n—oo n—o00

= limsupn~? kgl E(|Xx[PI(|Xk| > a)).

n-—+00

Now letting @ — oo and using the fact that (|X,|P : n > 1) is CUI, the result follows. [

The following theorem deals with the case 1 < p < 2 and extends Theorem 2.22 of

Hall and Heyde (1980) and Theorem 4 of Chandra (1989).

Theorem 3.2. Let (X, : n > 1) be a martingale difference sequence such that (| X, [P : n >

1) is CUI for some 1 < p < 2. Then n~1E(|S,|P) — 0.

Proof. Let Y,,Z, be defined as in Theorem 3.1. The case p = 1 is proved in Chandra

(1989). We give below a simpler proof for this case.

n_lE( ) <n7lE

+n'E

5 X
k=2

3 (% - E(YelXa, .., Xi1)

i Zy
k=2

+n 1B k_z'i;z E(Zi|X1,. .., Xk_1)|

Since (Y — E(Y%|X1,...,Xk-1),k 2> 2) is a bounded martingale difference sequence (with

respect Fr = (X1,...Xg—1)) the first term above — 0 as n — oo (see for example Theo-

rem 2.22 of Hall and Heyde (1980)). The last two terms are dominated by 2n~1 E( 5 | Zk])
k=1

First letting n — oo and then a — oo, this converges to 0 by CUI
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We now look at the case 1 < p < 2. Let C denote a generic constant. By Burkholder’s

inequality (1966) (see Theorem 2.10 of Hall and Heyde (1980)),
E(|Sq[?) < CE(| £ XEIP?)
=1

=CB( 3 (2} + YOI

<CE( z ZiP*) + CE(| £ V2%

< ckﬁ E(|Zx|P) + C(na?)?/?
=1
Thus limsupn~ ! E(|S.|?) < Climsupn™! k§ E(|Zg|?P). Now the result follows as in The-
n—oo n—oo =1
orem 3J.1. O

Corollary 3.3. If (|X,|? : n > 1) is CUI for some 1 < p < 2 then n‘lE(IkE] (Xk —
=2

E(Xk|X1,...,Xe-1))P) — 0.

Proof. Note that (Y; = Xz — E(Xk|X1,...,Xk-1),k > 2) is a martingale difference se-

quence. Further |[E(Xg|X1,...,Xk-1)|? < E(JX&|?|X1,--.,Xk-1). So by applying Lemma

1 (ii), (iil) and (iv), (Y% : k > 2) is CUI and the corollary follows from Theorem 3.2. [

We now turn to L,-mixingales and generalize Theorem 1 of Andrews (1989) in two
directions. First, we prove L, convergence for p > 1, whereas Andrews works with p = 1.

Second, we reduce the assumption of UI to CUL

Theorem 3.4. Let {(X, : n > 1),(Fi,¢ = 0,£1,42,...)} be an L,-mixingale difference
sequence and (JX,|? : n > 1) be CUI for some 1 < p < 2. Further assume that

lim supn~( 5 ¢;)? < co. Then E(n~1|$,|?) — 0.
n =1
Proof. Forn > 1 and 7 =0,%1,42,... define

Yai = E(X;|Funti) — E(Xi|Fryi-1)-

7



For each 7, (Ypi, Fnti,n > 1) is a martingale difference sequence. Further (|Ynil?;n >

1) is CUI by Lemma 1.

Define S,; = kf} Yii. By Theorem 3.2, n~'/?||Syui|l, — 0 as n — oo for each i.
=1

Further
Sn= 5 (Xu ~ BXtlFeem)) + E EKelFiom) + _ 5 Sui
Thus |
1Sally < 5 11X = BXelFiam)lls
+ 5 1Bt Fem)llp
+ 5 ISy
Thus

llmsupn 17|18, < l1msup( 1/» kf} ck) U ont1
=1

n—oo

+ limsup (n_l/p kﬁ Ck) U
=1

n—oo

Now using the condition on ¢; and the fact the ¥,, — 0 as m — oo, the result follows. [

Remark It is clear from the above proof that Theorem 3.4 continues to hold if the condi-

tions (a), (b) in definition 2.5 are replaced by
(a) lim  lim(n7 3 [IBXk|Fim)]lp) = 0
(b Jim  Tim (077 3 [1Xe = EXklFerm)llp) =0
In the following theorems, we show how normalization other than n may be used for
S

Theorem 3.5. Let (X, : n > 1) be a sequence of identically distributed random variables
with E(X,) = 0 which is either pairwise independent or is a martingale difference. Suppose
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that f is a function such that f(z) > 0 for > 0, z~! f(z) is nonincreasing as z — co and

1 f?(z) — oo and E[f~!(|X1]) < o0]. Then (f(n))~*E(|Sx|) — 0.

Proof. First assume that (X, : n > 1) is pairwise independent. Let

Y = X;I(|1X;]1 < f(n)),i =1,...,n

Znj

X;—Ynji=1,...,n

vYn .
1 7

T,

I
wE

J

E(|Sx|) < E(|Tn]) + E(|Sn — Tl)
< (B +nE(1Zm])
= [V(Za) + (BT + nE(|Zm))
< | B, V(¥aj) + 0 (B(Zm)) B2
< WB(Y) + nX(B(|Zum DY1? + nE(|Zm))
Let V = f~1(|X1]). For large n,
B(|Zm|) = BIX|I(1X:] > f(n)]
= Bf(V)VVI(V) > f(n)]
< f(E[VIV > n)]

= o(n™" f(n)) (3.1)

As 271 f2(z) — oo, there exists integers N, T oo such that N1 f2(N,) = o(n~! f%(n)).
To see this, define g(z) = z71 f2(z),no = 1, and given ng < ny < ... < ng—; define ny by
gi(% < k™! Vn>ng>ni_1: Now define

Np=1lifng<n<n; -1

=kifng<n<n-1k+1
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Thus

E(Y}) = E[X2I(1X:| < f(n))]
= E[V A (V)VI(V < n)
= E[VfA(VVI(V < Np))
+ E[VfA(VVI(N, <V < n)]
SN H(NR)E(V) + 07  fA()E[VI(V > Ny)]

= o(n~! f2(n)). (3.2)

Combining (3.1) and (3.2) we have the result when (X, : n > 1) is pairwise indepen-
dent. When (X, : n > 1) is a martingale difference, the same proof works by replacing

Znj and Ty by Z7,; = Zpj — E(Znj/ X1 — Xj—1 and Ty,; = Tpnj — E(Tyj/ X1, ..., Xj-1). O
Choosing f(z) = z'/?, we have the following Corollary.

Corollary 3.6. If (X,, : n > 1) is a sequence of pairwise independent identically distributed

r.v.’s such that E(]X;|?) < oo for some 1 < p < 2, and E(X;) = 0, then E(|S,|) = o(n!/P).

Theorem 3.7. Let (X, : n > 1) be a martingale difference sequence. Let f be a function

and let 1 < p < 2 be such that f(z) is nondecreasing, z=? f2(z) — oo and

Jim  limsup(f(n)~  EIXIPI(1X;] > a)] =0.

Then (f(n))"1E(|S.|?) — O.
This is a more general version of Theorem 3.2 and the proof is omitted. O

The CUI condition can be adapted to prove L,-convergence of weighted sums. Below,
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we give two such theorems for the case 1 < p < 2. As was seen in Theorem 3.1, the case

0 < p < 1 is much easier to deal with.

Theorem 3.8. Let (Xnr : 1 < k < kp,n > 1) be a triangular array of random variables
such that (Xpi : 1 < k < ky) is pairwise independent for each n > 1 and EX,; = 0 and

let (ank : 1 < k < kn,n > 1) be an array of real numbers such that

. k" 2 '
lim ¥ ai;=0and
n—oo k=1

kn
lim limsup kZ_}I |k | E(J X nk| I(|Xnk] > @)) = 0.

=30 np—oo
kp
Then E(] ¥ @nkXni|) — 0as n — oo.
k=1 - .
To prove the theorem, we need the following lemma.

Lemma 3.9. Let (Xnx) (ank) be as in Theorem 3.8. Assume in addition that sup | X nk| <
n,k

A < oo for some constant A. Then the conclusions of Theorem 3.8 hold.
Proof. [E(|SaniXnilP)V/? < [E(ZaniXni)?]H/? < [ZaZ;A%H2 -0 O
Proof of Theorem 3.8. Fix a > 0 and define
kn
Sn =X X‘nkan Z 1
k=1
Tn = kgl anankI(lxnkl < a)

Y, =S, —Tn.
Then we have

Sp=Tn — ET, +Yn + E(Tn — Sz).

Hence
1Sallr € |Tw — ETlli + |Yalls + || E(Tn — Sa)ll1-
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By Lemma 3.9 ||T, — ETy||1 — o. (3.3)

Further,

n
Valls < 2 llaneXneI(|Xnk| > ally
ko
= X ank{E[|XnklI(|Xnk| > a)l} (3.4)

ky
|E(Tn — Sn)| < k§1 Ank E(| Xnk|I(|Xnk| > a) (3.5)

Now the result follows by first letting n — oo and then a — oo and using relations (3.3),

(3.4) and (3.5). O

Theorem 3.10. Let (Xpr : 1 < k < kyy,n > 1) be a triangular array of random variables
which is a martingale difference sequence for each n on the probability space (Qy,, An, Py, 6)

for each @ € K and let (ank : 1 £ k < kn,n > 1) be an array of real numbers such that

kn
kZ a2, -0 and forsomel<p<2,
=1

ky
lim limsup sup ¥ |ank|?Eno(|Xnk|PI(|Xnk| > a)) = 0.
=1

a—o0 n—00 9cK k=

Then sup E, ¢(|Sn|?) — 0.
0cK

Proof. Note that (aniYnt : 1 < k < kp,n 2> 1) is also a martingale difference sequence.
By Burkholder’s inequality, as in the proof of Theorem 3.2, defining Vi = Xt I(| X k| <

a«), an = Xnk - Ynka
kn
En,0|Snlp S CEn,O(kE_jl afzerzzk)p/z

kn

= C'En,e[kgl a2 (Y + Z2,)P/*
kn ks

< CEno( X aniYau)? +C 3 |ankl"E|Znkl?
=1 =1

ky kn
<ca 8 ahpte S lankl B ol Xk PI(1 Xnk| > a)l.
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First letting n — oo and then letting a — oo, the result follows. O

Remark 3.11. As is evident the above theorems are more general than Theorem 3.2 and
3.5. 1t is also clear that a version of Theorem 3.10 for L,-mixingales can be proved along

the same lines as the proof of Theorem 34. | A

In the following theorem, we generalize the classical WLLN of Markov (see e.g. Loéve

(1977), p. 287)) to martingale differences and pairwise independent random variables.

Theorem 3.12. Let (Xi : £ > 1) be a martingale difference sequence or a sequence of
pairwise random variables satisfying Markov’s §-condition, n—(1+9) kf; E(|Xx|'*t%) — 0
=1

for some 0 < 6 < 1. Then n~*E(|Sx]) — 0.

Proof. First assume that (Xk: k2 1)isa martingale difference sequence. Define
Xor = XeI(1Xk| £ Xn),k=1,...,1
X =Xi — Xpryk=1,...,m
Yor = B(Xuk| X1, -, Xk-1) k=1,
Zok = E(Xbel X1, oy Xe—1)kE = 1,...5m

1B X =it B (Xuk — Yar) 0 3 (Xng — Znk) (3.6)
k=1 k=1 k=1

Eln? él(xz,k — Zap)| < 207 OFD él E|X|'t >0 (3.7)
Note that (Xnk — Yak : k=1,...,n)isa martingale difference sequence. Further
E(XntYnr) = EY}.
Thus
V(n™ él(x,,k _ Vi) =n7 kf;:l V(Xnk — Yak)
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=n"2 5 E(Xnk — Yni)?
k=1
= TI,_2 kzi)l E(ng + erk - 2XnkYnk)
=n~" kf_ll E(X3 —Yor)
<n?y E(X%)
k=1

n~+®) & BIXi'*? 5 0asn — oo
k=1

Elln™  (Xak = Ya)l < [Bn™ B (ot = Yok 2 9

Combining (3.6), (3.7), and (3.8), the result follows for martingale differences. O

The same proof works when (X : k > 1) is pairwise independent by replacing Yok

and Z,x by the unconditional expectations of X, and X, respectively.

Remark 3.13. A version of Theorem 3.12 is true for mixingales and can be proved by using

arguments given in the proof of Theorem 3.4.

Remark 3.14. Even though we have stated most of our definitions and results for sequences,
it is easy to see that with appropriate changes everything extends to triangular array of

variables. A

4. EXAMPLES AND COUNTER EXAMPLES. In this section we give examples to show
that L,-convergence need not hold under weaker conditions. We also give some examples

where our results can be applied.

Example 4.1. Theorem 3.2 need not hold if CUI of (Xi : k > 1) is replaced by UL of
(n~1|Sul? : n > 1). To see this let (X, : n > 1) be independent N(O,n%_l) variables.
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Then sup E(n~!|S,|?)? < oo and thus (n™!|S,|? : n > 1) is uniformly integrable. However
n>1
E(n™YSaP) = ¢>0. A

In fact, Theorem 3.2 is not even true under UI of (n™! 5 | Xi|? : n > 1) as the following
i=1

example shows.

Example 4.2. Let (X, : n > 1) be independent such that X, ~ N(0,02) where o, =
(1+n)1/1’ ifn = 2™ for somem = 0,1,... and 0, = 1 otherwise. Note that if X ~ N(0, 02)

then E|X|P = cpo?. Now

2
E (n_l _f:l |X,-|P) =n"2 [czp '21 o 42
= =

by cf,af’af
i<j

< max(c2, czp)(n '51 o?)? < oo.
=3

Thus (n~1 E) |X;|? : n > 1) is L bounded and hence UIL. However, note that if 2™ <n <
i=1

2mt1  we have

2 2
grt- o o —2p § o 41/pyi
n2/p 2n j§1(4 )
(41/p)mtl 1 1
> .
> () @
Thus liminf n ' E(|S,|P) = liminf n~1lc,(02 +... + 02) > 0. A

The following example shows that Markov’s weak law is false if Markov’s condition is

assumed to hold with 6 > 1.

Example 4.3. Let (X, : n > 1) be independent N(0,02) where 0, = n® and 1 < a <

8
m,& > 1. Then

=40 § B(Xe[') = =) 5 20+

—(14+8)+a(146)—1

<en — 0 asn — oo.
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Thus (X, : n > 1) satisfies Markov’s §-condition.

Note that
V(n~'S,)=(ol +...+ o2)/n?
— n—2 % k2a
k=1
~ cen?*1 A 0.
P
Since n~!S,, is a mean zero normal variable this implies that n~15,A0. A

The next example shows that Markov’s § condition does not imply the CUI condition.

Example 4.4. Let X) ~ N(0,0%) where op = n® and a < 6/(1 4 6). Then it is easily seen
that (X3 : k > 1) satisfies Markov’s §-condition. Let X be a N(0,1) variable. Then for

any a > O,n_1 kgl E(|Xk|I(|Xk| 2> a))

= n1 él e E[|X|I(|X] > a/ow)]

. __2 2
mn~t S ope 2% — 00 as n — . A
k=1

n

Example 4.5. Let (X, : n > 1) be a martingale difference sequence, such that (| X,|? : n >
1) is uniformly integrable for some 1 < p < 2. Let (by : n > 1) be a sequence of real

numbers such that lim limn™! 5 |b;|PI(|b;] > @) = 0. Then n1E(] 5 b; X;|?) — 0.
a—00 N =1 i=1

To see this, first note that thereis a K >0 such that

supn~![ 5 |b:il? + E|X:|P] < K < oo.
n l=1
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Given ¢ > 0, choose M such that sup E[|XoPI(|Xn| > M)] <e.

n~? iglE[lbiX,- PI(|6:X:] > )]
<n! ,-f—_%l |b: P E[|X: [P I(|1X:] > M)I(a 2 [b:] > M)
+ 7t B PE(XI(b] > o/ M)
< eK + Kn™? él [6:[PI(1B:} > &) — O
Thus (|an alP : n > 1) is Cesaro uniformly integrable and the result follows from Theorem

2.2. A

Example 4.6. Let (Xni:1<1:< kn,n > 1) be a triangular array of M-dependent random
variables. Then this array is an Lp-rﬁixingale with ¥, = 0 for m > M and cni = || Xnillp-
(| XnilP :1 <8 S knyn 2 1) is CUI, then k;1E(|Sn|P) — 0. To see this, note that CUI of
the array implies s:p k—l,[ ikgl E|XailP < 0o, which in turn implies sup k! (El cn,-)P < 00

and Theorem 3.4 applies. ' A

Example 4.7. (McLeish’s mixingales) If (Xn:n >1)isa mixingale in the sense of McLeish
(1975) and limsupn~( ) ci)? < oo and (|XnlP :n 2 1) is CUI then n~1E(|Sx|P) — 0 for
. i=1

1<p<2 A

Example 4.8. Let X; = Zz) aij€i—j, where (a;;) are real numbers and (g;) are random
Jj=1

variables and Y = 0 and X, = 0. Define
buk = 5 a; (i
k iz_z-)ka (i=k)
Yok = €kbnk, 1 < k<n,n>1.
If (Yor : 1 <k <y > 1) is an L,-mixingale for some 1 < p < 2 Eex = 0 and

lim n~Y( % cnk )P < 0o then n~1E(|Sa|P) — 0 by an application of the triangular version
k=1

n—oo
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of Theorem 3.4. The above conditions are satisfied if (ex) itself is an L,-mixingale with
supn~}( f: ci)f < oo and (bpr : 1 < k< n,n 2 1) is uniformly bounded. In particular
n i=1

this condition on (bns) is satisfied for stationary ARMA processes of any finite order. A

Example 4.9. If we allow “infinite past” in Example 4.8, we have

oo n 0
Xi= ¥ aijei—j= 3 arbar+ ¥ €xbur
j=0 , k=1 k=-—o0

0
where b, is as defined in Example 4.8. So provided n‘lE(|’c Y €k bnk|)? — 0, and

=—00

conditions of Example 4.8 are satisfied, we have n™1E(] 5 X;|?) — 0. The above extra
i=1

. 0
condition is satisfied when sup E|ex|P < 0o and n™' ¥ |bpi[? — 0.
k<0 k=—o0

Example 4.10. Let X; = et +ae¢—1,t > 1,69 = 0 be a moving average process. The method

of moment estimator of a based on Xj,...,X, is given by a, = n~1 f: X:X:_1, which
t=-—1

yields,

a n o n

2 -1

an—a=—X(—1)——+n"" T &€
n t=1 n t=1

a n a2 n
+— T &gr—2+ — B €1-16t-2-
n t=1 n t=1
Note that (le;ee—1|? : t > 1) is CUIL if (¢2? : ¢t > 1) is CUL Thus with suitable mixingale

conditions on €2,£.6¢-1 and with Ee? =1,Feie;1 =0, we have Elap, —al? — 0. A

Example 4.11. The usual (least squares) estimator in an autoregressive process is much
harder to deal with. let X; = X¢—1 + €:,t > 1 where |6] < 1,Xo = 0. The least squares

estimate of § is given by 8, = DX X;_; /SX2_;. This yields 8, —8 = 51 Xi1ee) 5 X2,
t= t=1

E) Xi—_1¢€¢
(0 — §) = =2,

n

X2,

n

Hence Thus if (X;—16¢ : t > 1) satisfies the conditions of

Theorem 3.4 we have

n~ L E[( 5 X2 |6 —6])?] — 0 as n — oo.
t=1

18



In particular if (¢; : ¢ > 1) is a martingale difference sequence then so is (X—16¢ :t 2> 1)

and one needs to check only the CUI condition.

To conclude the convergence of E|6, — 8|, we proceed as follows.

X2,
n—l

Define Y, = (0n — 6),Zn = . Then

E|Yn| = E“YnlI(IZnI < an)]
+ E[[YnlI(|Zn] > an)]
< [E(Yal)2[P(12a] < an)]'/?

+ E[|YnZn|]/an.
If (X;_1€¢ : t > 1) satisfies conditions of Theorem 3.4 with p = 1 then for some sequence

an — 0, the second term above — 0. To show that the first term — 0, it is enough to

show that sup E(Y2) < 0o and P(Z, < an) — 0

EY? = E[($ Xe1e0?/( 5, XI)']

n—1
E (El Xize)® E X2_€l
<2 = +2E | —/—"—
(E*th—l)2 ( N Xt2—1)2

If (e, : n > 1) is such that sup F(%|Fn-1) < K < oo then
n—1 n
EY} < 2E[(t§1 Xt—1€t)2/(t§1 X7.4)%.

However

(5, Xim1e0 <[5, 1Xeal(611Xema + X))
<20, 1Xen )
+ 2(2311 | X1 X:[)?
< (216 +32)(3, X?)?

19



Hence sup EY;2 < K < oo. Now for large n,
P(Z, < ay)

2 _ 2
_p (BN P X
n n n

5p(| 5 (E%—l)lz an(1—02)_1D

=1 n 3
n — 6% —
n P< » Xt_lé‘t 2 an(l 6 ) 1 ‘)
t=1 n 6
2 P2y _
+ P (ﬁ > an(l 6 ) 1 D
n 3
EXi_1e¢

The second term — 0 since E| | — 0. It is easily seen that the third term — 0.

n

Thus, if further n~1 f: 6%5)1, the first term also — 0. To summarize, if (e,,Fn : n > 1)
t=1

is a martingale difference sequence such that

n

sup E(¢2|Fn_1) £ K < 00 and n™* El 5351

then E(|6, — 6]) — 0. Note that the above conditions are satisfied if (¢; : ¢ > 1) is i.i.d,,

Ee; =0 and Ee? = 1. A
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