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An Expository Review of Sequential Designs

and Allocation Rules

1. INTRODUCTION

Most of the recent work done in sequential designs can be broadly classified into one
of the following two closely related areas — n-armed bandit problems and allocation rules
in clinical trials. In addition to these, there has been some interesting theoretical studies
of the general sequential design problems, for example by Lalley and Lorden (1986) as
initiated in Chernoff (1959) and continued in Kiefer and Sacks (1963). Mention may also
be made of the study of consistency of least squares estimates of regression coefficients
in stochastic regression problems when the design levels are chosen adaptively as in the
Robbins-Monroe stochastic approximation algorithm. Finally, some work on sequential
designs has been done in problems of ranking and selection. However, the overwhelming
majority of the papers has been in the first two areas mentioned above. Fortunately, two
excellent books on bandit problems are now available — Berry and Fristedt (1985) and

Gittins (1989). A comparable monograph on clinical trials is urgently needed.

To simplify our task of review and preparation of bibliography, without sacrificing
much, we have adopted the following guidelines. Except for a few important papers re-
tained for historical reasons, we have confined ourselves to the literature of the last ten
years, i.e. from 1979 onwards. Since there are excellent bibliographies as well as reviews of
recent work on bandit problems in the two books mentioned above, we have included only a
few of the more important papers listed there and excluded the others. Consequently, to ob-
tain a complete bibliography, the interested reader should consult their lists together with
ours. Together, these three lists are fairly exhaustive, at least in respect of the papers that
have appeared in statistical journals. Our list was prepared primarily by consulting Mathe-
matical Reviews and Statistical Theory and Methods Abstracts. We have not tried to cover
the vast related literature on dynamic control and learning, most of which appears in jour-
nals of control theory, computer science or mathematical psychology. The interested reader
can get some idea of these topics as well as their relation to sequential design problems from

Herkenrath (1983) and the references contained therein.
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This short and expository review contains a section on the history of the problem of
sequential designs and early results, a section each on bandit problems and clinical trials

and a section on other works in sequential designs.

2. HISTORICAL BACKGROUND AND EARLY RESULTS

The subject goes back to Thompson (1933) who introduced the two-armed bandit
problem and pointed out its many applications in biology and medicine. The next impor-
tant paper is by Robbins (1952), who introduced certain strategies for the above problem,
including the one that “stays on the winner.” Bradt, Johnson and Karlin (1956) treat
these problems in great technical depth, proposing general formulations and showing that
many intuitive expectations are false. They introduce and completely solve the so called

one-armed bandit problem. Their result is stated here briefly for later reference.

Suppose X; and X, are Bernoulli B(1,p;) and B(1,p3) respectively with ps known
and p; a random variable with known distribution F. The object is to make n independent
observations (n is often called the “horizon”) which may be either on X; or on X3 (the
two “arms”) such that the expectation of the sum of observations is a maximum. In Bradt
et. al. (1956), it is shown that there exists a function Q(n, F) with the following property.
If p2 > Q(n,F), use X, for all n trials. If p; < Q(n,F), use X; for the first trial and
compute the posterior distribution F’ of p; and compare p2 with Q(n — 1, F'), following
the same rule at subsequent choices. An important property of the optimal rule is that

once an X is picked, all subsequent observations are from Xs.

In (1962) Feldman proved a long standing conjecture for a two-armed bandit problem.
Consider the previous scenario but assume that (py1,p2) are dependent random variables
of a special kind: P(py = p,p2 =1—p) =1—P(p1 =1—p,ps = p) = £ where p and ¢
are known. In this case the optimal strategy turns out to be as anticipated, namely, the
“myopic” rule that chooses at each trial, the X; having maximum conditional probability of
being one, i.e. as if only one trial remained at each stage. Though very elegant, it remains
an isolated result which has not had much impact on the general theory where the arms

have been assumed independent. In Feldman’s set-up, use of one arm gives information on
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both. For extension of Feldman’s result in different directions, the interested reader may

consult the references given on page 419 of Berry (1985).

Chernoff (1968) proposed a continuous version of the two-armed bandit problem. His
conjecture on this problem has not been settled yet. Another conjecture of Chernoff (1968)
attempting to relate one- and two-armed bandit problems is also unresolved in the finite

horizon setting.

By far the next most important result is Gittins’ solution of the n-armed bandit
problems, under geometric discounting through what are called dynamic allocation indices

(DAI) or Gittins indices. This will be discussed in the next section.

As indicated in the introduction, Chernoff (1959) had shown how one can construct
asymptotically optimal rules for choosing sequential designs. Chernoft’s results were ex-
tended by Kiefer and Sacks (1963) who showed that the following simple idea of a two
stage sample works. In the first stage sample one makes inference about the parameters
and based on this, in the second stage only the best design (in terms of Fisher information)
is chosen. For example, in the case of an n-armed bandit with X; ~ B(1,p;),i =1,...,n,
one may allocate the first stage observations equally among the X;’s and then in the second
stage stick to the X; with largest estimated p; from the first stage. The asymptotics works
if the sample sizes for both the stages tend to infinity with the ratio of the first to the
second going to zero. In the case of two-armed bandits, strategies similar to this go back
to Robbins (1952), who allows possibility for learning about p;’s throughout but only on
a relatively thin subset of the observations. See Keener (1984) and Tsitovich (1984) for

sharper asymptotics in the context of Chernoff’s problem.

It has been noted by Chernoff (1975) that the asymptotically optimal rules discussed
above do not perform well even for moderately large samples. Alternative procedures were
proposed by Lindley (1956), DeGroot (1962), and Box and Hill (1967). In particular,
Lindley measured the value of experiments by their entropies and used it to sequentially
select the experiment to be performed at the next step. Box and Hill modify this by

basing the choice on an upper bound of the entropies, which simplifies the calculations.



Monte Carlo experimentations by Meeter, Piric and Blot (1970) show that Box and Hill’s
method, even though suboptimal, does better than Chernoff’s methods for some problems.

For more details see page 78-79 of Chernoff (1975).

In the field of clinical trials, Anscombe (1963) was the first to point out the need
for optimizing allocation of patients to treatments in contrast to the traditional equal
allocation using randomization. Anscombe suggested that one should try to minimize the
number of patients allotted to the inferior treatment. This would be similar to a two-armed
bandit problem in which the goal is fo minimize the use of the inferior arm. Though much
theoretical work has been done on the allocation problem, it appears that the traditional
rules are still used in practice. Some discussion of the basic issues as well as the theoretical

results and the limitations to their being practically used will be attempted in Section 4.

3. THE n-ARMED BANDIT PROBLEMS

We begin by describing Gittins’ theorem. Suppose Z,, is the value of the variable
(one of the X;’s) observed at stage m. The value of the payoff is Y amZy, where oy,
are called discount factors. The objective is to find strategies (Whig;l:\l'aria.ble to observe
at any stage) so that the payoff is maximized. If o, = O for all m > k for some £, then
we say that we have a finite horizon. If a,, = am‘l for m > 1 and 0 < a < 1, we say
that the discount is geometric. Suppose we have X; ~ B(1,p;),t = 1,...,n and p;’s are

independent with (prior) distributions Fi,...,F,. Suppose also that we have geometric

discounting and we wish to maximize the total reward.

Consider an auxiliary one-armed bandit problem as discussed earlier in Section 2 but
with an infinite horizon and geometric discounting. In this case also, there exists a function
A(F, ) similar to the function Q(n,F), such that arm 1 (i.e. X;) is optimal initially if
and only if ps < A(F,a) and arm 2 (the known arm i.e. Xz with known p;) is optimal
if and only if p2 > A(F,c). For the n-armed bandit, the DAI initially for the n arms
are respectively the numbers A(F;, ). At subsequent trials, F; is to be replaced by the
posterior F; of p; at that trial. The optimal procedure is to choose the arm with the largest

DAI at each trial. An elegant exposition of this result, based on Whittle (1980) can be
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found in Chapter 6 of Berry and Fristedt (1985), who also show that the theorem would
fail without geometric discounting. For an excellent motivation, extension and diverse
applications, see Chapters 2 and 3 of Gittins (1989). In Chapter 9 of Gittins (1989),
there is a brief review of the important recent theoretical papers on this subject, due
mostly to Bather, Glazebrook and Whittle. Glazebrook and Whittle have extended the
theorem in various ways, whereas Bather (1983) has obtained approximations using the
Brownian motion, with tools of Bather (1962) along the lines initiated by Chernoff (1968).

Glazebrook has also considered the effects of using various suboptimal policies.

One of the practical difficulties in implementing the optimal policy is that the DAI’s
are often difficult to compute. For some cases, tables have now been provided by Gittins
(1989). There are two other serious difficulties in applying this optimal policy. The first
is a philosophical one and relates to whether one believes in a Bayesian paradigm with a
completely specified prior. It appears that the DAI’s are sensitive to small deviations in
the priors. The second difficulty relates to the sensitivity of DAI’s to the choice of the
discounting factor «, specially for @ near 1. This is disturbing because, in practice, one
may often want to use the discounted problem as an approximation to the undiscounted

problem with a finite horizon.

In view of these difficulties and partly owing to the fact that the horizon though finite
is often unknown, Bather (1980) has introduced stationary strategies using randomized
allocation indices. Let {\(n),n > 1} be a sequence of strictly positive numbers such that
A(r) — 0 as n — oco. Let X;(t),5 = 1,...,k,t > k be ii.d. random variables which are
positive and unbounded with common distribution function F. Initially each of the k treat-
ments is used once initially and after ¢ (> k) trials, suppose r;(t) is the observed number
of successes with treatment ¢ being applied in n;(t) trials. Then the (¢ + 1)th treatment is

chosen to maximize Q(t) = 1%‘<in(t) where Q;(t) = ri(t)/ni(t) + A(n:(t))X;(t). Bather

showed that these strategies are asymptotically optimal in a somewhat weak sense. Specif-
k k
ically, as t — o0, ¥ ri(t)/ T ni(t)=> max(p,...,px). The proof requires a martingale
i=1 i=1

convergence theorem due to Chow (1965).

After considerable simulations and comparison with other allocation rules, Bather has



singled out the choices A(n) = (44-n)% /15n and Xi(t) = 2+Yi(t) where Y;(t) are i.i.d. with
density e=%,z > 0. In Bather (1983) an approximate minimax property is proved with
respect to a risk that measures the expected number of successes lost due to ignorance, i.e.
the difference of E max(py,...,px) and the expected number of successes for the strategy
under consideration. Later Bather (1985) reports simulations with respect to this risk and

makes out a strong case for use of his simple but effective strategy.

In this connection mention may be made of Simons (1986) who advocates sampling
in pairs, until enough information is obtained on which treatment is better out of the two
treatments under consideration and then allocate the remaining treatments to the better
treatment. Here the stopping time of the first stage is determined as a solution to a Bayes

problem.

Both Bather and Simons feel that their solutions are suitable for use in clinical trials.
Simons has indicated that his method can take care of ethical costs introduced by Chernoff

and Petkau (1985).

Finally we mention briefly some of the recent works that are not discussed in the
two books on bandit problems. Mandelbaum (1988) provides an overview of his work on
discrete and continuous time multiarmed bandit problems which is based on a multipa-
rameter formulation. Among other things he explains the role played by simultaneous
pulls of different arms and the Snell envelope martingale approach in optimal stopping.
Some open problems are also mentioned. Eplett (1980) develops a convergence theory
mainly to investigate whether approximating continuous-time problems by discrete time
versions provides valid techniques. Laj (1988) provides a review and discussion on asymp-
totically optimal solution of some bandit problems. Ananthram et. al. (1987a) study the
multiarmed bandit with multiple plays and obtains asymptotically optimal solution. This
extends the work of Lai and Robbins (1985) who considered single plays. In Ananthram
et. al. (1987b), this work is further extended to the situation where the reward sequence
is necessarily i.i.d. but only Markovian. Agrawal et. al. (1988) extend the work of Lai and

Robbins (1985) in a different direction by allowing a cost of switching between arms.



4. ALLOCATION AND ANALYSIS OF CLINICAL TRIALS

The basic problem of allocation in clinical trials is to allocate patients to one of two
different treatments with goals of identifying the better treatment and/or minimizing the

total number of patients receiving the inferior treatment (ITN).

In Anscombe’s (1963) formulation for selecting the better of two treatments with a
specified total number of N patients, there is a trial phase in which n (random) pairs are
given both treatments and a decision is made regarding which is superior. The remaining
(N — 2n) patients are then assigned -to the (apparently) superior treatment. The problem
then is to decide when to stop the trial phase because an early stopping may lead to a
wrong decision about the efficacy of the treatments while a long trial phase will result in
a large number of patients being allocated to the inferior treatment (known as the inferior
treatment number (ITN)). Assuming that the difference in treatment response is normal
with mean 6 and known variance o2, and that 6 has a prior G, Anscombe found the Bayes
procedure which minimizes (with respect to n) the Bayes risk

oo
/ R(6,n)dG(6)
—oo

where
6Es{n+ (N —2n)I(S, <0 ifé6>0
E(6,n) = { (—g){E.s{rE + (N " 251,)](;,, )>}0)} 520

with S, denoting the sum of the observed treatment differences. He also suggested an ad
hoc procedure when G is flat and it performs very well compared to the optimal procedure
as shown later by Lai et. al. (1980). Lai et. al. (1980) also suggested another rule and
made a thorough study of all the three rules, mathematically for large N and by Monte
Carlo studies for small N. They also give a class of stopping rules which is asymptotically
optimal, both from the Bayes and frequentist point of view as N — oco. The mathematical
details of these results can be found in Lai and Siegmund (1983). Lai and Siegmund (1983)
also study the rules proposed by Begg and Mehta (1979) and that of Colton (1963) and
found that these rules perform poorly when compared to the optimal. A continuous version
of this problem was taken up by Chernoff and Petkau (1981), who obtain similar results.

The continuous version provides good approximation to the discrete problem even with
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small horizon sizes. See Bather (1985) for comparison of different rules when the responses

are Bernoulli.

Robbins and Siegmund (1974) point out that the inference and allocation problems can
be separated for translation invariant procedures in the sense that the error probabilities
or risk due to terminal decision is the same for a class of allocation rules. They formulate
the problem of testing which of the two normally distributed treatment responses with
a known common variance has the larger mean as follows. Let X;,X5,...,X,,,... and
Y1,Y2,...,Y,,... denote two independent normally distributed treatment responses with
means y; and pg, respectively, and a common variance 1, and let é = uy — ;. To test

Hy: 6 = —6* against Hy: 6 = 6*, the stopping rule used is

(M,N) = inf{(m,n): Zpm,n & (—b,a)}

where Zpn = gt (Y, — Xm) and a and b are positive, and one accepts Ho(Hy) if

ZM,N < —b(> a,).

The error probability functions of the procedure with the above stopping rule are
independent of the allocation rule used. This fact can be used to consider various alloca-
tion rules aiming to minimize ITN. Robbins and Siegmund (1974) propose the following

allocation rule. Choose ¢ > b, Observe z; and y;. For m,n = 1,2,..., having observed

T1,T2y.+sZm and Y1,Y2,...,Yn, the next observation should be y,+; if ;:_mn < -Z—';i'l, and
Zm+1 should be observed otherwise. Here ¢ may be a constant or a function of b and "T_:n

Monte Carlo studies on this allocation rule for different values of b and ¢ show that for some
parameter values ITN is one half of the sample size required by pairwise sampling, which
is the minimum attainable ITN for any allocation rule. They also show that any depar-
ture from pairwise sampling increases the total expected sample size. See also Siegmund
(1985, Chapter 6, Section 3) for a discussion of the above results. Flehinger et. al. (1972)
discuss these results in brief. An excellent discussion of these issues is given in Siegmund
(1983). He also describes a heuristic rule due to Hayre (1979) which is expected to be
approximately optimum. A comparison of this rule with that of Bather (1985) and Simons

(1986) would seem desirable. On the basis of a few simulations, Siegmund notes that in
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the absence of stratification, the new allocation rule does substantially better than the
equal allocation rule but this advantage disappears if stratification is introduced. These
comparisons have been made in the context of a stopping and terminal decision rule due
to Armitage but similar conclusions have been reached by Hayre (1979) in the context of

a different stopping rule.

In the case of K treatments, all with unknown efficacies and with a long sequence
of patients, Lai and Robbins (1985) study the problem of maximizing the total expected
treatment response (i.e. as a k-armed bandit problem). Let 7;,7 = 1,2,...,k denote the K
populations with treatment responses specified by univariate density functions f (z,0;),5 =
1,2,...,K w.r.t. some measure v with f(.,.) known and 6;’s € © unknown. Assume that

/oo |z|f(z,0)dv(z) < 00 V€O

Define the regret as

Ro(0) =nu* —E(Sn)= % (#" - u(6;))E(Tn(s))
Jip(65)<p*
where 0 = (01,0,...,0k),u(0) = ffooo zf(z,0)dv(z), and p* = max{u(0;),...,u(0x)} =
p(6*) for some 0* € {0;,...,0x}. Here T,(5) is the number of times patients are allocated
to m; upto stage n and S, is the partial sum of treatment responses upto stage n. Thus,

—

maximizing E(S,) is equivalent to minimizing R, (0).

Lai and Robbins (1985) show that under certain conditions on these K density func-
tions (involving Kullback-Leibler number) and the allocation rules satisfying Rn(z) =

o(n®) Va>0,

lim inf an logn > )Y w* —u(0;))/1(0;,0*
m i R(8)/logn> B (4~ 0)/105,0"

for all @ s.t. ©(8;)’s are not all equal.

Here, I(8;,0*) = [°° [log(f(z,0;)/f(z,0%))]f(z,8;)dv(z) is the Kullback-Leibler
number involving f(z,#;) and f(z,0*). Lai and Siegmund (1985) construct adaptive al-

location rules for which the above lower bound is attained as n — oo. Under certain
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conditions, they give an asymptotic lower bound for the regret which is O(log n) and pro-
pose an adaptive allocation rule attaining it. With a knowledge about a separating value
between the largest and the other means, one can achieve a bounded regret as shown by Lai
and Robbins (1984b). The bounded regret can also be obtained for some configurations if
the set of the possible values of the parameter is countable, see Lai and Robbins (1984a).

Lai (1987) provides asymptotically optimal adaptive rules for a general exponential family.

Even though an allocation problem may be formulated as a bandit problem, there are
factors dictating the choice of sequehtial designs which preclude the direct application of
bandit problem techniques. For instance, while comparing two treatments, the objective
may not be maximizing the total number of successes, but minimizing the number of
applications on the inferior arm, together with an objective of inference about which arm

is superior.

Randomization in various forms have been used to correct for imbalance and selection
bias. See Blackwell and Hodges (1957) for one of the early works. Adaptive designs use
some subset of the information available at any given time to determine how to allocate
the next patient or whether to stop the trial. Consider a situation where subjects arriving
sequentially have to be assigned to a treatment or to a control. Complete randomization
is achieved by assigning each subject to one of these with equal probability, independently
of the assignment of other subjects. This has three important advantages. First, if the
experimenter knows for certain that the next assignment will be a treatment or control,
he may consciously or unconsciously bias the experiment by such decisions as to who is,
or is not a suitable experimental subject etc. This is known as selection bias and complete
randomization guarantees freedom from such bias. Second, complete randomization tends
to balance out factors which can cause accidental bias. Typically, this bias comes from
nuisance factors such as time trends, sex-linked differences etc., systematically affecting the
experimental units. Third, probability statements such as the significance level attained
can be based entirely on this randomness. However in experiments which are limited
to a small number of subjects, complete randomization may lead to a very imbalanced

distribution of treatments and controls. To avoid this, Efron (1971) introduced the biased
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coin design which can be described as follows. The subjects might be divided into categories
depending on common factors. The assignment of treatments is done separately for each
category. Suppose that at a certain stage in the experiment a new subject arrives and is
noted to be in a category which has had D more treatments than the control previously
assigned to it. If D > O the subject is assigned to the treatment with probabilty ¢ and
to control with probabilty p. If D < 0 the probabilities are switched and if D =0, the
probabilities are half each. Here p > gand p+¢=1. When p = % it reduces to complete
randomization and when p = 1 it is a permuted block design with block size 2. (In a
permuted block design of block size 2b the subjects are divided into blocks of length 2b
and within each block b units are assigned to the treatment and b to the control and all
combinations are equally likely.) Efron shows that the choice p = % performs quite well
in reducing the imbalance and studies the effect of his designs on accidental and selection
bias. For small size experiments these designs often behave like permuted block designs.
Efron’s design does not distinguish between large and small nonzero absolute values of D.

It does not also distinguish between large and small size experiments.

To take this into account, Wei (1978a) introduced adaptive biased coin designs for
comparing two treatments. As in Efron (1971) the assignment of treatments is done
separately in each stratum. The total number of patients is assumed to be known. The
first assignment is done randomly. After n assignments let D, = Ngo — Np where Ny4
and Np are the number of subjects assigned to treatments A and B respectively. Let
p be a nonincreasing function of D,/n with values between 0 and 1. The (n + 1)th
subject is assigned to treatments A and B respectively with probabilities p = p(Dy /n)
and g = ¢(Dy /n). Here p is such that p(z) = ¢(—=) for z € [-1,1]. Efron’s (1971) design
is a special case with p(z) = p for —1 < z < 0, and p(0) = 1. Wei shows this design almost
eliminates selection and experimental biases as the size of the experiment increases. In
particular if p is continuous at 0, then as n — oo Ep(—J-%ﬂ) — % and E(TpTp+k) — 0
for k = 1,2,... where T; = 1 or —1 according as the jth subject is assigned to A or B.
Further, if p is differentiable at 0, then n—3% D, converges to a normal distribution with

mean 0 and variance 1/(1 — 4p’(0)) thereby showing an asymptotic balancing property.
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In comparing K treatments, Wei (1978b) introduced an urn design which is an exten-
sion of a design due to Friedman (1949) and can be described as follows. An urn contains
balls of K different colors. We start with w balls of color k, where k = 1,..., K. A draw
consists of the following operations: (i) select a ball at random from the urn; (ii) notice
its color k£’ and return the ball to the urn; (iii) add to the urn o more balls of color k' and
B more balls of each other color k, where k # k’. Each time a subject is waiting for an
assignment, we draw a ball at random from the urn; if its color is &/, then the treatment
k' is assigned. The values of w,a, and f can be any reasonable nonnegative integers. If 8
is large with respect to a, then this design forces the trial to be balanced. The value of w
determines the first few stages of the trial. If w is large, more randomness is introduced

to the trial; otherwise more balance is enforced.

This design also forces small size experiments to be balanced but tends towards com-
plete randomization as the experiment size increases. When the number of prognostic
factors increases, the number of strata also increases and then very few patients may
fall within each stratum. Wei also proposes a treatment assignment rule which achieves
a degree of treatment balance simultaneously across all prognostic factors. For further

theoretical investigations of these designs, see Smith (1984 a, b).

Another interesting adaptive design is the randomized play-the-winner rule of Wei and
Durham (1978). Zelen (1969) introduced the play-the-winner rule (PW), which prescribes
that a success with a given treatment generates a future trial with the same treatment,
while a failure generates a trial with the alternative treatment. Wei and Durham (1978)
propose a randomized play-the-winner rule, which keeps the spirit of the PW rule in that
it assigns more patients to the better treatment. But this new rule has the advantages
that it is not deterministic, is less vulnerable to experimental bias, allows delayed response

by the patient, and is easily implemented in a real trial.

Suppose that the response of the patient to treatment is dichotomous, either a success
or a failure, and the probability of a single trial success for treatment 7 is p;, where
0 < p; <1and = A,B. The randomized play-the-winner rule can be described as
follows: A box has balls of two different types which are marked A and B. We start with

13



u balls of each type. When a patient is available for an assignment, a ball is drawn at
random and replaced. If it is type ¢, then treatment s is assigned to this patient, where
i = A, B. When the response of a previous patient to treatment ¢ is available, we change
the structure of the box based on the following rule: If this response is a success, then an
addition 3 balls of type ¢ and an additional o balls of type 7 are put in the box; if this
response is a failure, then an additional & balls of type ¢ and an additional 8 balls of type
§ are put in the box, where 8 > a > 01,5 = A, B; and j # ¢. Thus after each response,
exactly a + B additional balls are added to the box. When the box is empty, a fair coin
is tossed to decide which treatment is assigned in the next trial. We denoted this rule by
RPW (u,a,(). In a small trial, the RPW (0, 0, 1) is better than the PW rule for some
values of p4 and pp with regard to expected numbers of patients assigned to the better
treatment. The rule RPW (u, @, 8) introduces more randomization when B/ e is small, but
tends to put more patients on the better treatment when B/« is large. For two of the few
well documented cases of use of this design due to ethical considerations in actual clinical

studies, see Bartlett et. al. (1985), Cornell et. al. (1986) and Ware (1989).

Among statistical tests applied to clinical trials repeated significance tests (RST) have
received the most attention and have been both criticized and defended by researchers.
When used for a two treatment comparison, an RST is a paired comparison test where
at each stage, the two members of a pair of patients are subjected to the two alternative
treatments under consideration and the responses are compared to decide whether to stop
or continue the experiment. Let X, > 1 bei.i.d. N(u,1) denoting the treatment difference
of the i-th pair. To test Hp : p = 0 against H4 : p # 0, an RST is defined by the stopping

rule,
(4.1) T = inf{n > mo : |Sn| > bv/n},

where mg > 1 and S, = X ; X;. The test procedure stops sampling at min (T, m) and
rejects Ho if T < m. Here m and mo are the maximum and the minimum number of pairs

under trial, respectively.

As in most other sequential tests, numerical analysis has been extensively used to study

the properties of RST. Armitage et. al. (1969), and McPherson and Armitage (1971) evalu-
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ated significance levels, powers and expected sample sizes of RST’s by numerical methods.
See also Armitage (1975). Woodroofe (1978) and Lalley (1983) obtained analytical ap-
proximation to significance levels of RST’s for exponential families. See also Woodroofe

(1982), and Woodroofe and Takahashi (1982).

Siegmund (1985) presents an extensive analytical study and review of the RST. The-
ories developed in Chapter 4 of Siegmund focus on RST for Brownian motion and on
obtaining approximations for power function and expected sample size. These enable one
to make similar approximations for é. wide class of stopping boundaries. Siegmund (1985,
Chapter 4, section 7) points out that exact results can be obtained for RST with a special
set of nonlinear boundaries. RSTs for general one parameter families are also discussed in
Chapter 4, section 8. See Chapter 9 for analytical studies of RSTs defined by equation 4.1
using nonlinear renewal theory. RSTs with more than two treatments (Chapter 5, section
3) and modified RSTs (Chapter 4, section 4) are also discussed. Modified RSTs have been
developed to increase the power of RST. In the usual two-treatment, normal response set
up, the stopping time of modified RST is the same as (4.1) with a larger value of b and the
rejection region is given by T' < m or T > m, |Sp| > ¢4/m with 0 < ¢ < b. This procedure
reduces to a fixed sample test if b = oo and to the usual RST if &6 = ¢. Thus it can be
regarded as an intermediate form of these two tests. In a recent paper Hu (1988) reviews
analytic techniques for working with modified RST’s and extends results for normal fam-
ilies to general exponential families. See Hardwick (1989 a) for RST’s which incorporate

ethical costs.

In contrast to an RST which considers only a pair of patients at a time, group se-
quential designs apply significance tests to groups of patients (hence the name group) in
order to avoid the difficulty of continuous assessment of data. In each group, patients are
allocated to the alternative treatments according to some fixed scheme. For two-treatment
normal response with known variance, Pocock (1977) points out the most attractive feature
of group sequential designs — the early stopping of trials when the alternate hypothesis is
true. Numerical studies in Pocock (1977) show that the use of two groups leads to sub-

stantial reduction of expected sample size under the alternate hypothesis over a one group

15



experiment, but the incremental benefit from an additional group is negligible if there are
more than five groups. Pocock used equal group size and constant nominal significance
level throughout the trial so that the overall significance level is the prespecified a. Ex-
tensive numerical studies help to determine the suitable values for the maximum number

of groups and the size of the groups.

Often, studies on these designs have focused on the finding of Type I error i.e. on the
determination of nominal signiﬁca.ncq levels at which tests are performed at different stages
of the experiment so that the overall level of significance is the prespecified a. For two
treatments and normal response with known variance, Pocock (1982) performed numerical
studies to show that the use of varying nominal significance levels, more stringent at early
stages and less so at the later stages, is more efficient than using a constant nominal
significance level at all stages unless one has adequate overall size and power. See DeMets
(1984) for an account of the experience of several clinical trials involving such interim
analyses. Geller and Pocock (1987) mention several problems which need attention in group
sequential schemes. In particular no group sequential work has been done in comparing

more than two treatments.

Lan and DeMets (1983) propose a method to determine the boundary at arbitrary
time intervals for a choice function a(t) which characterizes the nominal significance levels
in a group sequential trial. A major finding of this paper is that the boundary does not
depend on the maximum number of groups as has been the case with Pocock (1977, 1982),
O’Brien and Fleming (1979), DeMets and Ware (1980), DeMets (1984), Siegmund (1985),
Slud and Wei (1982) and Whitehead (1990). For an overview of this topic, see DeMets
and Lan (1984).

The studies discussed so far consider a single measurement of each patient. In a
departure from that practice, Armitage et. al. (1985) present an interesting modification
of the group sequential test where the number of patients for each treatment group is

predetermined and repeated measurement is taken on each patient in each group.
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Construction of confidence interval for the mean treatment difference following a se-
quential test has drawn the attention of many researchers. These studies have usually been
motivated by the fact that tests alone are not sufficient for the final decision in comparing
treatments, especially after rejecting the null hypothesis. Tsiatis et. al. (1984) suggested
the construction of confidence intervals following group sequential tests based on numerical
integration. Their procedure requires equal sample sizes at every stage. Kim and DeMets
(1987a) modified the procedure of Tsiatis et. al. (1984) such that the requirement of equal
sample size at each stage is relaxed, and it is possible to use the group sequential tests
of Lan and DeMets (1983) which require no prior specification of the maximum number
of groups. Other works in this area are by Jennison and Turnbull (1983, 1984, 1990),
Siegmund (1985) and Rosner and Tsiatis (1988). Siegmund (1985) discussed interval esti-
mation following sequential tests in Chapter 3 (sections 3 and 6), and confidence interval

following an RST in Chapter 4, section 5.

Often it is desirable to allocate subjects as part of a group, for example, in multi-
center trials. Multi-stage designs to handle this have been proposed as a variation on
complete randomization, by Berry and Pearson (1985) and Witmer (1986), among others.
However, these methods have seldom been used in practice. Adaptive multi-stage designs
offer compromise between fully sequential and fixed proportion allocation rules. See Hall
(1981), Siegmund (1985), Clayton and Witmer (1988), Woodroofe (1988) and Lorden
(1988) for further discussion.

Recently researchers have tried to introduce ethical considerations into the designs.
Tymchuck (1981, 1982) offers some discussion on how to structure decision processes,
quantifying ethical considerations. See Woodroofe and Hardwick (1988) and Hardwick
(1989 a) for decision theoretic formulations, in which ethical costs are explicitly expressed in
the loss function. Lai (1984) introduces the concept of a confidence sequence incorporating
ethical costs in situations where there are possibilities for early termination, unforeseen
harmful effects and of no definite conclusions. Chernoff and Petkau (1985) formulate the
following problem incorporating ethical cost. Suppose that a finite number N of patients

are given one of two available treatments. During the experimental stage n patients are
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paired and assigned to one of the two treatments at random. Let Xi,X>2,... denote
the differences of the responses. Suppose they are i.i.d. N (n,0?) where o? is known.
Suppose further that s has a prior distribution N (uo,ao) The posterior distribution of
g is N(Yn,s2) where Y, = (nX, + 05 20)/(n +05%) and 82 =n + 052 and X, is the
sample mean. The problem is to find a stopping time T which minimizes the expected
value of

t
T|p| + (N —2t) el I(#Yn <0) + E Vi1l

Here T|u| denotes the cost of giving an inferior treatment to T patients (one from each
pair) (N — 2t)pI(uY, < 0) represents the danger of choosing the inferior treatment and
Z |Y;_1| represents the ethical cost. This stopping problem is analyzed by a continuous
approx1mat10n They provide extensive numerical analysis, tables and charts from which

the optimal procedure may be approximated.

Woodroofe (1979, 1982) introduced designs incorporating covariates. Consider a pop-
ulation of N subjects. Let X,Y°,Y! denote respectively the covariate and potential re-
sponses of a typical subject to the control and the new treatment. Suppose that X has
a known distribution F, the conditional distribution Go(-|z) of Y? given X = z is known
and the conditional distribution G1(:|z,8) of Y! given X = z depends on an unknown
parameter § € 0 and 6 has a known prior distribution . Y0, Y?! are real valued with
finite expectations but X and § may be quite general. An allocation policy is a sequence
6 = (61,...,0n) where each 6 is O or 1 and 6 is a measurable function of X3,...,Xk—1,
61,...,6k_1 and (X%, YQ,Y;) is the response of the kth subject. The value Vy(6,7) is
given by

Viv(6,m) = E7( T (63 + (1 - 60)YE)).

The optimal policy to maximize Vy (6,7) has been obtained by backward induction. Several
inequalities and limits (as N — oo) for the optimal policy and the resulting payoff have
been given, along with a class of problems for which the limit of the optimal policy has a
simpler form. Woodroofe (1979) studied a special case of this problem. Interestingly, in the
presence of a covariate, an approximate solution is simpler to obtain, the discount factor is

less important and the myopic strategy is asymptotically optimal. See also Clayton (1988)
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and Sarkar (1989) for further recent work.

For work involving delayed response, see Wei and Durham (1978), who uses a random-
ized play-the-winner strategy with the possibility of delayed response. For other works, see
Eick (1988a,b) and Flournoy (1989). Eick (1988a) introduces a two-armed bandit prob-
lem with delayed response. He shows that the delay introduces a new parameter and the
bandit is no longer a stopping problem. In clinical trial applications, this delay parameter
represents the number of patients previously treated with the unknown arm who are still
living. Under regularity conditions on the discount sequence, there exists a manifold in
the state space such that both arms are optimal on it, and arm 1 is optimal on one side

and arm 2 on the other.

The use of control is important in clinical trials. Berry (1989c) in his discussion
of Ware (1989) points out that there has not been much applied research on the use of
historical controls, probably because it is not a problem of high priority. For a review on
the use of controls, particularly when there are more than one control, see Rosenbaum

(1987).

Nonsimultaneous (staggered) entries and possible drop outs cause complications in
the statistical analysis. See Olschewski and Schumacher (1986) for a useful account of

some of the implications of this on the classical parametric and nonparametric procedures.

To conclude this section, we like to mention the unfortunate fact that despite the vast
literature on clinical trials, very few techniques are implemented in practice. Simon (1977)
and more recently Armitage (1985) discuss these problems. Armitage (1985) pleads for
a closer collaboration between the theoreticians and the statisticians who have to design

and analyze clinical trials.

5. OTHER WORKS
In this section, we mention a few papers on other sequential design problems.

Lai (1983) reviews and clarifies the assumptions needed to obtain consistency of re-

gression coefficient estimates in a stochastic regression problem when the design points
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are chosen adaptively. He derives similar results for autoregressive time series and input-

output models.

Lalley and Lorden (1986) refine the results of Chernoff on asymptotically optimal
designs. Under strong assumptions, they provide rules whose asymptotic payoff differs
from the optimum asymptotic payoff by a constant, and show it is possible to obtain a
bound for this constant. While the result is interesting, its applicability is restricted by

the rather strong assumptions.

Gebhardt and Heckendorff (1983) propose a sequential design for the regression prob-
lem based on heuristic considerations. From numerical simulations, they found that for lin-
ear models and for a small number of experiments there may be considerable improvement
over non-sequential experiments in A- and D-criterion. Vuchkov (1982) shows how nearly
D-optimal designs can be sequentially generated in some situations. Wu (1985a) shows
that confidence regions for nonlinear parameters constructed by the repeated-sampling
principle, are asymptotically valid for sequential designs in general linear models. Ford,
Titterington and Wu (1985) show that to make inferences, the sequential nature of the de-
sign can be ignored asymptotically. They also provide some links to inference for stochastic

processes and missing data problems.

For problems involving serial sacrifice experiments, see Bergman and Turnbull (1983).
See also Hu and Wei (1989) who propose “irreversible adaptive allocation rules” motivated
by the problem of scheduling such experiments. They obtain asymptotically efficient proce-
dures and show that a lower bound for the regret is characterized by a linear programming

problem.

Segreti et. al. (1981) discusses an interesting problem of finding an optimum combina-

tion of a new and standard treatment through sequential trials of different combiantions.

Shapiro (1983) discusses a problem of estimating two parameters simultaneously and

finds asymptotically optimal rules.

Petruccelli (1982) and Chen et. al. (1984) discuss two different problems of sequentially

observing variables subject to certain constraints and discuss their applications in clinical
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trials.

Wu (1985b) discusses a sequential design for estimating the percentiles of a quantal

response curve and derive its optimal properties.
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