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Abstract

In the exponential regression model
Vij = a+ Bp"t"% + ey,

z and a known, inference concerning p is notoriously difficult, even when using the Bayesian nonin-
formative prior approach (cf., Mitchell (1963)). The reference prior approach of Bernardo (1979),
as modified by Berger and Bernardo (1989a,b), is considered, and shown to yield very satisfac-
tory inferences. Estimation and credible sets are considered in a specific example from Patterson
(1960). The preferred reference prior is thus the first generally recommendable noninformative

prior for the problem.
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1 Introduction

Consider the exponential regression model given by
Y;J ~ N(a+ﬂpz+zia,02), (1)

where o, € R,0<p<landz >0,a >0,z and a known constants, 0 <i < k—1,1< j < m, the
z;’s are known nonnegative regressors with z; # z; for ¢ # j and the variance 0% > 0 is an unknown
constant. Without loss of generality, it is assumed that z; < z; for i < j.

Bayesian inference for p is desired, based on a noninformative prior. Mitchell (1963, 1967)
considered the above problem for a variety of possible noninformative priors. Common adhoc non-

1. were shown to yield improper posterior densities for

informative priors, such as 7(a,3,0,p) x 0~
- p, invalidating-their use in -Bayesian.inference. (see-also.Cox.& Hinkley, 1974). Faced with this sur-
prising phenomenon, Mitchell considered various adhoc modifications of the noninformative priors,
modifications designed to produce proper posterior densities for p. Properties of these modifications
and ensuing Bayesian inferences were then studied (see Section 4 for discussion).

Consonni and Veronese (1989) also considered the model of Mitchell and analyzed use of
m(a,B,0,p) x o' using a finitely-additive approach. They obtained a proper (but only finitely
additive) posterior distribution for p. Though proper, this posterior distribution is of limited practical
use, since it only has mass (or adherent mass) at p = 0 and/or p = 1.

Our interest in this study arose out of a desire to ”test” the reference prior algorithm, initiated
by Bernardo (1979) and further developed by Berger and Bernardo (1989a,b), for development of a
noninformative prior on this challenging and troublesome model of considerable practical importance.
The hope was that this automatic” reference prior approach would yield a prior giving a proper
posterior with good properties. This would not only provide additional evidence in support of
the reference prior algorithm, but might yield a generally acceptable noninformative prior for the
nonlinear regression model. In Section 4, evidence of the success of the reference prior will be

presented.

The most well-known ”automatic” method of generating a noninformative prior is that of Jeffreys,
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(1961). Mitchell (1963) determined the Jeffreys prior for this problem, but had several criticisms
of it. Onme criticism was that it depended on 8 in an unnatural way. A second criticism was that
it depended on the covariates {z;} and number of treatments k, seemingly unnatural for a prior
distribution. We share the concern about 3 (see Section 2), but not that of dependence on the
{z:} and k. It has become well accepted that noninformative priors must depend on the statistical
model, which here includes the {z;} and k. (See Bernardo, 1979, and Berger, 1985, for discussion.)
Dependence on covariates is not particularly attractive (especially if they, themselves, are random),
but is arguably a necessary evil if one desires a sound noninformative prior. We stress this because
the reference priors will also be seen to depend on the {z;} and .

Section 2 contains the development of the reference priors, and also gives the Jeffreys prior as
determined by Mitchell. In Section 3, the marginal posterior densities of p will be determined for
the reference and Jeffreys lerioi‘é. Part of this development is a demonstration that the reference
and Jeffreys priors yield proper posterior densities for p. Also of considerable interest is that the
reference posteriors are much simpler to work with than the Jeffreys posterior, precisely because the
reference priors do not have the unnatural dependence on $ that is found in the Jeffreys prior.

In Section 4, comparisons of the inferences under the various priors, and with maximum likelihood
estimators, will be undertaken in an example. Estimates and their associated standard errors will be
considered, along with actual frequentist coverage of the implied confidence procedures (a common
method of evaluating noninformative priors — cf. Berger & Bernardo, 1989b, Efron, 1986, Stein,

1985). Section 5 contains discussion. Most of the technical details are put in Appendices.

2 The reference priors and the Jeffreys prior

2.1 Preliminaries

The likelihood function for e, 3,0, p in the exponential regression model is

k-1
[(710,8,0,p) 0™ exp{~[s" + m3_ (T, — o — Fp Y]}, 2)
1=0



where y is a vector consisting of all the observations, 7; = L o 2ogel Yis U = %21_0 7;, and s% =
Ez:O Z] l(yl.ﬂ yz'.)2 = 3 2 Here -S Z: E]_l(yzj - y) and S = mz 1(71'. - y)Z

The Fisher information matrix is

Hl(p’ﬂ) 0

m
H(P,a,ﬂ,0)= ﬁ ’ (3)
ot 2k
where
( & \
162 2(z-1) Z(z 1z a)2 2zia ﬂpz—l Z(x Py a)p:c.a ﬂp2:c—1 Z(z +z; a)p2z.a
z—O =0 =0
Be0)= | 57 S+ aalp™ b o P
e b1 e

\ ﬂp2a:—1 Z(x + zz_a)pZa:.'a p:c Z p:vea p2z E p2:cia /

When k < 2, it can be shown that the information matrix (3) is singular, which precludes application

of the reference prior or the Jeffreys prior approaches. Thus we henceforth assume that k > 3.

For later use, several functions are defined as follows:

k-1
nw) = Qo w* - (wa') )(szwh'— (ch w™)?)

=0 =0 =0 =0
k-1 k 1
(St -} S S @
=0 =0

k—1 1 k-1
pg(’w) — Z ,wz:c.' _ E(Z wa:.')Z, (5)
1=0 =0

q= E z? - —(Z z:)?, (6)

and
k-1 k— k-1 2k -1 k-1 k—
Q= Zw?Zw:‘ (2 o) - k@ 2 - L2 mzx 2y ey ayd o
= = 1=0 =0 =0 1=0



2.2 Reference priors

In this problem, we are considering p as the parameter of interest and «, 3, o as nuisance parameters.
Bernardo (1979) suggests determining the reference prior by a two step procedure in which, first,
one finds the conditional reference prior for the nuisance parameters given the parameter of interest;
and then one finds the reference prior for the parameter of interest in the marginal model formed by
integrating out the nuisance parameter with respect to the conditional reference prior. Berger and
Bernardo (1989a,b,c) propose allowing multiple groups ”ordered” in terms of inferential importance,
with the reference prior being determined through a succession of analyses for the implied conditional
problems. (Note that this reference prior algorithm differs from consideration of ”independent” Jef-
freys priors, as done by Mitchell, 1963.) Berger and Bernardo particularly recommend the reference
prior based on having each parameter in its own group, i.e., having each conditional reference prior
be only 1-dimensional. | - o | |

In this subsection, all the reference priors for the various group orderings of p,a, 3,0 will be
given. Notation such as {p, e, (83,0)} will be used to specify the groups and the importance of the
parameters; {p,a,(8,0)} means there are 3 groups, with p being most important and the group
(8, 0) being least important. To compute the reference prior for this group ordering (for instance),
we thus first derive the conditional prior 7(8, o|p, a), use it to determine a conditional reference prior

7(a|p) in a marginalized model, and use both of them to derive a marginal reference prior 7(p).

Theorem 2.1 For the exponential regression model as described in Section 1 with k > 3, the refer-

ence priors for the various possible group orderings are as follows:

Group Ordering Reference Prior

{p,e,B,0} or {p,(c,B),0} and with all permutations of o, 8,0 | Lp=1p(p®)

{p,a,(B,0)} and with all permutations of o, 3,0 01—2,0””_1p(p“)

{p, (@, B,0)} and with all permutations of a, 3,0 (%p‘”_lp(p“)

where (see (4) and (5)) p(p®) = pa(p®)/pal(p®).

Proof: See Appendix A. : o



Note that the reference priors only depend on o and p. The only differences for the different
group orderings are in the power of o—!. To verify that the reference priors yield proper posteriors,
we must discuss the behavior of the function p(p) for p € (0,1). Since p;(p) and pa(p) are continuous,
nonnegative and bounded functions, and py(p) is non-zero on (0,1) when the z;’s are not all equal,
the integrability of p(p) on (0,1) is determined by its behavior near 0 and 1.

In Appendix B, the following results are established (see (33) , (34), (35) and (36) in Appendix

B):
(a) Forp~0:
PH(P) = (1= P)(o1 — 0)pHewteD) 4. o(pewtan) ©®
and
P(p) = 2= 2o — 20)% + ofp). (0
(b)yForp~1:
YR 4 4
Ro) = 201 o)+ ol(1 - ), (10)
and
2 v _ @ 2 2
Pip) = 7,0 =)+ o((1 = p)"), (11)

where g and ) are defined in (6) and (7). Both ¢ and @ are positive when the z;’s are not all equal.
From (9) and (11), it can be concluded that all reference priors for p behave near 0 and 1 as

r—1

T5(py e, 8,0) & ——p(p%)

o/ B (m1 — zo)pm et p~ 0
2
/21 - p%) p~1

where s is 1,2 or 3. This will be used in Section 3 to show that the marginal reference posteriors for

(12)

p are proper.



2.3 The Jeffreys prior

In this problem, the Jeffreys prior was first established in Mitchell (1963). In general, the Jeffreys
prior is the square root of the determinant of the Fisher information matrix. From (30) and (31) in

Appendix A, the following result is immediate:

Theorem 2.2 For the exponential regression model as described in Section 1 with k > 3, the Jeffreys

prior has the form

|Blp?* 1

praney IR (13)

WJ(p,a,ﬂ, U) &

Note that the Jeffreys prior depends on p, o, and also 3, while the reference priors given in
section (2.2) depend only on p and o. This causes considerable complications in computation with
- the -Jeffreys prior since.the integration.over 3 cannot be done in closed form here, as it can for the
reference priors. Furthermore, Mitchell (1963) argued against the presence of |3| in (13), on intuitive
grounds. We will discuss this later in Section 4.

By equations (8) and (10), the limiting behavior of the Jeffreys prior near 0 and 1 is:

v (1:%) |ﬂ|pa(zo+x1 V4221 p~ 0
WJ(p,a,,B,a) ~ 7 . (14)
51V QIBI(1 - p*)? p~1

This, also, will be used to establish the propriety of the associated marginal posterior for p.

3 Marginal posterior densities of p

3.1 Marginal reference posterior densities of p

Mitchell (1963) computed the posterior density of p, for z; = 1, 0 < ¢ < k — 1, using the prior o1

and integrating out with respect to a, 3, o, obtaining

T(ply) < {p°(1 = p*)h(p;¥)} ", (15)

where h(p;y) is a continuous and bounded function on (0,1). Unfortunately, this turns out to be

improper. Via similar calculation, the posterior densities of p using reference priors and the Jeffreys



prior can be found. The following two conditions will be assumed:

(a) there do not exist p € (0,1) and constants Cy, Cz such that y;; = Cy + C2p™ for all
t and j;
(b) there do not exist constants Cy and Cy such that y;; = Cy + Caz;, for all i and j. (16)

Note that (a) excludes the case in which the data exactly fits the given model (residuals equal to
zero) and (b) excludes the case in which the data exactly fits a linear regression model. Neither
case can be handled with improper priors. Note, of course, that these cases have probability zero of

occurring under the given model.

Theorem 3.1 For the exponential regression model described in Section 1 with k > 3, suppose that
(a) and (b) of (16') are satzsﬁed Then for the reference priors 7rT(p,a ,6,0) = cr‘sp’" p(p ) given

in Section 2.2, the margznal posterzor densztzes of p are proper and are gwen by

K(s)p(p*)

r - 17
m ) = S — e,y a7
where K(s) are the normalization constants for s = 1,2 or 3. Here
2 2 2 \km+s—3__ P3(P) 1
h(p; s,¥) = {[sy, — mdi(p;¥)/p3(p)] m}% (18)
where
k-1
di(p;y) = 3 (T~ T)p™. (19)
=0

Proof: The form (17) follows directly from calculation using the reference priors obtained in Theo-
rem 2.2 and the likelihood function given in (2).

To show that these densities are proper, observe that h(p;s,y) is continuous and bounded for
p € (0,1) when s and y are given. We need to consider the behavior of h~(p;s,y) on (0,1). Since,
by the Schwartz inequality,

k-1
dpy) = D@ -1e")P = [Z(yz —7)(p™ - —Zp”')

=0 1=0 =1

k—~1 k-1
Y@ -T2 (% - Z p™)? = pz(p)E(yz -7,

=0 1=0 ’L—O 1=0
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it follows that

k-1

siy — mdi(p;¥)/p3(p) 2 8 + 85 —mY (7 -9 = &% (20)
=0

Therefore, h(p; s,y) = 0 for some p € (0, 1) if and only if equality holds in (20) for some p and s* = 0.
Equality holds in (20) for some p if and only if there is a p € (0, 1) such that ; —g= K(p* — %kz—:l "),
0 <4 < k-1 for some constant K. If this were to hold and s?> = 0, then condition (a) wi(;:lgld be
violated. Thus, h~1(p;s,y) > 0 is well defined for p € (0,1).

To see the limiting behavior of h(p;s,y) at the endpoints, observe that

_ km(?]o - 7)2]kmi25—3

M0s58,y) = Jim h(pis,y) = [(1- PIFleh, — TR , (21)
and
k-1 km4s—3
h(1-58y) = lim hp;s,y) = P kx){sy, - 3 =@ - P/} =5 (22)
By (21), since
k-1
(k= sy, —km(Fo. = )" = (k= 1)s"+ (k= )mY (% ~ 7)* — km(To. - 7)°
k—1
> mf(k— 1)2(@-. ~9)? = (%o. - 97
k—1
> m[(} 7. -9)° - @.-9)1=0,

i=1

then A(04;s,y) > 0. Equality holds if and only if all 7; are equal and yij = 7;. for all ¢ and j§, which
is excluded under condition (a).

By (22), a similar technique shows that h(1_;s,y) > 0, with equality holding if.-and only if
¥i; = ¥; for all 4,7, and 7; = Cy + Cai, where C; and C; are constants. This latter case is excluded
under condition (b).

Therefore, h~*(p; s,y) is uniformly bounded on (0,1). Using (9) and (11), it can be concluded

that the limiting behavior of the marginal reference posterior densities of p near either 0 or 1 is

w(oly)~ d () GER (21 — m0)p™@r=20)"1 [h(0455,y) p~ 0

X .
Jzﬂ\/g/h(l-;s,Y) pr~1
Since a > 0, it follows that the reference marginal posterior densities are.proper on (0,1). ]
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3.2 Marginal posterior density of p using the Jeffreys prior

Rewriting the likelihood function (2) as

f(yle,B,0,p) o« o exp{— —lA(0"y) + km(a = B(p,B,y))’
+mpp 2(p“)(ﬂ Az, (23)

where

Alp,y) = s, -m 2(;o,y)/pé(/o),

B(p,B,y) = ¥ pzp‘”'
Cloy) = %52 (24)

we have the following ;esglt:

Theorem 3.2 For the exzponential regression model described in Section 1 with k > 3, suppose that
conditions (a) and (b) of (16) are satisfied. Then the marginal posterior density of p for the Jeffreys

prior is proper and has the form

gl (25)

(ol = & PP ) _km ( s2, = A(p"y))? (ot -n? dry
(ply) ( yy) /(; ————__(1 +72)1+

Ko (p“) A(ps, y) ="

where K is the normalization constant.

Proof: From (13), it follows that the marginal posterior density of p is

oly) o« =) [ [ [T 18le7 1, B, 0, )l
« pin(p?) / T 181 exp{- 554", v) + m(o7)B - Clot, 3P}
/oo exp{ [ B(p,ﬂ,y)]2}dad,3da

- P(P“) o—(3+km) _ ex M do
pp2(p° )/ / e |ﬁ+(A(p ay) 1)?] p{-3 [A(p ,¥) + B°1}dodp

po?) [ 18+ (g - D}

* o) o (G, )+
o 2O Loy sm (s = Al Y))E /m%%ﬂ.w—n% b
ppz(p“) Fm v A(pe,y) == Jo (1428
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Since h(p; s,y) = [A(p, y)km+’"3p1,—ﬁ%ﬁ_pL)2]% (by (18)) and ?I—ﬁ%ﬂ_%z is bounded on [0, 1] (by (33)
and (35)), the discussion of A~*(p; 3,y ) in the proof of Theorem 3.1 shows that A~1(p,y) is uniformly
bounded for p in (0, 1), excluding the cases (a) and (b). Also, 1/s2, is bounded under condition (a).
By (33) and (35) of Appendix B and (9) and (11) in Section 2.2 it follows that

wp) | EE DRt g

ay *
Thus, the marginal posterior density of p using the Jeffreys prior is proper. a

4 Comparison in an application

As in Mitchell (1963), we consider the example given by Patterson (1960) concerning a group of
data resulting from seven-experiments yielding sevendifferent-sets-of plant.yields. Patterson (1960)
computed the least-squares estimates of p for each experiment using the exponential regression model.
Corresponding to the model described in Section 1, the seven experiments had k =4, m =1,z =0,
a=1and z; = i for 0 < ¢ < 3. In this example, the response variable used is Barley grain and
the regressors are the levels of nitrogen used for plants. Here o is the average yield of plants, —3
measures the maximum change in the yields and p represents the efficiency of the fertilizer. Table 1

gives the data.

Level of Data Set

nitrogen | 1 2 3 4 5 6 7

0 29.0 | 28.9 | 26.6 | 32.2 | 13.5 | 29.7 | 15.8

1 35.0 | 36.1 | 32.1 { 38.6 | 17.1 | 34.3 | 23.4

2 37.6 1375 | 34.2 | 38.6 | 18.7 | 36.7 | 28.5

3 37.7137.2|34.6 | 39.6 | 19.1 | 37.2 | 32.2

Table 1: Experimental data

For this experimental setup, the reference priors are (see (12) and (13))

"o, ,0) o« L8, (26)
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for s =1,2 or 3, and the Jeffreys prior is

7 (p,, 8,0) m%i——(pl, (27)
where
¢’(p)=K(T)(1—p)\/1+2p+4p2+2”3+p4, (28)
3+4p+ 6p% + 4p3 + 3p?
and
¥ (p) = K(J)(1 = p)*\/1 + 20+ 4p2 + 20% + p¥; (29)

it happens that %" and %”, the factors of the priors that depend on p, have finite integrals over
(0,1), so that it is convenient for comparison to let K(r) and K(J) be the normalization constants
such that the integrals of 4" and .4’ over (0, 1) are equal to 1. Figure 1 gives the graphs of %" and
7 for this example. Observe that both decrease to zero as p — 1. This is what yields propriety of
the resulting marginal posteriors for p.

For the 7 data sets, the marginal posterior densities for p, using the reference priors and the

Jeffreys prior, are given in Figures 2-8. Table 2 presents the corresponding marginal posterior means

Posterior Means Posterior Modes
Data set | MLE | Jeffreys Reference Jeffreys Reference
s=3 s=2 s=1 s=3 s=2 s=1

1 0.3329 | 0.3341 | 0.3352 | 0.3389 | 0.3502 | 0.3321 | 0.3319 | 0.3317 | 0.3308

2 0.1482 | 0.1489 | 0.1504 | 0.1562 | 0.1800 | 0.1479 | 0.1479 | 0.1478 | 0.1477

3 0.3375 | 0.3375 | 0.3379 | 0.3390 | 0.3451 | 0.3373 | 0.3373 | 0.3372 | 0.3370

4 0.0948 | 0.1181 | 0.1320 | 0.1579 | 0.2092 | 0.0933 { 0.0930 | 0.0928 | 0.0913
5 0.3926 | 0.3929 | 0.3931 | 0.3940 | 0.3977 | 0.3924 | 0.3923 | 0.3922 | 0.3921

6 0.4267 | 0.4275 | 0.4280 | 0.4293 | 0.4319 | 0.4261 | 0.4259 | 0.4255 | 0.4252

7 0.6919 | 0.6920 | 0.6920 | 0.6920 | 0.6888 | 0.6919 | 0.6919 | 0.6919 | 0.6918

Table 2: Posterior means and modes and the MLE in estimation of p

12
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Data for for for for reference analyses

Set MLE(1) MLE(2) Jeffreys s=3 s=2 s=1
1 1.5078 x 1072 | 1.6342 x 1072 | 2.9545 x 10~ | 4.9943 x 10~ | 9.8088 x 103 | 2.1473 x 102
2 6.5984 x 10™* | 7.0867 x 10™* | 1.2440 x 10~ | 2.1340 x 10~3 | 4.8844 x 10~3 | 1.5305 x 10~2
3 3.1371 x 10™* | 3.2536 x 10™* | 6.2673 x 10~* | 1.1609 x 10~ | 3.0064 x 10~2 | 1.0603 x 10~2
4 4.9511 x 1072 | 4.0045 x 102 | 6.3904 x 10~% | 1.0319 x 10~2 | 1.8657 x 10~2 | 3.5733 x 102
5 3.6530 x 10~* | 3.7876 x 10~* | 7.3010 x 10~* | 1.3465 x 10~ | 3.4070 x 103 | 1.1373 x 10~2
6 1.0646 x 1072 | 1.1289 x 10~2 | 2.1092 x 10~2 | 3.6665 x 10~> | 7.6823 x 10~ | 1.8436 x 10~2
7 3.4594 x 1075 | 3.4339 x 10~° | 6.9138 x 10~ | 1.3338 x 10~* | 4.5920 x 10~* | 3.6878 x 1073

Table 3. Posterior variances and estimated asymptotic variances of the MLE.

and modes for p, as well-as-the -MLE;“Table-3-presents-the corresponding posterior.variances for p,
as well as the estimated asymptotic variances of the MLE for p, calculated by two methods (called
MLE(1) and MLE(2); see Appendix D). (Table 2 and Table 3 were calculated using the subroutines
DCADRE, DBLIN and ZPOLR of IMSL on a VAX11/780 computer; all numbers in the two tables
are accurate through the given digits.)

From Table 2, it is clear that the posterior modes are all very similar. The posterior means for
the reference posteriors are shifted right, quite substantially for data set 2 and especially for data
set 4. The reason is clear from looking at Figures 3 and 5, which exhibit definite skewness. The
posterior means and modes for the Jeffreys prior are closest to the MLE, followed by those for the
reference priors with s = 3, s = 2 and s = 1, in that order.

From the graphs, it is clear that all posterior densities have the same shape, but with different
variances. Table 3 shows just how different these variances are, for the different priors and also for
the MLE. Indeed, the variances virtually double with each step going from the MLE, to the Jeffreys
prior, to s = 3, to s = 2, to s = 1. It will shortly be shown that the s = 1 reference prior yields
procedures with good frequentist properties, so the variances for other priors and especially for the
MLE estimates are likely to be severe underestimates of variability. This and high sensitivity.of the

analysis to the choice of the method and/or prior were also shown by Mitchell (1963). Of course,
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this sensitivity is not surprising, since each data set has only four observations and there are four

unknown parameters.

When different conditional methods yield quite different answers, it is common to compare them
through consideration of some frequentist criterion. Here we consider, for the Patterson model and
design (but random data), the frequentist coverage of the interval from 0 to the 0.05 quantile (and
from 0 to the 0.95 quantile) for p, the quantiles being those of the posterior distributions for the
reference priors. (The computations were not done for the Jeffreys prior, because of difficulties
caused by the extra integration needed in working with the Jeffreys prior; from Tables 2 and 3, one
would expect the frequentist coverage probabilities of the 0.05 (0.95) quantile of the Jeffreys prior
to be higher (lower) than those of the s = 3 reference prior.) Also included in the comparison were
three priors from Mitchell (1963) that yield proper marginal posterior densities for p. These priors,

denoted by g1, g2 and g3, are (1 — p)/a, p(1 - p)?/o and p%(1 — p)/a, respectiveisr.

In this example, since there are 4 parameters in the model and only four observations, asymptotic
classical confidence intervals are unusable (see, also , Mitchell, 1963). And because of the bounded
parameter space (0, 1) of p and the presence of (a, 8, 0) as nuisance parameters, there are no natural

likelihood confidence sets for p. Hence no non-Bayesian confidence sets are studied here.

It is shown in Appendix C that frequentist coverage probabilities for intervals based on posterior
quantiles using the reference priors or Jeffreys prior or Mitchell’s priors depend only on (p,|B|/o).
Table 4 presents these coverage probabilities for a variety of values of (p,|8|/c). Since p is a param-
eter in the bound set (0, 1), one cannot expect coverage probabilities and conditional probabilities
to correspond for all parameter values; thus the coverage probabilities should be used merely to
indicate which priors seem to yield consistently pessimistic or optimistic answers. (Of course , being
consistently optimistic is probably worse.) In this respect, the reference priors for s = 3 and s = 2
and Mitchell’s g, and g3 seem inferior since they tend to yield too large (too small) coverage for the
0.05(0.95) tails. The clear winner among the reference priors appears to be the s = 1 reference prior,
which yields coverages as large (small) as 0.12 (0.74) only rarely, and quite often yields coverages

near the conditional 0.05 (0.95).- Of considerable interest is that the s.= 1 reference prior (which is .
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(p,181/2) s=1 5=2 s=3 9 92 93
(0.1,0.1) | .05(1.00) | .10(1.00) [ .13(1.00) | .05(1.00) | .78(1.00) | .997(1.00)
(0.1,1) | .07(1.00) | .12(1.00) | .17(1.00) | .06(1.00) | .72(1.00) | .995(1.00)
(0.1,10) | .12(.99) | .18(.96) 22(.92) | .10(.99) | .28(.996) [ .85(.998)
(0.1,50) | .06(.94) | .15(.86) 20(.79) | .06(.95) 10(.97) | .27(.99)
(0.1,100) | .06(.95) | .15(.81) 19(.76) | .06(.95) .08(.96) | .14(.99)
(0.1,250) | .05(.95) | .14(.78) 16(.71) | .05(.92) 06(.96) | .02(.97)
(0.5,0.1) | .002(.99) | .007(.98) | .016(1.00) | .001(.99) | .0008(1.00) | .015(1.00)
(0.5,1) | .003(.99) | .013(.98) | .019(.96) | .003(.99) [ .002(.99) | .02(1.00)
(0.5,10) | .05(.94) | .14(.85) .20(.80) | .05(.93) 04(.94) | .16(.98)
(0.5,50) | .05(.94) | .14(.84) | .20(.79) | .05(.94) 05(.94) | .08(.96)
(0.5,100) | .05(.95) | .14(.86) 20(.80) | .05(.95) | .05(.95)| .07(.96)
(0.5,250) | .05(.95) | .14(.86) .19(.79) | .05(.95) .05(.95) | .06(.95)
(0.9,0.1) 0.(.79) |  0.(.73) 0.(67) | 0.(.73) 0.(.02) 0.(.99)
(0.9,1) | .0002(.78) |  0.(.71) | 0.0002(.69) | 0.(.73) 0.(.02) 0.(.99)
(0.9,10) | .0002(.74) | .001(.71) | .003(.67) | 0.(.73) 0.(.1) | .0004(.97)
(0.9,50) | .007(.84) | .02(.80) .03(.75) | .004(.84) | .0006(.58) | .006(.92)
(0.9,100) | .01(.90) | .06(.83) 11(.78) | .01(.88) | .004(.72) | .02(.92)
(0.9,250) | .04(.93) | .13(.85) 19(.78) | .04(.92) .02(.85) | .06(.93)

Table 4. Frequentist coverage probabilities of 0.05(0.95) posterior quantiles.
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based on treating each parameter as a separate "grouping”) is the reference prior recommended
in Berger and Bernardo (1989a). Note that the coverages using g; are quite close to those using
the reference prior for s = 1. In retrospect this is not surprising for the Patterson model because,
from (26), it can be seen that g; and the s = 1 reference prior are proportional up to a smooth
function that varies only between /1/2 and 1/1/3. The similarity here is something of a coincidence,
however, as is indicated by (12) for the general case. Recall that one of our purposes was to test
the recommended reference prior algorithm of Berger and Bernardo, and hence it appears to have
been quite successful. One does not typically have the luxury of theoretically comparing a variety of
noninformative priors; that the reference prior algorithm seems to automatically yield a trustworthy
noninformative prior is thus encouraging.

Table 4 was done by simulation, generating 5,000 {y;}?_, for each (p,|8|/o), calculating the
indicated posterior quantiles using the reference priors for each set of generated data, and determining

the proportion of quantiles that exceeded p. Calculations were done on a VAX11/780 computer and

the standard error of each entry can be estimated by v/p(1 — p)/(5,000) where p is the entry. (The

entries are estimated to be accurate to within one unit in the last given digit.)

5 Conclusions

The first point to be made is that standard noninformative prior analyses, namely use of the Jeffreys
or reference priors, do yield proper Bayesian inferences for the exponential regression problem. A
second observation is that , as observed by Mitchell (1963), standard likelihood analysis here can lead
to severe underestimation of error when there is little data. A third point concerns the possibility
of using the grouped reference prior theory for robustness studies. By determining all grouped
reference priors, and studying the differences among them, one has some feeling as to sensitivity of
the conclusions to choice of noninformative prior. Finally, the numerical study provides some evidence
that the reference prior based on treating each parameter as a separate group (i.e., o1 % 1p(p?))
is the best reference prior; we, hence, recommend use of this prior for inferences concerning p.in the

exponential regression model. -
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Appendix A
First, we briefly sketch the algorithm from Berger and Bernardo (1989a) for computing ordered
group reference priors. Let 8 = (0(1), b(2)> -+ 9(m)) be the m groups of unknown parameters, where

each 0y = (6;,0i,, -+, 0;,1,_) has size n;. Define
0 = (0(1):0(2),* > 0(5))> and By = (B(i1): Oi42)s* + 5 Om))-
Let $(6) = I~1(8), where I(6) is the Fisher information matrix, and define the decomposition of

Z(0) corresponding to the ;) as

( Yu Zi2 -0 Zip \
$(0) = Yor Yo o+ Xom
\ Eml 2m2 Emm /
Define
(211 Y12 - Eli\ (Hn Hyp - le‘\
5= Yo1 Yoo --- Xy Hi=wrl = Hyy Hyy -+ Hy ,
Yiug X - Eii/ Hy Hip - Hu)

and h; = det(Hii).
Suppose @1 C ©2 C ... are a sequence of compact subsets of @ such that U, O = © where O

is the domain for 8. Define
@ém = {9(i+1) : (0[i]>0(i+1),af—(i+1)]) €0 for some 0{—(i+1)]}'
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Also define

1 ifyeQ
IQ(:I:) = ,
0 otherwise

and I'(z|f})) = Ioy (). The algorithm starts by defining
{1

| (8)1 2 1 (B ) 1B —11)
- .
feg,[ » [P (8)12 T (8 (m) 10 pm—11) 40 my

7 (O (m=1))O[m—1]) =

It proceeds by iterating on the groups defining, for i = m — 1,m — 2,---,1, 7! in terms of the

previously defined 7r§-, j=14+1,---,m,as

(O i—1|Oiea)) = 7t 41(61-i11}) exp{3 Efllog |hi(8) 18]} ' (B 10i—11)
HOTENTE oy - oo (B B{llog (Ol (0o 1))

where

B}lg(6)8) = | 9(8)mhea (Br-l6(e)d0y_g,
ool = o, opyeon SO Ol

and one interprets 6[_g =6 and 6 as vacuous, and writes () =1r{(0[_0]|0[0]). The reference prior

is then defined as

U
m(0) = zl-lfgo ;’—(%’

provided it exists, where * is some point in O,

To compute the reference priors in our problem, we first define

E(paaaﬁ,a) - H—l(p1a7ﬁ7 0'),
where H(p, o, [3,0) is the Fisher information matrix (see (3)).
The determinant of H is

4
det[H(p,,B,0)] = 2Tkznzdet[ﬂ’l(p,ﬂ)] = %U—?ﬂzpm’”‘l)ﬂz(p), (30)
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where

k-1 k—1 k-1 \
E(z + z;a)2p20 Z(w + z;a)p% Z(af: + z;a)p?e=
i=0 i=0 i=0
Hy = det Z(:II + z;a)p®® k Ep‘”"
1_0 =0
k—
Z(z +x; a)p2a.:z:. Zpax.- Zp2aw;
\ i—-O =0 )
— ka2[(zp2a:p, _ (Zpam.)2)(zm2 2az; _ E(Zz’ipaa:')2)
1 =0 =0 =0
k 1 k—
_(Zm p2aa:. _ kzpa:c.zm pa:c.) ] — ka2p1(p“). (31)
=0 =0 =0
Defining
T = (0];)ax4
then
. | F peIig P 0 et
* m X a
Qet[H (p, 0, 8,0)]0% = s det | po sl mie poyhtgme o | = S pRepd(pn),
0 0 2k
Hence

o2

o1 = a?mfB?p2=-1)p2(pe)’

Because we are only interested in inference for p, following the algorithm described in the be-
ginning of the section, we compute the reference priors for p with respect to the ordered groups (1)
{p, (e, 8,0)}, (2) {p,,(B,0)} and (3) {p,,B,0}. Other groups with permutations of a, 3,0 are
similar to one of the above three.

We will define the ranges for o, ,0,p to be a € {a;,b)], 8 € [e1,di], o € [er, fi], p € [s1,11], find
the reference priors for these ranges, and then let a;,¢; — —00,b;,d;, fi = +00,e1,851 — 0and ¢ — 1
as [ — oo. All K’s used below represent constants.

(1) {p, (e, 8,0)} :

2k2 3 2z k-1

m ,0 (me;,a _ (Z .'z:.a)2 2k m p 2( a.)

=0

« =1
hi =011 hy =
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For j = 2:

m3((, 8,9)|p)

Iteration for j = 1:

Eé[log |h1(aa :6, ag, P)”p]

Thus

(e, B,0,p)

12l % Loy ) (@) (cr0) (B) (en )
S 3 2 \ho|? dadpdo
754 (a1 5) (@) (e dy) (B) (e, 1) (9)
(b1~ ar)(di — &) [ Lydo

1
= ;ng(al, bl) Cl, dl, el? fl)I(az,bl)x(cl,d,)x(el,ﬁ)(a) 187 0').

J& J5 5 log(o}, ™ )dodB
(di —er)(e > — f7°
= log(p*==Vp%(p%)) + K1(cr, dy, e, f1).

= 7l-1(0‘ /3’0 p)

7T2 exp{ Eo[log Ihll |p}I(sl,t¢)(p)]
S exp[3 E}{log |h||p]}dp

?pz_lp(Pa’)K(al, bi, c1, di, €1, fi, st tl)I(alybl)X(Clqdl)x(ehfl)x(slvtl)(a’ B0, P)

I(a;,bl)x(cl,d;)x(el,fl)x(sl,tl)(a 137 o p)

Therefore, the reference prior in this group is

(2) {p,a,(B,0)} :

l
. ,IB, ki
o (@,,0) x Jim Tbl)

1 .
o« —5p"'p(p").

* 2 25 k-1
011 2km P Z 2zia
* 2’ *

*® —1
hi =0f  he = ——————
011022 — 012 i=0

Note that hy = 01(p)/c?, where

Now, for j = 3:

k-1
a1(p) = mp3(p®)/[kD _p**).

1=0

|h3|%I(Chdz)(ﬂ)I(et,fz)(a)
213 |2 dBdo

aTI(Ctidz)(ﬂ)I(ez,fz)(a)

(di—e)egt -

m(B,9)lp,0) =
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Tteration for j =2 :
fe{l :}flog |h2|d0'
T

Egllog|hslle, p] =

so
}lf.[(ahbl) (a)I(c,,d,)(:B)I(ez J1)

ﬂ'l a g X .
2( 7(:Ba )lp) (bl _ al)(dl _ CI)(el_l _ fl—l)

Iteration for j = 1:

fe{l fc'ft L log|hi|dBdo
(di —er)(er = f7h)
= log(p*®Vp?(p*) + K, (c1, di, e, fi)-

Ej[log |h1]lp]

Thus

1 '
ri(a,B,0,p) = ;gpx 1p(p*)K (a1, b, c1, di, 1, fiy 81580 Lay b0) x (1) x (o0, f1) x (s2,22) (@ B3 T P).
Therefore, the reference prior is

(e, B8,9,p) (e, 8,9,p)
, ].l i ] ]_l 1 Iy MY
W({p,a, (16 0')}) X l—)Igé) 71'1(0’ 0,1,%) 0.8 I—EQL 71':{(0,0,1,%)

1 T— a
o« —5p" 7 p(p").

3) {p,,8,0} :

2z k=1
- oi(p m ; 2km
hl ZO-TI 1,h2= (2)’h3= p2 § :p2$:a,h4= 2
a g =0 4

Forj=4:

1
(hal? Iie,1)(9) _ 3Hens)().
[T |hgl¥do  log(er fi)

Wi(o‘lp, «, IB) =

Iteration for j = 3 :

I L1og |hs|do e S y
Eg[log |hs|lp, e, B] = T——"r—— = log(p®® Y p**i%) + K5 (e1, fi
6 log(el lfl) ; ) 3( )7

S0

%I(Chdt)(ﬁ)I(Ez,fz)(U)
(di—¢a) log(el_lfl) ’

T4(8,0lp, @)
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since E}[log|hal|p,c, 8] does not depend on 3. Iteration for j = 2 : since hy does not depend on a,

it follows that

%I(al1bz)(a)I(Chdz)(ﬁ)I(ez,fz)(U) .
(b1 — ar)(ds — cr) log(e; ' f1)

mh(e, B,0)p)

Iteration for j = 1 : as in case (2), we have

JF [2 X log |hy|dBdo
(di—a)(ef* = )
log(p2==Vp?(p%)) + K7 (c1, di, €1, f1)-

Egllog |allp]

Therefore, as in case (2),

7({p,,8,0}) o ~o"1p(p").

Appendix B
In this Appendix, Taylor expansion will be used to approximate p3(p) and p3(p) near the points

0 and 1. Let

k-1 1 k-1 i
Alp) = 2™ -2,

=0 =0
k-1 k-1 k-1
| : .
fa(p) = Z zip?® T Z P Z z;p™,
=0 =0 =0
k-1 k-1
o1 .
falp) = D alp®i - ;(Z zip™)>. (32)
1=0 =0

(a) For p ~ 0: Since

1
Alp) = pi(p)=p™® + P +0(p®™) = 2(p™ + o™ + p™ + 0(p*))?
1 1 2 2 :
= (1= P+ (1= )™ = Lp™ ¥ = 2p™ ¥ o o(pminteotmztnd), - (33)

1
falp) = @op™™ +31p™ = (o™ + p™ + p + o(p™)(w0p™ + T1p™ + 220" + 0(p™))

— 51)0(1 - %)puo + :L'I(l _ %)p2x1 - #ﬁno%ﬁ _ ig%vﬁpzo+:cg + O(pmin{:co+:c2,2z1}),
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and

1
f3(p) = xpp*™ + 23p*™ + o(p*1) — 7 (0P + 219" + 22p™ + o(p™))?

1 1 2 2 :
— 1:(2)(1 _ _I;)pzzo + :B%(l _ E)pza:l _ 113;:;:1:1 pa:0+:c1 _ $;):$2pzo+.r2 + O(pxmn{:co+a:2,2z1}),

it follows that

fi(p)fs(p) — f3(p)

= (1= 2)(a — mo) g0t 4 ofp?0+21), (34)

Pi(p)

(b) For p~ 1: let = 1 — p, and observe that

k-1
pip) = D (1-r)*™ ——(Z(l r)*)?

1=0 =0
k-1
= ST = 2 w20 — 1))
=0
k—l . x- —
—%Z(l —z;r+ “%(_;L)rz)z + o(r?)
= [Z z? - —(Z z;)%]r? + o(r?) = qr? + o(r?). (35)
=0 =0

To determine the behavior of p%(p) at p ~ 1, consider a Taylor expansion of p?(p). Since p%(p) is

a polynomial, it can be expanded as

#0) = B+ JAW+ 500+ 0 + 2Lty 4 o(r%),

Calculation shows that p?(1) and the first three derivatives are all zero when p = 1, and d +epi(1) = 6Q
(see (7)). Thus

P(o) = 37" + ofr*). (36)

Appendix C
Here we show that the frequentist coverage probabilities for intervals based on the posterior

quantiles with respect to the reference priors or the Jeffreys prior depend only on (p,|G|/o).
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Definition: A function f(x) is called a homogeneous function if for any real constant ¢, f(ex) =
f(x).

Lemma 1 Suppose a function g of ©1,%2,---,&x—1, which is denoted by g({z;}*=1), is a homoge-
neous function. Then the probability P(g)=F(,6.0)(p < g({Y Y}Z_1 )) depends only on (p,|B|/0)

for the exponential regression model (1).

Proof: The density function of Y = {Vj;} for0<i<k—-1land1<j<mis

km— k—2

fyle,B,0,p) = Crmo Fm(s?)
k-1

X exp{———[s +mYy (T — 75— B(p"*% - p))* + km(§ — o — Bp)*1}, (37)

=0
where 7 = &- Y51 p®* and Cjm is a constant.
To rewrite P(g), first'make the transformation ug=-9/o, u; =sign(B)(7; —F)fofor1 < i< k-1
and ug = s2/02. The Jacobian is ka**t2. Now g({T; — 7}7=2) =g(sign(B)o{u:}*=1) =g({u:}E21) by

homogeneity. Therefore

km=—k=2
P(g) = k:Ck,ma_km/ upo) "z gFt?
(9) <y({ue}f__1)( )
k-1
X exp{=3[s% +m 3 (us = L(pem )2 4 k(o — o — Lo - du
=0
1 = |ﬂ| rtax; —\\2
= Chn [ = exp{—lux + m Y (u: — LU= — 7)) }dus - dug3s)
p<a({ui}iZy) =0
where C} . is a constant. It is then obvious that P(g) depends only on (p, |8]/0). O

. Lemma 2 Suppose that F(p) is a marginal posterior distribution for p using the reference priors or
the Jeffreys prior or Mitchell’s priors which are given in Section 4. Then the yth posterior quantile,

P, 15 a function g({7; — y}z_1 , where g is a homogeneous function.

Proof: (a) For the marginal posterior distribution of p, from (17), (18) and (19), it is easy to see that
p~ depends only on {7; — }1_0 The homogeneity is obvious since h(p; s, ay) = a*™+*=3h(p; s,y),
and the same factor of a arises from the normalization constant K (s); hence, the factors of a can be

cancelled.

27



(b) For the Jeffreys prior or Mitchell’s priors, the proof is similar. a

Appendix D

This appendix gives the forms of the estimated asymptotic variances of the MLE using the
observed Fisher information matrix and expected Fisher information matrix, defined as MLE(1) and
MLE(2), respectively, in Table 3.

Let 8 = (61,02, 603,04) = (p, @, 8, 0) denote the parameters, and f(y|6) be the likelihood function.
The asymptotic variances associated with MLE(1) and MLE(2), respectively, are given by the (4,4)
element of V', where (cf. Berger, 1985)

(1) for MLE(1): V = [I(y)]™!, where

L kmlm o g2 -
qu(Y) = '—Z E[ae 9 ].Og f(yijlo)]0=,§,
=0 j=1 vt

for 1 < u,v <4, and 6 is the MLE of the parameters.
(2) for MLE(2): V = [I(§)], where, for 1 < u,v < 4,

k-1
. 0?
- E : Y1 .
Iu’u(o) - mi=0 EO [aguaeu log f(},'tllo)]
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