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Abstract

Let X; be i.i.d. X; ~ Fy. For some parametric families {Fy}, we characterize Bayes
sequential procedures for the decision problem Hp:0 = 0 vs. Hy:0 # 0. A surprising
counter example is given in the case where Fy is N (6, 1).

INTRODUCTION and PRELIMINARIES

Let X3,X52,...,X;n m < oo be i.id. X; ~ Fy where Fy is an exponential family.
Assume X; are canonical observations, and # the canonical parameter. We will consider

the sequential testing problem Hy:0 = 0o vs. Hy:0 # 0.

First we will formulate a general sequential testing problem. In this problem there
exists a parameter set ©, two subsets ©g,©®; C O, and the hypotheses are Hp: 8 € Og vs.
Hy:0 € O,.

The action space in such a problem is a pair (N,7) where N =1,2,...,m and 7 is 0
or 1. The loss function is denoted L(6,(N,7)) = ¢- (N — 1) + L(0,7). Here ¢ represents

the cost of one observation; the cost of the first observation is 0 and it is always taken.
When © C R, two important cases are:

(1) L(6,0) is nondecreasing and L(@,1) is nonincreasing. This condition on L(4,-) suits

the one sided testing problem Hp:0 < 8o H1:6 > 6o.

(2) L(6,0) is nonincreasing for § < 8o and nondecreasing for § > 6y, L(#,1) is nonde-
creasing for 8 < 0y and nonincreasing for 8 > 0;. This condition suits the two sided

problem Hy:0 = 0y vs. Hy: 0 # 0.

As in Brown, Cohen and Strawderman [1] (to be referred to in the sequel as B.C.S.),

we consider only procedures based on S, = X3 + ... + X,.. A procedure A consists of
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a set of non negative functions 6;,(s,) defined for every s, such that _ 6;.(s,) = 1.
1=0
The quantities 6;n(s») represent respectively, the conditional probability of accepting Hy,
accepting H,, and taking another observation when n observations have been taken and

Sy = Sn. Such a procedure A implicitly defines the stopping rule, N.

Define the risk function: R(#,A) = E¢L(#,A). The Bayes risk for a prior 7 (0) is:
r(m, A) = / R(9, A)dn(9)

Let R be the real line, n some additional point, denote R = RU{»n}. Map to the event
N =ng, S1 = 81,...,8n, = Sn,, the point (s1,...,8,,,7,7,...) in Ry xRy X ... X Bp.
This mapping induces a measure on R; X ... X R,,, under a parameter § and a procedure

A, denote it by Hp a. Denote Hya the measure defined by: Hy a(dz) = [ Hg(dz)dn(6).

Definition 1: A sequential procedure A of a one sided hypothesis testing is said to be
monotone under the prior 7 if for every n, there exist numbers —oo < a? < a2 < 0o such
that: For almost every real value s, under Hra, 61n(sn) = 0 if s, > a}; 6ap(sn) = O if
8n < @1p OT 8 > a3; 61n(sn) = 0if s, < af. If s, = a} then 61,(sn) = 0 but 8o, (s,) and

62n(sn) are arbitrary. If s, = a3 then 6o, (sn) =0 but 61, (s,) and 82, (s,) are arbitrary.

Definition 2: A sequential procedure A of a two sided hypothesis testing is said to be
monotone under the prior # if for every n, there exist numbers —co < a} < a < a <
ay < oo such that: For almost every real value s, under Hyra, 6on(sn) =0 if s, < a} or
Sn > ag; 61n(sn) = 01if af < s, < af; b24(sn) =0 if s, < a?, s, > a} or a? < s, < aj.

Certain obvious randomizations are allowed when s, = af, 1 = 1,2,3,4.

It was shown by Sobel [7] under the above condition, and was later generalized by
B.C.S., that in the one sided testing problem every Bayes procedure is monotone. It was
also pointed out by B.C.S. that in a two sided testing problem, if the distributions, loss
function and prior distribution are all symmetric then every Bayes procedure is monotone.

In this work we will investigate what happens when symmetry is not assumed.



Section 1: Main Theorem

Assume X; are i.i.d. normal with unknown mean 6. For two sided sequential testing
it seems plausible that every Bayes procedure is monotone without assuming further sym-
metry. This conjecture is implicit in B.C.S. The example in the next section will show
the last conjecture to be false. In view of the example, the following Theorem 1 seems to
give the “best” possible general characterization for the class of Bayes procedures in such

a Case.

We will first review some facts about “Total-Positivity,” which will be needed for the

proof of Theorem 1. Some references on this subject are [6], [2].

Definition 1: The function ¢(z): R — R changes signs at most n times if and only if
there exist —00 = ap < @1 < ... < @p < ap41 = 0o such that p(z) preserves its sign on

(ai,ai+1)t =0,...,n i.e. it is either non negative or non positive.
Let Gg 8 € © C R be a family of distributions on the real line.

Definition 2: {Gs} is T Py, if for any function ¢(z), that changes signs at most n — 1 times,
h(0) = Egp(z) changes signs at most n — 1 times, and if it does change sign n — 1 times,
then it does so in the same order as . {Gy} is STP, if in addition for any ¢ as above,
which is not identically zero, the function k() changes sign at most » — 1 times in the
stronger sense that there are —o0 < a; < < anp—1 < 00 as in Definition 1 such that k()

can be zeroonly at a;, 1 =1,...,n — 1.
Suppose X; ~ Fy are i.i.d and n(0) is a prior distribution on ©.

Denote dvt! = dv™t1(sp11|Sn = sn, 7(0)), the conditional distribution of S,41

given S, = s, and prior = (6).

In the sequel we will require u;":"l to be ST P3 with respect to the parameter s,.
Denote Fj*(ds) the distribution of s, under 8, F}'(dsp|Sn—1 = Sn—1) its conditional dis-

tribution conditional on Sp,_1 = $p—_1.

Proposition 1: Suppose for some 8o € © Fgt*(dspy1|Sn = sp) is (S)T P, with respect to

the parameter sy, then for every x(6), v{"*") is (S)TP,.



Proof: See [4].

Proposition 2: In the cases where {Fy} are: Binomial § = P, Exponential § = X, A~}
its expectation, Poisson § = A its expectation, Geometric § = P, Normal § = p its
expectation, ng:)+l(Sn+1|Sn = 85) is STPy in s, (i.e. STP; for every k = 1,2,...) for

every n.
Proof: Immediate from chapters 7,8 in [6].

Theorem 1: Consider a two sided sequential testing problem. Assume for every
m(6), v(®*t1)(ds|s,) is STPs in the parameter s,. Then every Bayes procedure A = {6;,,}
is of the following type: There exist numbers a3 < af such that éon(sn) = 1 if s,, € (aF,a)

and don(s,) =0 if s, ¢ [aT,al| for almost every s, under HyA.
2,03

Before proving the theorem, some further lemmas and notations are needed. Let:
pr(sn) = /L(ﬂ,'r)d'ir(0|Sn =S8n), T7=0,1.

Here 7(f|s,,) denotes the posterior distribution given S, = s,. Assume a finite horizon
where X3,...,Xn, Xn+1,.--,Xntk are the available observations. Suppose Xi,...,X,
have already been observed. Denote by A7**(s) the conditional additional Bayes risk of
a procedure that takes at least one more observation and proceeds optimally, conditional

on S, = s,. Then:
BH(on) = [ Min(e+ BEH(e), o 43F(8), oot AT 6™ (o)

Of course, B2tr_(sa) = [ Min(c + p§T1(s), ¢+ p7T"(s))dr™ 1 (s]ss)-

Lemma 1: For every real number W, p}(s) — p5(s) — W changes signs at most twice. If
there are two sign changes, then it is first negative. Moreover the function is zero only at

it crossing points.
Proof: From condition (2) stated in the introduction, the proof follows as in Karlin [5].
Lemma 2: p-(sn) = [ p**1(s)dv™*(s|s,),7 = 0,1.

Proof: Sobel [7].



Lemma 3: Br1*(s) — p2(s) + W, changes sign at most twice for every real number W. If
there are two sign changes, it is first negative. Moreover the function is zero only at its

crossing points.

Proof: The proof is by induction on the number of remaining observations. The general

induction step is as follows:
(i)
ﬂ:+k(sn) —pg(sn) +W
Az +H(sn) = [ 48" (5)u™ 1 slon)
= / Min(c + B21¥(s) — piH1(s) + W, c+ W, e+ pFT1(s) — p2T1(s) + W)dv"+1 (s]sy).
All the functions in the brackets change signs twice at most and in the right order. The
last fact is true by the induction hypothesis and by Lemma 3. Hence the Min of the

three functions changes signs twice at most and if it does, it is first negative. The desired

conclusion follows now by STP; of v+,

Proof of the theorem: For the finite horizon case, the proof follows from Lemmas 1 and 3

letting W = 0. For the infinite horizon we proceed as in Chow, Robbins and Siegmund [3].
Define 83°(s») the additional risk of a procedure that takes at least one more observation
and proceeds optimally conditional on S, = s,. For the M truncated problem we get by
Theorem 4.4 and 4.7 of [3] that: AM(s,) MoreoB(sn). Thus B3°(sn) — p§(sn) has at
most two sign changes and if there are two sign changes, it is first negative. Now (i) holds
replacing A7 *(s,,) by B°(sy), thus using ST P; of v+! we conclude B3° — p3(sy) is zero

only at its crossing points. Now the conclusion follows as in the finite horizon case.

Section 2: Counter Example

We consider the two sided hypothesis testing problem Ho:80 = 0 vs. H;:8 # O for the
mean of a normal distribution. The example will be of a Bayes procedure that accepts H;
for values of X; belonging to three disjoint intervals. This contradicts the monotonicity

conjecture expressed in the previous section.
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Let §; < g = 0 < 2. Denote ¢ = {0} ®; = {6;,02}. Consider the following two
stage testing problem. X, X, are i.i.d. N(0,1) § € ©¢ U ©y. Let the prior give mass

(71,70, 72) to the points 8,0, 0, respectively. Let

1 ifdecO,

£(6,(N,0) = {zg: ;+ if 6 € O
¢ —1)

so.0 = {21 Hocon
Denote by z} the unique value such that Max,, P(©o|z1) = P(®¢|z}). Here P(Oq]|z,) is
the posterior probability of ®¢ given X; = z;. The uniqueness of z; follows by showing,
similarly to Lemma 1, that po(s) — W changes sign twice at most in the strong sense for

every W and if there are two sign changes the function is first positive. Suppose:
(i) P(@o|z]) = 3

Denote: A(z1) = Min(p}(z1),08(z1)) — B%(z1) —c.

In our case by (i) p1(z1) < pd(z1) and A(z;) can be written as:

(ii) A(z1) = P(©o|z1) — E(Min(P(O0|X1 + X3), P(©1|X1 + X2)|z1)

Notice that: A(z) does not depend on ¢, and that the Bayes action conditional on X; = z;
is to take one more observation iff A(z;) — ¢ > 0. Let z}* be the unique value such that
Maxz, A(z1) = A(z}*). It can be shown that z}* is unique by writing po(s) — 82(s) — W
similar to (i) in Lemma 3, and showing it has at most two sign changes for every real
number W. Notice that this method applies only when the horizon is of size 2; it seems

that the function po(s) — B7(s) — W can have more than one local maximum when n > 2.
Suppose that:
(i) 23 # 23"
We will show now that when (i) and (iii) are satisifed for some 8, 02,7, 72, then a counter—

example can be constructed. Define a new problem with 8,,0., 7, 7o, 72,¢. Assume §; =

0;, 1 = m1—§, To = Mo +¢, 2 = w2 — £. For € small enough by continuity considerations

21" ¢ {z:1|P(®o|z1) > P(O1|z1)} = Eo
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Ey is an interval by Lemma 1. By continuity consideration there exists €; such that:
A(%3*) — e1 > A(zy) for every z; € Eop. Take é = A(z}*) — €1. In our new problem
there are two separate intervals containing Z] and Z7*, such that the Bayes procedure
respectively accepts Hp, take one more observation, conditional on z; belonging to .these
intervals and accept H; otherwise. Hence there are three separate intervals where the
Bayes procedure accepts H; for values z; in these intervals. Such a procedure is not

monotone.

A numerical example is the following: Take §; = —1 6o =0 6, = 2. Straightfor-
ward calculations show that in order to get z] = 0 and P(®o|zi) = 1, we should choose

my = 0.219 w9 = 0.240 w2 = 0.539. Using numerical integration we get:
A(z]) = A(0) = 0.259, A(0.2) = 0.266;

i.e. zi # z37*. Table 1 shows some further values of P(fp|z1) and A(z1).

TABLE 1
I1 P(@olzl) A(zl)
—-0.4 0.466 0.206
—-0.3 0.480 0.223
-0.1 0.497 0.250
=00 0500  0.259
0.1 0.497 0.265
z1* ~ 0.2 0.489 0.266
0.3 0.475 0.263
0.4 0.457 0.256
0.5 0.433 0.245

REMARKS:

1. As noted before, when the size of the horizon is greater than 2, it seems there can be
more than one local maximum to A(-). If so, examples can be given with more than

three disjoint intervals where H; is accepted by a Bayes procedure.

2. In principle, the above example leaves unsettled the monotonicity conjecture for pos-
sibly open ended procedures. However in light of the preceding results, we believe .

that the monotonicity conjecture is false in this case also.
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3. In constructing the counter example we have used the fact that the cost of the first
observation is zero, and hence first observation is always taken. It is not clear whether
a counter example can be given when the cost is ¢ per observation including the first

one.
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