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1. Introduction Let D be a domain in R®,n > 1, and let pP(z,y) = p/(z,y),t > 0,2,y €
D, be the heat kernel for D, that is, the fundamental solution of -;—A - % = 0 with Dirichlet
boundary values. Following the fundamental paper [DS] of Davies and Simon we define the
semigroup associated with p;(z,y) to be intrinsically ultracontractive if there is a positive
eigenfunction for the Dirichlet Laplacian in D and there are positive constant ¢; and C;

such that

(1.1 c:d(z)d(y) < pe(z,y) < Cid(z)é(y),t > 0,2,y € D.

An eigenfunction free characterization of intrinsic ultracontractivity is the existence, for

each t > 0, of a positive constant K; such that

(12) Pt(z, y)//pt(za y)dy S Ktpt(z, y)//pt(z, y)dyvz’ Y,z € D)t > 0.

Of course it is immediate that (1.1) implies (1.2), and it is easy to show, using essentially
Perron-Frobenius theory, that (1.2) implies the existence of a positive eigenfunction ¢, and

that (1.1) holds. This is done at the beginning of Section 2.

For brevity, if the semigroup connected to ps(z,y) is intrinsically ultracontractive,
we will call the domain iuc. For a positive sequence a = {a;,i > 1} of real numbers we
define the domain Q. as follows. Put./\,, = )5 271 n > 1. Let fa(z) = —ap,An <z <

i=1

Ant1, fa(z) = 0,z ¢ n‘ijl(x,,,AnH). Then 0, = {(z,y) : 0 < z < 1,f(z) < y < 1}. We

prove the following theorem.
Theorem 1. Q, is iuc if and only if lim a,2~" = 0.
n—oo

This theorem provides examples of tuc domains of infinite area, answering a question
on p. 375 of [DS]. In addition it provides, in an admittedly specialized setting, a description

of the “edge” of suc. It was in fact such an edge type theorem for a very different class of
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domains which lead to this infinite area question of [DS]. A conjecture of a necessary and
sufficient condition, with a sketch of the proof of necessity, for a planar domain “above the

graph of a function” to be 1uc is given at the end of Section 3.

There are both analytic and probabilistic motivations for the study of intrinsic ul-
tracontractivity. We refer the reader to [DS] for the analytic implications connected with
the name itself. In addition, [DS] says “Intrinsic ultracontractivity especially interesting
since it implies ¢n /o is bounded for any L? eigenfunction ¢,, and so these results are a

contribution to the large literature on the decay of eigenfunctions.”

The density of standard n dimensional Brownian motion started at z and killed when
it leaves D, conditioned on this killing taking place after time ¢, is p:(z,y)/ [, pi(z,y)dy,
and so by virtue of (1.2) we see that intrinsic ultracontractivity is a very strong mixing
condition for this motion. A more subtle probabilistic connection occurs in the study of the
lifetimes of h-processes in D, a subject which has recently been studied by both analysts
and probabilists. If D is iuc each h process in D not only has finite lifetime but also this
lifetime satisfies the stronger condition of having exponential tails, the exponential constant
being the eigenvalue corresponding to ¢. Deblassie ([De 1], [De 2]) was the first to make
the connection between iuc type estimates on the heat kernel and tails of the lifetime of
h processes. See also [KP]. We remark that intrinsic ultracontractivity is strictly stronger
than either of these lifetime conditions. See [BD]. Recently, J. Xu [X] has constructed a
domain of infinite area in which each h process has finite expected lifetime. His domain 1s

in fact not zuec.

We also prove the following result. Our proof is an adaption of part of the argument

used to prove tuc in Theorem 1.



Theorem 2. Let f be a real valued uppersemicontinuous function on (0,1) such that

—M < f <0 for a positive constant M. The domain Dy = {(z,y) : f(z) <y < 1} s iuc.

Davies and Simon in [DS] show that bounded domains with boundaries satisfying
certain inner and outer cone conditions (including Lipschitz domains) are tuc, but their
results are not applicable due to the lack of regularity of the bottom boundaries of our
domains. Also the proof of [KP] that Lipschitz domains are suc does not extend to prove
Theorem 2. We also prove an analog of Theorem 2 in higher dimensions. See Theorem
4.3. We remark that R. Bass and K. Burdzy have independently, a few months before this
work, proved that the expected lifetimes of h processes in the domains treated in Theorem

4.3, as well as in so called Holder domains, are finite.

This paper is organized as follows. In the next section we set up the general framework.
Some of this section easily generalizes to more general semigroups than the one considered
here, but our results are stated only for the heat kernel. Theorem 1 is proved in Section
3. This paper was inspired by [DS], but may be read independently of it. Our methods

are probabilistic.

2. Notation and Preliminaries. Points in R" are written z = (1,...,2,), and in two
dimensions we sometimes use complex notation, writing = = (Rez, Imz). If ¢(t),t > 0, is
an R™ valued function and if A C R™, we put 74 = 74(g) = inf{t > 0: ¢g(¢) € 0A}. Usually
T4 is a first exit time, sometimes a first hitting time. We use D to stand for a generic
domain and we designate by X = X; = (X},...,X}), standard n dimensional Brownian
motion killed at 7p. Thus pi(z,y) is the transition density for X;. We use P, E,(P,,E,)
to denote probability and expectation associated with X started at z € R™, (with initial
distribution v). We let pi(z,y; F'), where F is some event, denote the density of X,;; F

under P, ie., if A C R is Borel, [, pi(z,y; F)dy = P.({X, € A} N F).. We also put
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pi(z,A) = P(X, € A), if A C R" is Borel. The operators Tj,t > 0, are the semigroup

associated with p,(z,y), so that T, f(z) = fD p(z,y)f(y)dy, f € LY(D).

Constants ¢, C, etc change and may depend on the domain and any fixed points z
or fixed compact sets, but unless otherwise specified do not depend on the variable points
z,y,z,w. Constants which depend on t are written c;, C;. We here note that all such
constants in this paper may be and are assumed to be bounded above and bounded away
from 0 on compact t subintervals of (0, 00). This always follows easily from the arguments
which demonstrate the existence of such constants, and will not be mentioned further.
What happens outsde D does not concern us, so g > 0 will stand for g(z) > 0,z € D, for
example. If g is a positive integrable function on D we write § = g/ |, p g, and call § the
normalization of g. The complement of a set A is denoted A, and 6(t) is the usual shift

operator (see [Du]).

Lemma 2.1. If (1.2) holds, there is 0 < ¢ € L'(D) and A > 0 such that [ ¢ =1 and

Tip =e ¢, t > 0.

Proof. Consider T} as a map of L}(D) to L}(D). Let z¢ be a distinguished point of D, and
put h:(y) = pi(z0,y)/ [ pt(z0,y)dy. Then (1.2) implies (as in, e.g., the proof of Lemma
3.3 of [Da})

(2.2) K7 he(y) < Tof < Kiba(y), f > 0, f € LY(D).

In addition (2.2) and the observation that Ty = T, o T,.,, gives easily that {TB : f >
0, [ f = 1} is equicontinuous on compact subsets of D, and, together with (2.2), this shows
that T; is a compact operator. It is immediate that T} satisfies all the other conditions

of Jentzch’s Theorem (see [S], Theorem 6.6, page 337), and so by this theorem we know.
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there is ¥; > 0 such that T; ¥y = ¢;¥¢. Furthermore ¥, is unique up to normalization.
For Jentzch’s Theorem, as stated in [S], says that there is a unique positive eigenfunction

corresponding to the largest eigenvalue of T;. Now (1.2) guarantees
Cty,y < PV(TD > 3)/Pq(TD > 3) < Ct,y’n,s >t

where v and 7 are any probability distributions on D, and especially, any two positive

integrable eigenfunctions must decay at the same rate and thus have the same eigenvalues.

Since ¥,-n is an eigenfunction for Th-+ for any k < n, it follows that ¥,-n =
Uy-m,0 < m < n, and we denote both here and later, these common normalizations
by ¢. It is routine to show ¢ is an eigenfunction for T, for each dyadic rational r, and

continuity properties of our semigroup imply ¢ is an eigenfunction of T} for each ¢, yielding

(1.1). O

Proposition 2.2. If (1.2) holds there i3 a positive eigenfunction ¢ such that (1.1) holds.

Furthermore, ¢ is the unique integrable positive eigenfunction.

Proof. The only statement above not verified in the proof of the last lemma is that (1.1)
holds. Using (2.2) both with f = ¢ and for a sequence of functions approaching point mass
at z in an appropriate sense, we have K; 2 < (pi(z,y)/ [ pe(z,y)dy)/¢(v) < K?,z,y € Q,
implying p:(z,y)/pt(z,v0) ~ é(y)/#(yo), where the ~ indicates the ratios of the two sides
are bounded above and below by positive constants depending only on ¢{. By symmetry
pe(20,9)/pe(2,y) ~ #(20)/é(z). Now let zo be a distinguished point of D. We have
pe(z,y)/pi(z0, 20) = (Pe(0,y)/Pt(T0, T0))(Pe(z,y)/Pit(T0,Y)) ~ ($(y)/ $(z0))(6(z)/(z0)),
yielding pi(z,y)/¢(z)d(y) ~ pe(zo, o)/ P(z0)d(z0). Since this last quantity is a constant,

(1.1) is proved. O

An alternative approach to the preceeding proposition and lemma, which uses heavier

5



machinery, is to use the L' compactness together with Theorem 1.6.4 of [Dae] and then to

work with all the eigenfunctions. This was pointed out to us by R. Bafiuelos.

Lemma 2.3. A) If there is a compact F C D such that

(23) pt(ya F) 2 Ctpt(yaD)7y € Dat > Oa
then
(24) Pt(y, Z) S Ctpt(y, w),y € Da zZ,w e F.

B) If (2.8) holds and if furthermore
(2.5) for each z € D, there 1s w = w(z) € Fsuch that py(w,y) 2 eipi(2,y),y € D,
then (1.2) holds.
Proof. A) The positivity and continuity of p:(y, z) imply
(2.6) y’i?eprt(y, z)=¢ > 0.
Using respectively the boundedness of p;/2(u, v) in u, v, for t fixed, (2.3), and (2.6), together
with the aforementioned boundedness, we have
p0,9) = [ Bp(wpiyalio, )
< etpi/2(y, D)
< epyya(y, F)

< ctpt(y’w)’y € D,z,w € F.
B) Next we show that (2.3) and (2.5) imply (1.2). Let zo be a distinguished point of F.

Now

Pt("?,y)=/;)Pt/2($az)Pt/2(zay)dz

- /F Pua(®s 2)pe (7, y)dz + /F P2, 2)pe 27 y)dz

=I+1II,



say. We have

I> Ct/FPt/z(fL‘, z)p,/z(zo,y)dz = CtPt/z(l’, F)Pt/2($07y) 2 ctpt/Z(xa D)pt/Z(xO,y)y

using (2.4) and (2.3).

Furthermore, using (2.5) and (2.4), the latter holding by part A) of this lemma, we

have

[+1I< e, /D peja(z, 2)pea(w(2), y)dz
<e /D peja(@, 2)pesa(z0, y)dz

= CtPt/z(-T, D)Pt/z(-"?o, y)-
Thus vze:h(y) < pi(z,y) < ¥:Cih(y), where v, = py/2(z, D) and where h(y) = pi/2(20,y)

does not depend on z. This easily yields (1.2). O

Lemma 2.4. There is a constant k depending on s,t, and the distance of z to &D such

that

(2.7) pi(z,y) > kps(z,y),s < t,y € D.

Proof. Let B be the closed ball of radius half the distance from z to 8D. For y € B, (2.7)
holds since pr(z,y) is bounded above and below for y € B. Let T = inf{t > 0: X, € 8B},
and let f be the density of T. The density of T is completely known (see [CT]). We use
only the facts that f is continuous, positive, and bounded above on (0,00), and we also

use that given T, X7 under P; has the uniform distribution on 8B, which we denote n. If

y € B,

= ([ pioale)in(z)) f(a)d

[ ([ retenis)
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k[ ([ ps_w(z,wdn(z)) Fw)dw

= kps(z,y). O

Lemma 2.5. Let A be a Borel subset of D, and put 1o = T. Let v, 4(T) = vz, be the

distribution of (T, X1); T <t under P,. If

Uzt < CtVy,t, then pt(z7 ';T < t) < ctpt(wa ';T < t)‘

Proof. This lemma is a simple consequence of the strong Markov property, which gives

pi(z,y; T <t) = / Pr—s(w,y)dv, 1 (s, w). O
[0,xA

We remark that variants of Lemmas 2.4 and 2.5 have been used to compare densities for

many years.

Next we turn to Girsanov’s theorem. A special case of this theorem is a central tool for
proving that (2.3) and (2.5) hold for the domains we study later. Let u be a Wiener measure
on C[0,t], that is, p is the distribution of a standard one-dimensional Brownian motion
on [0,t], with perhaps a random initial position. Let f(s) be a continuously differentiable
function on [0,1], f(0) = 0. Let v be the measure induced on C[0,1] by the map ¢ — g — f,
that is, if A is a Borel subset of C[0,%},v(A — f) = p(A). Then Girsanov’s theorem (see
[Du]) says

e [[ ram i+ [ roras,

where B,(h) = h(s),O < s < t,h € C[0,%], is the Brownian motion associated with
p. Especially if F is a Borel set of C[0,%] such that there is a constant M for which

lg(t) — g(0)] < M, g € F, and if k is a constant, we get with f(s) = ks above,

dv

d,u = exp [/ kdB, + tkz] = exp [k(Bt By) + tk2]

€ (exp [—Mk + -2-tk2] , €XP [Mk + %tk2]) on F,
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so that

(2.8) pu(F + ks) = v(F) > p(F)exp(—Mk + 1tk?).

More generally, if 7 is the distribution (on the Borels of C3[0, 1], the continuous func-
tions from [0, 1] to R?) of a standard 2-dimensional Brownian motion and if H is any Borel
subset of C2[0,1], such that g = (¢1,92) € H implies |g2(0) — g2(t)| < M, then if 74 ¢ is the

function (0, ks),0 < s < ¢, we have
(2.9) n(H + vk,e) > n(H) exp(— Mk + §tk?).

This follows from (2.8) and the independence of the components of 2-dimensional Brownian

motion. Now let » > 0 and let R(,) = R be the rectangle (0,7) x (0,1). Let pi(z,y) =
Pz, ).
Lemma 2.6. There exists a constant ¢, such that for all numbersr > 1,

i) pr2(z,(a,a +1) x (0,1)) > epy,2(z,R),0<a<r-1,z €R,

and

ii) pr"’(y,z) > cp2r2(xaz)a$ € R,y € (1,7‘ - 1) X (%, %)

Proof. Let p}(u,v) be the transition density of killed one-dimensional Brownian motion
in (0,1), let ¢'(u) = (7/2)sinmu be the corresponding eigenfunction, and denote its
eigenvalue by —6. Let pj(u,v) be the transition density of killed one-dimensional Brownian
motion in (0,7) and ¢"(u) = (7/2r)sin(wu/r) be the corresponding eigenfunction, which
has eigenvalue —6/r?. Now py(z,y) = p;(Rez, Rey)pl(Imz, Imy), and pF(u) = ¢"(Reu)p?

(Imu). Furthermore, since (0,1) is iuc,

e’ (u)e’ (v) < py(u,v) < Cop ()’ (v),u,v € R, > 0,
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and convoluting this inequality for ¢ = 1 with p,_; yields, with ¢2 = ¢; exp(f) and C; =

C1exp(8), 1 and C) as just above,
(2.10) cz exp(—6t)d* (v)p' (v) < pi(u,v) < Cz exp(—6t)p* (v)p!(v),t > 1.

Scaling gives pl,(ar, br) = pj(a,b)/r and ¢"(rz) = ¢!(z)/r, and so (2.10) implies

2 exp(=(6/r)r?t)e" ()™ (v) < play(2, )
(2.11) < Crexp(—(8/m*)r ) (u)e"(v),t > 7.

Both assertions of Lemma 2.4 follow easily from (2.10), and (2.11). O

3. Proof of Theorem 1. Before proving Theorem 1, we remark that the product
of an tuc domain in m dimensions with an iuc domain in k¥ dimensions is suc in m + k
dimensions, so that Theorem 1 easily yields examples of fuc domains of infinite volume in

all dimensions.

First we prove the “if” part of Theorem 1. Let a be a positive sequence, considered
fixed, such that lim 2~"a, = 0 and shorten Q, to Q. Put R, = (An, Ant1) X (—an,0],n >
0, A as in the description of Q in Section 1. Let S = (0,1) x(0,1), so that Q = 5’U7:L>J=o1 R,.
Let Dj = (An,Ant1) X {0} be the “door” between R; and S, put A = i§1 D; and A; =
Su ké1 R;. The set A = [1,3] x [, 3] will serve as the compact set F' of Lemma 2.3. In
this section pi(z,y) = pf}(z,y) and X;,t > 0, is two dimensional Brownian motion killed

when it leaves Q. The next proposition establishes (2.3) for D = Q.

Proposition 3.1. The following inequalities hold

(31) pt(III,A) 2 Ctpt(:lJ,Q), Imz € [—i"% ’
(3.2) pi(z, A) 2 ¢4 jpi(z, ),z € Aj, and
(3.3) o pi(z, A) > cipi(z, ),z € El R;.
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Proof of (3.1). Let Ly = (0,3)x {2},Lz = (3,1) x {3}, so that L; UL, = L together

with the top line of A give a line across S. We first show

(3.4) P (1 <t) < P(t4 <t), Imz € [-1,1],t > 0.
It suffices to prove

(3.5) P (1 <t) < Py(t4 <t),Imz = 1,t >0,

for the conditions on z in (3.4) imply that under P;, X, must hit {Im z = £} before it
hits L, and an application of the strong Markov property at the time T{Im z=1}» and (3.5),

yields (3.4).

To prove (3.5), assume WLOG Rez < I, let J be the box (0, %) X (3,3), and let

D= (0,3 x {31,% = (0,1 x {3}, = {3} x [, 1,V = {1} x (4, 3] be the top, bottom,
bottom of right side, top of right side, of J. Shorten 77 to 7. Note QUV € A4, and 7 < 7.

To prove (3.5) we will show
(3.5) Po(r <t,X: €TUY) < P(1 <t,X, € QUV),Imz = 1,t >0,
which in turn follows from

(3.5)" P(r <t,X, €T)< Py(r <t,X, € V), and

1

(3.5) Pt <t,X: € V)< P(r<t,X, €Q).

These both follow from the same argument, so we prove (3.5)“. Let W be the straight line
segment connecting (0, 1) and (3,3). Note V reflected about W is T'. Let n; = inf{t >
0:X: € Whne =inf{t > n : Im Xy = 1}, m2i41 = inf{t > n2i : Xy € W}, m2ige =

inf{t > naig1: Im Xy = % i 2 1. Now Po(7 < t,Xr €T) =3 P(naic1 <7 < m2iy X1 €
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Dr <) =S P(niaa <7 <mi X, €EVr<t) < P(r<t, X, €V),if Imz = % and
3

0 < Re z < 1, the second equality using the strong Markov property and the fact that

Brownian motion, reflected about W, is still Brownian motion. This gives (3.5)" and thus

(3.4).

Having established (3.4), we observe that if z € A then at least one “quadrant” of
the oriented square of side length 7 and center z lies in A4, so that if ¢, is the probability
that two dimensional Brownian motion started at z does not leave a square of side length
% and center z by time ¢, we have ¢, is decreasing in ¢ and py(z,4) > ¢;/4, which together

with the strong Markov property yields

(3.6) s(2,4) > (e1/4)P:(14 < 5),0< s < 8.

Let B = Ly ULz U A. In view of (3.6) and (3.4), to prove (3.1) it suffices to prove
(8.7) | Py(1p <) > eipi(z,Q), Imz € [-1,1).

Write p:(z,Q) = a + 3, where
a=a;=P(Im X; < —zs-,t,< Tq), and
B=p= P.(Im X > —%,t < TQ).

Now

(3.8) Pyt <t)>a, Imz € [-1,1].

This follows from the fact that Brownian motion started at z reflected about the horizontal
line H through z after the last time before ¢ that this motion lies in H is still Brownian
motion (the complete symmetry about H of the definition of two dimensional Brownian
motion started at z guarantees this invariance), and the fact that any path in the set of

‘which a is the probability, so reflected, hits B before it exits . = -
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We also have
(3.9) P.(tp <t) 2 Cif,Im z € [-1,1).

This follows from (2.9) with M = 1%,H the set of all functions f in C5[0,%] such that
f(0) = z,f(s) € 2,0 < s < t,Im f(t) > -3, and k = (2)/t, and the fact that any
function in this H under the transformation of (2.9) is a function which hits B before it

leaves ). Together (3.9) and (3.8) prove (3.7) which yields (3.1).

Proof of (3.2). For any fixed j,Aj is suc. This follows from the results of [DS] or
[KP], but the reader unfamiliar with these papers should just assume, for now, that Aj
is iuc, since Theorem 2 implies this result. Write T = Tjy;,J = {T > £}. We have

P;(X: € A,J) 2 ¢,jP:J,z € Aj, which follows from (1.1) with D = A;. This implies
(3.10) Pr(ta < t|J) 2 ¢4, Pz(ma > t|J).

To complete the proof of (3.2) it suffices to show

(3.11) P (14 < t|J%, XT € A) > e, Pp(1g < t|J°, X1 € A).

Recall A = _;Jol D;. Note {X1 € A} = {7q > T}. Since each z € A satisfies -1 < Im z <
%, the strong Markov property and (3.1) give that if ¢; = inf{c,(3.1) : t/2 < s < t}), then
Py(ta < t|XT) 2 ¢t P: (1o < t|XT) on J°N {XT € A}, which gives (3.11).
Proof of (3.3). In view of (3.2) it suffices to prove (3.3) only for = € CL’JO R; for any
J=Jo
fixed jo = jo(t). Let R}, = (An,An+1) X (—@n,1) be R, together with the extension of R,

across S. Put 7, = 7p,. By Lemma 2.7 i) and scaling, we see that there is a sequence

én — 0 such that

(3.12) P (X5, € A, b < Tn) > cPr(26, < ™),z € R
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In fact, A may be replaced in (3.12) by a tiny subsquare of R! contained in A. Pick
Jo(?) = Jo so large that 6, < t/4,n > jo. If n > jo, and if z € R, (3.12) and (3.6)

guarantee
(3.13) Pr(14 <t) 2 ¢tP(1a < t,7n > 26,),n > jo.
To complete the proof of (3.3) we show

(3.14) Pr(14 < t|tn <265, X, € Q) > c:P(1q < t|Tn < 265, X-, € Q),n > jo.

Since 7, < t/2if n 2 jo, and X, € S on {7, < 26,,X,, € Q}, (3.14) follows from the
same argument used to prove (3.11), where the constants from (3.2) with j = 1 are used

in place of those of (3.1). O

Let £ be the point in A closest to z except if Imz > %, in which case % is the closest
point on [},3] x {2} to z. The following, gives (2.5) for D = Q, A = F.

Proposition 3.2. We have

(3.15) p(2,y) 2 eip(z,y),z,y € Q.

Proof. First we prove (3.15) when Im z > 1,z ¢ A. Let ¥ be the (straight) line through
& perpendicular to and bisecting the line segment connecting # and z, and let z* be the

reflection of z about ¥. Note z* € A. We will show

(3.16) p(z*,y) 2 epe(z,y),y € Q,

which in view of (2.4) implies (3.15). Let V be the part of S which lies on the z side of ¥,

and let U be the reflection of V about ¥. Note U ¢ . Now

pt(.’ll*,z) =pt(x*az;t < T‘I’) +'pt(x*az;t > T‘I-’)'

14



By symmetry, and the (unstated) equality case of Lemma 2.5,
pt(z*az;t Z T‘I’) = pi(z,z;t 2 TV, Ty = TU) S pt(ZI,Z),

while

Pt(-’r*, Yt < T‘I’) < pts(z*,y) < ctpf(:c, y) < ctpt(zv y),

the middle inequality following from (1.1), since S is tuc. This completes the proof of

(3.16) and thus the Im = > 1 case of (3.15).

Next we prove (3.15) in the case Im ¢ < —%. Let = € R;. Note Imi = 1. We have

R.
(3.17) pi(z,y) = p;° (z,y) + pe(z,y;t > 7R;).

Note Tgr; = 7p; if Xo = z and 79 > 7R;. 'To handle the second term in (3.17) we use
Lemma 2.5. Now v; (7p; ) has a density k on (0, 00)x (A}, Aj+1), where A(s,a) = f(s)gs(a),
where f(s) is the density of 7(_,; ,0)§Z'r(-..,-,o) = 0 under Py, ., and g, is the density of
Zs; T(A;,A;41) > S under P .. Here P* stands for probability associated with standard one
dimensional Brownian motion. Similarly, v; +(7p;) has density on (0,00) X (A, Aj+1) given
by f(s)gs(a), where f, is the density of T(0,1); Zr,,, = 0 under P’%* and §, is the density
of Zs;7(0,1) > s given Zy = Rex(= Rez). Since (0,1) D (Aj,Xj+1),8s > g, for each 5. To
complete the proof that v; (7p;) < ¢iv;z,s(7p; ) it suffices to show f(s) > f(s),0<s <t
Shrinking (0, 1) and expanding and reflecting (—ay,0), we see that it suffices to show that
if 4 is the density of T(O:%);X"(o,lz-) = 0 under P; and if 7 is the density of 7(g o) under
P?,r > 1 then v(s) > ¢in(s),0 < s < t. Clearly 7 is half the density of T(0,1)- Both 7 and

n are easily found, and it is easy to check this result. Thus we have, by Lemma 2.5,

(3.18) pi(z,y;t > 7'R,-) < epa(,y;t >'TDJ-) < epe(Z,y)-
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To finish the Im z < —i— case we prove there is ¢; not depending on j such that

(3.19) PtRj (z,y) < eipi(2,y),y € R;.

Let R’ be as in the proof of (3.3). Let pf" = p{,pf" = p]. Then

(3.20) pi(z,y) < pl(2,y) < ¢1,;p](2,y) < c1,jpe(&, v),

the middle inequality since R} is iuc. Now Lemma 2.7 ii) gives v, — 0 such that if
Im z* = % and z* is directly above the center of Dj, there is ¢; not depending on j such

that

(3.21) py,(z*,y) > eipyy (2,9),y € RS

Pick jo so large that v; < i,j > jo. Then

(3.22) Pi(z,y) < p{(z,y) = / Py (T, 2)Pi_ 24, (2, y)dz
<c / Py (2%, 2)pi_s., (2,y)dz
= CtPtJ-q,- (=*,y)
< etpr—v; (27, y)
< eap(a”,y) < epil2,y),5 2 Jo,
the next to last inequality by Lemma 2.4 and the last by (2.4) with D = Q, F = A, which

holds since we have already proved (2.3) in this case. Together (3.22) and (3.20) give

(3.19), with ¢4(3.19) = max(cy(3.22), ¢¢,7(3.20),1 < j < jo).

To finish the proof of Proposition 3.2 we establish (3.15) in the case —% <Imz< %.

Let G ={zx € Q:—7 < Imz <1}, and shorten 7 to 7. We first show

(3.23) » Pij2(2, 457 > t/2) < eipyya(2,y),z € G.
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We need only establish this for y € G. Let B(y,e) = B be a disc of radius ¢ around y,
which is contained in G. Let % satisfy Im & = %,Re Z=Rez. Let 0 = %—Im z=%—z.
We will use (2.9) with k = =20/t,r = t/2,y = Y—20/t,/2, and H =T = {g € C,[0,7] :
9(0) = z,7(g) > t/2, and g(¢/2) € B}. Then if o, denotes the distribution of standard

(unkilled) two dimensional Brownian motion started at z, (2.12) gives

(3.24) 02(F +7) 2 ¢10:(T) = cipyya(z, By > 1/2)
so that
(3.25) o:(F'+7)=0:((Z—2)+T +7) > co.(T).

Now if g € T then (£ — ) + g + v = f satisfies f(0) = &, 7o(f) > t/2, f(t/2) € B. Thus
pt/2(j,B) 20z ((f’3 - .’1:) +I'+ 7) 2 ctpt/2(.’1:,B;T > t/2),

and dividing this inequality by 7¢? and letting € — 0 gives the first inequality of p, 2(z,y;
T > t/2) < e1pej2(%,y) < cipeje(2,y), the second following, since = £ and Im & = i,

from (3.15) in the case Im z = . This proves (3.23).
Now let £ =t — (r At/2). Note t/2 < ¢ < t. We have
pi(z,y) = Erpe(Xrat/2,y)
= Egpt—r(Xr,y)I(1 £1/2) + Erpyya(Xyya, y)I(r > 1/2)
< cBepir(Be ) <42+ [ pale,sim > 4/2)pa(a,0)de
< eBaper(®,)(r < t/2) + ¢ /Q Pej2(&, 2)pa(z,)dz

< epi(2,y) + cpi(E,y) = eip( 2, y).
The first inequality holds since on {7 > 7,7 < t/2},Im X, = £1, so we may use the

results from the earlier part of this proof. The second follows from (2.4) and (3.23), and

the third from Lemma 2.4.
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This ends the proof of the proposition and thus of the “if” part of Theorem 1. 0

Now the proof of the “only if” part of Theorem 1 is given. If D is juc then the
exponential decay of ¢ implies that ftzt pP(z,y)ds > ¢, f2°t° pP(z,y)ds,z,y € D, or, to put
it another way, if 7p, is the lifetime of the h process in the domain D — {y} = D, with

corresponding harmonic function GP(-,y), G the Green function, then
(4.24) PPv(t < 1p, < 2t) > c,PPv(rp, > 28).
See [D] and [BD] for more detail on these matters.

Now let a be a sequence such that a subsequence of a,2~" (for notational purposes
assume this subsequence is in fact the sequence a,27") satisfies lima,2™" € (0,00]. Let
z, be any point in the bottom half of R,,andlet I = Q, — {(%, %)} For the remainder
of the paper, P;, E; denote probability and expectation with respect to the h process
associated with G'((%,1),-) in the domain I, and 7 is the lifetime of this process. Let
T, = [y I(X, € R,)ds. The methods of [X] easily give imE, Tn/a,2~" > 0. The
arguments of Section 5 of [Da], without change, give lim Var, T,/(a,2"")?> = 0. Thus
there is a constant K such that lim P, (T, > K) =1, and thuslim P, (7 > K) = 1, which

contradicts (4.24) with y = (3,1),D = Qa,t = K/2. O

If f is an uppersemicontinuous function on (0,1) such that —co < f < 0, we let D f
be the domain {(z,y) : 0 < z < 1, f(z) < y < 1}. For z € Dy define the domain D3% as
a union of horizontal line segments as follows. Let o = a(z) = inf{r : (Rez,r) € Dy},
and for each s € (a,1) let HY = (a(s),b(s)) x {z}, where (a(s),b(s)) is the largest open
interval such that (a(s)b(s)) x {s} contains (Rez,s) and is contained in Dy, and put
G, =U{H? :a<s<1}. Let for § < 1,G% = G* N {z : Imz < §}. The proof at the end

of the last section can be adapted to. prove that if lim ( sup area (G¢)) > Q then Dy is

§——o00 zeD! -
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not suc. We conjecture that if this limit is 0, then Dy is tuc.

4. Domains above the graph of a function. First we prove Theorem 2. The proof
involves modifications of part of the proof of Theorem 1, which are now sketched. We

replace A by B = [3,%] X [3,2]. The role of A is played by (0,1) x {0}. The following

holds (now p; = pr”’).

Proposition 4.1. Let £ € Dy. Then

(41) pt(zaB) 2> ct,Mpt(z,Df), Imz < %

(4.2) pi(z,B) > ¢y, mpi(z, D),z € S.

The proofs of (4.1) and (4.2) exactly parallel the proofs of (3.1) and (3.2) respectively,
and we observe that all we have to use in the proof of (4.2) is that S is suc, which follows
from the fact that (0, 1) is 1uc in one dimension. More extensive alteration is required
of Proposition 3.2. Let & = %,8 = 18 Let T be (0,1) x {a},0 = (0,1) x {1}. K

Imz 2 a,z € Dy, let z* € A C B be the same z* as in the previous section. If Imz < a,

let z+ = (Rez, B), if Imz > a, let 2t =z, and put 2’ = (z+)*.

Proposition 4.2. Let z,y € Ds. Then

(4.3) pi(z,y) < epe(’yy), Imy<a.

(4.4) pi(z,y) < epe(a’,y), Imy > a.

Proof. We first note that p,(w,y) < eips(w*,y), Imw > %,y € Dy, by the same argument
that proved (3.16), so it suffices to prove the variants of (4.3) and (4.4) in which z* replaces
z', denoted (4.3)* and (4.4)*.

Of course (4.4)* is immediate if 2+ = z. Otherwise we have Imzt = 8 and (4.4)T .

19



follows from
, pt(x+,y) > pf(z+’y)a Imy > &,
pi(z,y) < p{(z,y),Imy > a, H =(0,1) x (—o0,1), and

pf(:c'*', y) 2 CtptH(:ZI, y)a Imy 2 a.
To prove the last of these, let gs(a,-), hs(a,-) be the densities of Z;s < 7(0,1), Zs;s <

T(—oco,1) Where Z;,t > 0 is one dimensional Brownian motion started at a. Then we have
pe(z¥,y) = gi(Rex, Rey)gs(B, Imy),
while, since Rezt = Rex,
© 2/ (2,9) = g((Rez*, Rey)hy(Ima,Imy),
and it is a straightforward calculation involving one dimensional Brownian motion that

he(u,v) < ctge(B,v) if v € [@,1) and u < a.

To prove (4.3)1, let ¥ = D;U(0,1) x [1,00). An argument exactly like the one which

gave (3.23) gives

pg’(l', y) S ct,Mp;p(x-i-’y)aImy < a,

so that, since p?’ < p{, to complete the proof of (4.3)* it suffices to prove
D
(4.5) P (2,y) < epy ? (2,y), Imy < &, Imz = B.

Let T] = T]",T2,' =T 0 G(Tzi_l) + 9(T2,‘_1),T2,‘+1 = Tr o G(Tzz) + 0(T2,-),z' Z 1. Then if
Imz = 3,Imy < «a, which we assume throughout the rest of this proof, we have
(4.6) P (2,9) = Epeor, (X, 9)I(Th < t) = / Pi—s(v, y)dvz,t(Th),

(0,t) xI"
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in the notation of Lemma 2.5, while

(47) p?(xa y) = Eigop;p—Tz,-_H (XT2i+17y)I(T2i+1 <t< T2i+2,t < T\II)
oo
=FE ._z_:opt_T2-‘+1 (XTz.'+1ay)I(T2i+1 <t,Thi41 < Tq/)

= / pecs(u,y)dn(s, 1),
(0,8)xT

where the second equality follows since 7¢ A T¢ = 7p,, and where 7 = %}o ~i,vi the
i=0
distribution of (T2i+1, X1y:4,); T2i+1 < 7w on [0,2) x I'. Now let A; be the distribution of

(T2i41, XTpi41 ); T2it1 < T(0,1)x(—o00,00)- Clearly A; > ;. We will show

(4.8) T X < ewea(Th),

=0
which, together with (4.6) and (4.7), yields (4.5). Let B,,s > 0, be standard one dimen-
sional Brownian motion started at a. Let 7y = inf{t > 0: |B; — | = £},7 = inf{t >
0:B; = %},Tzi+1 =79 +T100r,,T2i = T2i—1 + 706, ,,t > 0. Let f; be the density
of T2i+1. It is easy to compute f1, and writing T2i+1 = (T2i41 — 1) + 71 we note that
T2i+1 — 71 1s independent of 7; and it is readily shown that :201 P(72i41 — 11 < t) < oo for
each t from which, together with the fact that fi(u) < ¢;f1(v) whenever 0 < u < v < t,
we get iogol fi(s) < etf1(s8),0 < s < t. Since at a point (s,v) of (0,1) x I the density of X);
equals (iogol f,(s)) gs(Rez, Rev) and the density of v;(T}) equals (3)f1(s)gs(Rez, Rev),

this gives (4.8) O
Finally we state and prove an extension of Theorem 2 to higher dimensions. We

-1 2
denote points in R™ by z = (z1,22,...,Zn), and let |z]|,—1 stand for (nz :c2> . We prove
i=1

Theorem 4.3. Let f(z1,...,2n—1) be uppersemicontinuous on {|z|,—1 < 1} and sat-
isfy —M < f < 0 for a positive constant M. Then Dy = {(z1,...,Za) ! |z|n—1 <
1, f(z1,...yZnz1) < Tp < 1} 13 duc.
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Proof. We shorten Dy to D, let X; = (Xj,... ,IX,”),t > 0, be standard n-dimensional
Brownian motion, and put | X¢|p,—3 = (':_511 (Xtt)2) : . With one exception, to be mentioned
shortly, our adaption of the last proof is routine. The compact set B of the last proof is
replaced by B, = {2 : ép < 2n < 1 — bp,|z|n—1 < 1 — §,,}, where 6, is chosen to have
properties i) and ii) below, and a, 8 in that proof are replaced by 1 —(6,/2) and 1—(6,/4)
respectively. We replace I', ©@ with 'y, = DN{zn, = an} and O, = {z, = 1,|z]|p_1 < 1}. If
z € DN{zp > an} = Qn, let £ be the closest point in B, to z and let z* be the reflection
of z about the hyperplane F through # which is perpindicula,r to the line through z and
z. Let U, be the reflection about F' of D N H, where H is all those points on that side of

F which contains z. We choose 6, so small that

i) U C{z:0<z, <1,|z|n-1 < 1},2 € Q.

The exception mentioned earlier is the analog of (3.5). What we must show is
(4.9) P.(r1,, <1) < Pu(ra, <t),a0 = 1,1 >0,

where L, = {2, = 1~ 65,1 — 6, < |z|n—1 < 1}. To prove (4.9) we show, mimicing the
proof of (3.5), that for suitably small §,, if we let T', ¥,,, and @, U V,, represent the top,
bottom, and union of the top and bottom halves of the inner boundary of J' = {z : §, <

ZTp <1—6n,1—6p < |z|p-1 <1}, then

i7) Pp(rg <t,75: €Ta U V) S Pty <1, 75 € QuUVp),za = 1.

Now we know from the proof of (3.5) that if (Z;, W;) are independent one dimensional

Brownian motions started at a point (a,3),0< a < 1, and if J is as in the proof of (3.5),

then the probability (Z, W) exits from J at TU¥ by time ¢ exceeds the probability it exits -
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from J at QU V by time ¢. Scaling gives that if 0 < 6 < 1 and if Z] is a motion satisfying
Z\,,t 2 0, is Brownian motion, where A = /(3 — 6)/6, if W] is an independent Brownian
motion, if J' = (0,6) x (6,1 —6), and if (Zg, Wg) = (u,1),0 < u < 6, then the probability
(Z',W') exits J' at the union of the top and bottom by time ¢ exceeds the probability ¢
exits J' at the right side by time ¢. This must also hold if instead of Z}, being a Brownian
motion, we have Z1’7(t)’t > 0, is Brownian motion, where 7(?) is increasing, continuous, and
n(t) < At,t > 0, since speeding up the horizontal motion can only increase the probability
of first exit from the right hand side by time ¢, and only decrease the probability of first

exit from the top and bottom by time t.

Now return to n dimensions, and put Z, = ¥(|X¢|a_1) — ¥(1),t > 0, where P(s) =
141logs,s > 0,n =2,9(s) =s "2 s > 0,n > 2. Let T = inf{t : | X¢|n-1 = 1}. Then
Z;' is a local martingale, since 4 is harmonic away from 0, and the standard time change
formula (see Section 2.8 of [M]) and Ito’s lemma give that there is a constant ¢, > 0 and
a function 7(t) such that n(t) < e,t,t < T, and Z:;(t),t > 0, is Brownian motion. Put
W, = Xp. By the last paragraph there is a §” = 6., such that if Z, €(0,6"),W, = 1,
and J" = (0,6")x(8",1- 9"), then the probability that (2", W") exits J" at the union
of the top and bottom by time t exceeds the probability it exits the right side by time t.

It is now straightforward to show that for small enough é,, we have ii). 0
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