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Abstract

This paper deals with the problem of selecting fair multinomial populations compared
with a standard. Two selection procedures are investigated: the natural selection proce-
dure of Gupta and Leu (1990) and an empirical Bayes simultaneous selection procedure.
It is proved that the natural selection procedure is a Bayes procedure relative to a sym-
metric Dirichlet prior, and therefore it is admissible. For the empirical Bayes simultaneous
selection procedure, the associated asymptotic optimality is investigated. It is shown that
the proposed procedure is asymptotically optimal relative to a class of symmetric Dirichlet
priors, with a rate of convergence of order O(exp(—7k + Ink)) for some positive constant
7, where k is the number of populations involved in the selection problem. Also, presented
are results of a simulation study of the small sample performance of the empirical Bayes

procedure.
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1 Introduction

The concept of diversity within a population is of considerable importance in statistical
theory and applications. The problem of measuring diversity arises in a variety of studies
in ecology, sociology, econometrics, genetics and many other sciences. For a multinomial
population with m cells, the index of diversity is a function of the corresponding probability
parameter vector p = (p1,...,pm). In practice, a Schur-convex or Schur-concave function
of p may be appropriate. There are two measures of diversity of a multinomial population
which have been commonly used. These are Shannon’s entropy function and the Gini-
Simpson index. The notion of the entropy function was introduced by Shannon (1948).
The Gini-Simpson index was introduced by Gini (1912) and Simpson (1949). Both are

Schur-concave function of P

In the literature, selection procedures using indices of diversity as selection criteria
have been studied by many authors. Gupta and Huang (1976) studied the problem of
selecting the population with the largest entropy function for binomial distributions. Gupta
and Wong (1975) considered the problem of selecting a subset containing the population
with the largest entropy for multinomial distributions. Dudewicz and Van der Meulen
(1981) investigated a selection procedure based on a generalized entropy function. Alam,
Mitra, Rizvi and Saxena (1986) studied selection procedures based on Shannon’s entropy
function and the Gini-Simpson index using the indifference zone approach. Rizvi, Alam
and Saxena (1987) also considered a subset selection procedure based on certain other
diversity indexes. Recently, Gupta and Leu (1990) and Liang and Panchapakesan (1991)

have studied certain selection procedures based on the Gini-Simpson index.

In this paper, we are dealing with the problem of selecting fair multinomial popula-
tions compared with a standard level. Consider ¥ independent multinomial populations
T1,..., 7. For each ¢ = 1,...,k, population m; has m cells, and is characterized by

the corresponding probability parameter vector p, = (pi1,---,Pim), where 0 < p;; < 1,

J=1,...,m,and ) pijj=1foreachi=1,...,k. Define
i=1

m
1
6 = ¥(p,) =Y (pij — —)*. (L.1)
i=1
We use 6; as a measure of diversity (or uniformity) of population m;. Note that since --
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m
6; = Y p?j - #, it is essentially equivalent to the Gini-Simpson index. Also note that
j=1

0<6; <1~ % For a given constant 6y, 0 < 6y < 1 — %, population 7; is said to be a
fair population if §; < 6 and a bad population, otherwise. Our goal is to derive statistical
selection procedures for selecting all fair populations while excluding all bad populations.
Since a fair multinomial would imply equal cell probabilities analogous to a fair coin, the
problem at hand is equivalent to selecting multinomial populations that are fairer (more
homogeneous) than the standard. It should be noted that the problem of selecting fair
multinomial populations has been considered by Gupta and Leu (1990) through a classical
approach.

Let Q = {g: (pys-->p IR, = ity -, Pim) 0 < pi; < 1,5 =1,...,m, ipij =1 for
each ¢ = 1,...,k} be the parameter space and let A = {s|s C {1,.. .,k}}]l:e the action
space. When action s is taken, it means that population m; is selected as a fair population
if ¢ € s and excluded as a bad population if i ¢ s. For p € Q and action s € A, the loss
function L(p, s) is defined to be: -

L(p,s)= ) (6: - 00)(65,1-21(6:) + > (60 ~ 0:)Jj0,,1(63)- (1.2)
i€s i¢s
In (1.2), the first summation is the loss due to selecting certain bad populations and the

second summation is the loss due to not selecting certain fair populations.

The content of this paper consists of two parts. In Section 2, we investigate some op-
timal properties of the natural selection procedure of Gupta and Leu (1990). It is shown
that, for the loss function L(p, s) of (1.2), the natural selection procedure is Bayes relative
to some symmetric Dirichlet ;rior, and therefore, it is admissible. Section 3 deals with this
selection problem through a parametric empirical Bayes approach. An empirical Bayes
selection procedure is proposed and the corresponding asymptotic optimality is investi-
gated. It is shown that the proposed empirical Bayes selection procedure is asymptotically
optimal relative to a class of symmetric Dirichlet priors. The rate of convergence of the
proposed empirical Bayes selection procedure is also established, and shown to be of order
O(exp(—7k + Ink)) for some positive constant 7, where k is the number of populations
involved in the selection problem. Finally, a simulation study is carried out to investigate.

the small sample performance of the empirical Bayes selection rule. The results of this
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study are presented in the last section of the paper.

2 Optimality of Natural Selection Procedure

Foreach i =1,...,k, let X; = (Xi1,...,Xim) be the random observation associated
with population ;, where X;;, 1 < j < m, are nonnegative integer random variables such
m
that 0 < X;; < N and 3 X;; = N. Then, X; has the probability function

=1
A o
flzilp,) = ] i (2.1)
H(xij!)i=Hl ’
=1

at point z; = (z;1,...,%im) for which0 < z;; <N, 1< j <m and Y. zij = N. Let X; be
i=1
the sample space generated by X;. Let X = (X;,...,X}) and denote the corresponding

observed value by z = (z;,...,z;). Also, let X = X; X ... X X; denote the sample space
of X.

A selection procedure d = (di,...,dt) is defined to be a mapping from the sam-
ple space & into the product space [0,1]%. That is, for each z = (z4,...,2;) € X,
d(z) = (di(z), - - -, dk(z)), where di(z) is the probability of selecting population =; as a fair
population given X = g is observed. We let D denote the class of all selection procedures

defined in the above way.

For each i = 1,...,k, (KN'J-, v %‘Vm) is the maximum likelihood estimator of p, =
=1
A m .o
(pi1, .-+, Pim)- From (1.1), it is natural and reasonable to estimate 6; by §; = EI(XT','-)Z—;};
J=

Gupta and Leu (1990) proposed a natural selection procedure dVN = (dl,...,dN) based
on b;,i= 1,...,k, which is equivalent to the following: For each i =1, ..., k,
1 ifé; <8,

0 otherwise,

@ - { (22)

where 6 is a prespecified positive constant such that 0 < § < 1 — % Since this natural

selection procedure is heavily dependent on the constant §, we denote this procedure by
dN®) = (@Y ® . Ny,

In the following, it is assumed that for each i = 1,...,k, the parameter vector

p, = (pi1,-..,Pim) is a realization of the random vector P, = (Pa,...,Pi). It is also
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assumed that P,,..., P} are iid with a common prior distribution G4 belonging to a class

of symmetric Dirichlet distributions C, where

I'(ma) v o ) =
C ={galga(p,) = I‘( 3, HP?J L0<pi; <1, j=1,...,m, Zpij=1}. (2.3)

[ (a)] j=1 J=1
For a prior distribution G4 € C and a selection procedure d = (di,...,d;) € D, we
denote the corresponding Bayes risk by r(G4,d). From (1.2) and the statistical model

described previously,
k
r(Gayd) = Y ri(Gayds) (2.4)
=1

where

m k
ri(Gayd) = Y di(@) | 3 BlPEled - — — 6| ] £(z;)

zEX

+ [ (0= 690alp ) (2.5)
Q;(60)

H I'(atzij)
fai) = [ f(zilp)9a(p)dp; = w2 — ok T

(zi5!
j=1
and Q;(6) = {-P.i = (pi1y- .-, Pim)|0i < 6o}.

Since the second term of (2.5) does not depend on the selection procedure d, a Bayes

selection procedure d%« = (df"‘ yeees de"‘) can be obtained as follows: Foreachi =1,...,k,
1 if 3 E[P2lz;] - L <6
d?“(g)={ : El Pleid = < &, (2.6)
0 otherwise.

Then, we have the following theorem.

Theorem 2.1. For each positive constant § such that 0 < § < 1— % and %ﬂ >

0o, for the loss function L(p,s), the natural selection procedure d¥(®) given in (2.2) is a

Bayes procedure relative to some symmetric prior distribution G,,.

Proof: First, straightforward computation yields for each ¢ = 1,...,k and j = 1,...,m,
Xij +a+1)(Xij + a)
E[P2|X.] = (Xis J .
P51 (ma+ N +1)(ma + N)

5



and therefore

(m2—m)a+mN+m Z%X%—Nz—N
J=

ZE[ I m(ma + N + 1)(ma + N) (2.7)

Note that
R n 1
< 21Xl - — <
bi< b= ]z:;E[P,, Xy - — < H(a)
where
6+ L)ymN? + (m? —m)a+mN - N2 - N

H(a) = m(ma + N + 1)(ma + N)

Thus, it suffices to prove that for given 6y, 0 < 65 < 1 — %, there exists a positive

a such that H(a) = 6. Since H(a) is decreasing in a, H(0) = %ﬂ% > 6y by
the assumption, lgn H(a) = 0 < 6y and H(a) is a continuous function of o on [0, 00),
there exists a uniaquzo a = a(bp) > 0 such that H(a) = 6y. This implies that the natural
selection procedure d¥(®) is the Bayes procedure relative to the symmetric Dirichlet prior

Ga(6,)- The proof is now complete. O

The following corollary is a direct consequent of Theorem 2.1.

Corollary 2.1. For each positive constant § suchthat 0 < § < 1 — %, mSN*4mN-N -, o,

the natural selection procedure is admissible for the loss function L(p, s).

3 An Empirical Bayes Selection Procedure

We assume that the hyperparameter a of the symmetric Dirichlet prior G4 is unknown.
In this situation, it is not possible to apply the Bayes selection procedure d%« for the

problem at hand. Thus, the empirical Bayes approach is employed here.

Foreach: =1,...,k, let W; = Z X and let w; denote the observed value of W;.

Under the preceding statistical model Wi,...,Wg are iid random variables such that
—m— < W; < N2, It follows from straightforward computations that

(N - 1)(a + 1)]



and therefore,

N2 — g
a_m,ug——N(m+N—1)' (3.2)

From (3.2) and (2.7), for each i = 1,..., k,

ZE[P%I_:Q
= {(m? = m)(V® ~ ) + iz — N(m + N — D]m + mu; — N* — N|}
X (mpg —mN — N? + N)/[m(N — 1)(mpz — N)N(mps — N? —m + 1)]
= Qi(pz|wi), (3.3)

m
where w; = z_: me
Note that for w;(or z;) being kept fixed, Q;(u2|w;) is increasing in pg.

k
Define, ji; = % > Wi. We will use iz to estimate yy and use Qi(fiz|w;) to estimate
=1

Qi(p2|wi). However, by the definition of uy (see (3.1)), N + M%l < pz < N? and

Q:i(u2|w;) tends to zero as pyy tends to N + N—(Anz;l) Also, it is possible that fi; < N 4
E(]Zl—_ll. Thus we define
N(N—
QX (w;) = {Q i(fo|w;) if g > N+ ( 1), (3.4)
otherwise.
We now propose an empirical Bayes selection procedure d* = (df,...,d;) as follows:
Foreach:=1,...,k,
F o () <
d¥(z )__{ if 7 (wi) < 6o, (3.5)
0 otherwise.

The following example describes the empirical Bayes selection procedure.

Example: Suppose that k = 10, m = 5, N = 20 and 6, = 0.1. Let the data.(X;1, Xis,
Xis, Xig, Xis), 2 =1,...,10, from each of the 10 populations, be as listed below.
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? Xa X X Xu X
1 3 5 4 7 1
2 4 1 2 8 5
3 10 4 3 2 1
4 5 0 0 10 5
5 6 0 5 6 3
6 8 8 2 1 1
7 13 1 1 1 4
8 7 8 2 3 0
9 3 2 2 9 4
10 12 2 3 1 2

Using W; = 3~ X7; and (3.4), the values of the empirical Bayes estimators eX (W)
=1

are as follows:

1 1 2 3 4 5
W; 100 110 130 150 106
HUD) 0.04610 0.06566 0.09085 0.11603 0.06063

1 6 7 8 9 10
Wi 134 188 126 114 162
X (W;) 0.09588 0.16388 0.08581 0.07070 0.13114

v

Comparing the values of f(W;) with 6, = 0.1, the empirical Bayes rule selects pop-
ulations 7y, w2, 73, w5, 7, ms and my as fair populations. According to this rule m4, 7,

and 79 are not selected.

In the following, we will investigate the asymptotic performance of the empirical Bayes
selection procedure d* for the case where k, the number of populations involved in the

selection problem under study, is sufficiently large.

Since d%« = (df=, ... ,de"‘) is the Bayes selection procedure, for the empirical Bayes
selection procedure d* = (df,...,d}), ri(Ga,d}) — ri(Ga,d¥*) > 0 for each i = 1,...k
k
and therefore, 7(Gq,d*) — r(Ga,d%) = 3 [ri(Gq, d}) — ri(Ga, dS=)] > 0. This nonnega- -
i=1
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tive regret value r(Gq,d*) — r(Gq,d%) will be used as a measure of performance of the

empirical Bayes selection procedure d*.

Definition 3.1. A selection procedure d = (dy,...,dx) € D is said to be asymptotically
optimal of order {fx} relative to the prior distribution G if

r(G,d) — r(G,d%) = O(B)

where {8} is a sequence of positive numbers such that klim Br = 0.
—o00

For each i =1,...,k and for the fixed p2, Q;(u2|w;), which is defined in (3.3), can be

viewed as a function of w;. It is clear that Q:i(u2|w;) is increasing in w;. Let

Ai = {wilw; = wi(z;) = ZIB?,-, z; € X, Qi(p2|wi) < 6o}

=1
_ _ N2
B; = {wilw; = wi(z;) = ) ¥, z; € Xi, Qi(ua|wi) > 6o}
Jj=1

From the statistical model under consideration, Q;(uz|w) = Q;(u2|w) = Q(uz|w) (say) for
alli,j =1,...,k. Thus, A, =..-= Ay =A (say) and By =---= B, =B (say).

Let h(w) denote the common marginal probability function of the iid random variables

Wi= 3 X%,i=1,...,k From (2.5), (2.6) and (3.5), straightforward computation yields
J=1

0 <ri(Gayd}) — ri(Ga,df*)

< D Pi{pi(wi) > 60| Wi = wi}h(w;) (3-6)
w;EA
+ Y Pi{p}(w:) < 60| Wi = w;}h(w;)
w;EB

where the probability measure P; is computed with respect to Wiyeoo y Wicy,Wig,...,
Wt).

Thus, it suffices to investigate the asymptotic behavior of P{p¥(w;) < 6|W; = w;}
for w; € B and P;{p}(w;i) > 6p|W; = w;} for w; € A.

Lemma 3.1. For each ¢ > 0 and for sufficiently large k,
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(a) Pi{fia — pa < —c|Wi = w;} < O(exp(—ke?N~4(1 — 1)=2/2)).
(6) Pi{fiz — pz2 > e|Wi = wi} < O(exp(—ke*N=4(1 — £)~%/2)).
(¢) Pz < N+HEERIW: = wi} < O(exp(—h(pa—N—(N~1)N/m)2N=4(1-1)=?/2)).

Note that the above upper bounds are independent of the value w;.

k
Proof: (a). Let fiz(i) = 27 > W;. Then,
F=1
JFi
N n e ke — W;
Pi{fie — p2 < —c|W;i = wi} = Pi{fia(i) — p2 < w1t #Z — F

Note that &= < w; < N? for all w; = wi(z;) = Z a:,] Thus for % sufficiently large

— kc T + 8=+ < —%. Hence, we obtain, for k sufﬁc1ently large, that

Pi{fiz — p2 < —c|W; = w;}
< Pi{ia(i) — 2 < —5)
< exp{—kePN 41— =) /2},

where the last inequality follows from Theorem 2 of Hoeffding (1963). Note that the upper

bound is independent of w;.

The proof of part (b) is similar to that of part (a). By letting ¢ = py — [N+ ﬂ%{ll,
then ¢ > 0. Thus, the result of part (c) follows directly from part (a). 0O

Lemma 3.2. For w; € A,
- -~ 1._
Pi{@i(wi) > 60|W; = wi} < O(exp(—k(Q7 (o w:) — 2 )*N~4(1 - —)7*/2))
where Q' (+|w;) is the inverse function of Qi(-|w;).
Proof: From (3.4) and the fact that §; > 0,

Pi{pi(wi) > 60|W; = wi} = Pi{Qi(faz|w;) > 6o|W; = w;}. (8.7)

10



Now, for each fixed w; € A, Q;(p|w;) is strictly increasing in u for N + M%l <p<
N? and Q;(p2|wi) < 8. Thus pz < Q;(6p|w;). Then,
Qi(fiz|wi) > b0 <= fi2 > Q7' (6 |w;)
> fiz — p2 > Q7 1 (6o|wi) — pg > 0. (3.8)
Combining (3.7) and (3.8), by Lemma 3.1 (b), we obtain, for w; € A,
Pi{pi(wi) > 6o|W; = w;}
= Pi{fiz — p2 > Q7" (60wi) — p2| Wi = wy}
< O(exp(=k(Q7 (Bolw) — pa)?N =41 — 1y=2/2)).
Thus, the proof of this lemma is complete. 0O

Lemma 3.3. For w; € B,
1
Pi{ei(wi) < 00|W; = w;} < O(exp(—k(Q7 (Bolw;) — p2)? N™*(1 — —)7*/2))

+O(exp(—k(uz = N = (N ~ DN/m)* N=4(1 — 1y=2/2))

Proof;
Pi{pi(wi) < 60|W; = w;}
1
= Pi{pi(wi) < by, i < N + )|W1 = w;} (3.9)

MIWE = w;}.
m

N(N -
m

+ Pi{p}(wi) < 6o, 12 > N +

From Lemma 3.1 (c),

N(N —

1
Piloi(w) <0, i <N+ X0 Dy

< O(exp(—k(uz — N — (N — 1)N/m)2N=4(1 — %)-2 /2). (3.10)

From (3.4) and an argument analogous to that given in the proof of Lemma 3.2, we

have
N(N -1) W; = ws)
m

N(N -1
= Pi{Qi(ﬂlei) < b, fio>N+ (T-)-IW, = w;}

< Pi{fiz — p2 < Q7 (8olwi) — 2| Wi = wi} (3.11)
= O(exp(—K(Q7 (Golws) = i N™4(1 — —)72/2)

Pi{pi(wi) < 6o, fiz > N +
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where Q; " (6o|w;) — p2 < 0 since w; € B. Thus, the lemma follows from (3.9)~(3.11) [

Let 71 = min{(Q; " (6o|w;i) — u2)?’N~4(1 — )72 /2lw; € A; U B;}. Then, 7, > 0
since Q;‘l(90|w,-) — p2 # 0 for all w; € A; U B; and A; U B; is a finite set. Then 7 =
min(7y, (g2 = N — (N —1)N/m)2N~%(1 - L)~%/2)) > 0.

The following theorem describes the asymptotic optimality property of the empirical

Bayes selection procedure d* = (dj,...,d}).

Theorem 3.1. Let d* = (df,...,d}) be the empirical Bayes selection procedure defined
through (3.4) and (3.5). Suppose that the prior is a member of the class C of symmetric
Dirichlet distributions given in (2.3). Then

(a) Foreachi=1,...,k, ri(Ga,d) — 1i(Ga,d7*) < O(exp(—7k)), and
(b) 7(Ga,d*) — r(Ga,dC) < O(exp(—7k + In k))

where 7 is the positive constant defined previously.

Proof: Part (b) is a direct result of part (a). Thus, we need to prove part (a) only. From
(3.6), and Lemmas 3.2 and 3.3,

ri(Go,dt) — 1i(Ga,dS*)
< O(exp(~7k)) ) h(w:)

w; EAUB
= O(exp(—71k)).

The theorem now follows. O
4 Small Sample Performance: A Simulation Study

A Monte Carlo study was designed to investigate the small sample performance of the

proposed empirical Bayes selection rule d*. The simulation scheme used is as follows:

(1) For given a and m, generate k — 1 random vectors p, =(Pi1,--spim)y i =1,...,k -1,

according to the symmetric Dirichlet distribution

— P(ma) I a-—1
920) = [y L7
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m
where p = (p1,...,Pm), 0<p; <land ) p; =1.

i=1
(2) For each N and each ¢ = 1,...,k — 1, generate random vector X; = (Xityeo o, Xim)

according to the multinomial distribution

N! .
f(zlp,) = —>ni},
z;!
1

m
where 0 < z; < N and ) z; = N. Note that under the given statistical model,

=1
r1(Gaydi) = 12(Ga,d3) = ... = rt(Ga,dy), and
r1(Gay d7) = 19(Ga,dS*) = ... = (G, d%=).

Therefore,
r(Ga;,d") ~ 1(Ga,d%) = k[ri(Go, d}) — ri(Ga, d5+)].

Hence, it suffices to generate ri(Gy,d}) — r(Ga, df“) only.

(3) Let z, be an observed vector obtained from a population with probability function
flz) = ff(glg)ga(g)dz_n. Use X;,...,X;_; and z; to compute ¢i(wz) and di(X,,
.+ X g_1,2y) according to (3.3), (3.4) and (3.5). Then compute

r6(Ga, di1 Xy, ..., Xgy) — 74(Ga, dS)
=3 di( Xy, Xoor, 20)[Qr (2 |wi) — 6] f(zy)

=k
= 2 A (X Xy, 20)[ Qe on) — o) (24)
£k
= Dk(ila s 7:&1&:——1)'
The quantity Di(X;,...,X_;) can be viewed as the difference between the condi-

tional Bayes risk of the empirical Bayes selection rule dy given (X;,...,X;_;) and the

minimum Bayes risk ri(Gq,dg).

(4) The process was repeated 500 times. The average of the differences based on the 500
repetitions denoted by Dy is used as an estimator of the difference Tk(Ga, dz)—rk(Ga,df“ )-
We then use kD as an estimator of the overall difference r(Ga,d*) — r(Ga, dG"‘).
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Tables 1-3 list simulation results on the small sample performance of the empirical
Bayes selection rule d* for selected values of the parameters k, m, a and N. SE(D;)

denotes the estimated standard error Dj.

In each of the three tables, the results indicate that the estimated overall difference
kD decreases as k becomes large. However, the rate of convergence to zero depends on
the value of the parameter a. For o = 4 we see that for k¥ > 50, Dy, is very close to zero.
This indicates that the asymptotic optimality of the empirical Bayes selection rule d* may

also hold for moderate sample sizes.
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Table 1. Small Sample Performance of d*
a=2,m=5 N=10and 6y = 0.3

k Dy SE(D;) kD;,

10 3.6898(-5) 5.883(—6) 36.898(-5)
20 0.7199(—5) 1.254(—6) 14.398(—5)
30 0.4678(—5) 0.595(—6) 14.034(-5)
40 0.2892(-5) 0.479(—6) 11.568(—5)
50 0.2297(-5) 0.430(—6) 11.485(—5)
60 0.1871(-5) 0.390(—6) 11.226(-5)
70 0.0595(—5) 0.223(~6) 4.165(—5)
80 0.0851(—5) 0.266(—6) 6.808(—5)
90 0.0595(—5) 0.223(—6) 5.355(—5)
100 0.0425(—5) 0.189(—6) 4.25(=5)

Table 2. Small Sample Performance of d*
a=3, m=5 N=15and 6y =0.3

k Dy SE(Dy) kDy

10 0.1980(—5) 0.483(—6) 1.980(—5)
20 0.0715(—5) 0.250(—6) 1.430(-5)
30 0.0043(—5) 0.008(~6) 0.129(-5)
40 0.0070(—5) 0.031(—6) 0.280(-5)
50 0.0014(—5) 0.004(—6) 0.070(-5)
60 0.0011(—5) 0.004(—6) 0.066(—~5)
70 0.0007(—5) 0.003(—6) 0.049(—5)
80 0.0004(—5) 0.002(—6) 0.032(—5)
90 0.0004(—5) 0.002(—6) 0.036(~5)
100 0.0001(—5) 0.001(—6) 0.010(~5)

Table 3. Small Sample Performance of d*
a=4,m=5, N=15and 6y = 0.3

k D SE(D;) kDy

10 0.0235(~5) 0.090(—6) 0.235(—5)
20 0.0036(~5) 0.017(-6) 0.072(—5)
30 0.0003(—5) 0.001(—6) 0.009(—5)
40 0.0010(-5) 0.010(—6) 0.040(—5)
50 0. 0. 0.

60 0 0. 0

70 0 0. 0

80 0 0. 0

90 0 0. 0
100 0 0. 0

An entry such as 3.6898 (-5) stands for 3.6898x 1075,
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