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Abstract

The ith member of a group of m individuals (or stations) observes a random quantity
X;, where X = (X1,...,Xm) has density g(z|d). Each individual can report only y; =
hi(z;), because of a limitation on the amount of information that can be communicated.
Based on y = (y1,...,Ym) and a prior distribution 7(f), Bayesian inference or decision

concerning 8 is to be undertaken.

The first version of this problem that will be studied is the “team” problem, where
the m individuals form a team with common prior 7 and the reports, y;, are the posterior
distributions of each team member. We compare the optimal Bayesian posterior for this -

problem (7 (8|y)) with previous suggestions, such as the optimal linear opinion pool.

The second facet of the problem that is explored is that of choosing y to optimize
the information communicated, subject to a constraint on the amount of information that
can be communicated. In particular, we will consider the dichotomous case, in which each
y; can be only 0 or 1, and will illustrate the optimal choice of y; for both inference and
decision criteria. The inference criterion considered will be closeness of the posteriors 7 (8|z)
and 7(6ly), in an expected Kullback-Leibler sense, while the decision criterion considered
will be usual optimality with respect to overall expected loss. Examples are presented,

including discussion of a situation that arises in reliability demonstration.



1. INTRODUCTION

1.1. Limited Communication

Consider a group of m(m > 1) individuals, each observing a random quantity X;,
where X = (Xi,...,Xy) has density g(z|0) and 0 is an unknown parameter. Suppose
that there is a constraint on the amount of information that can be communicated in that
individual 7, ¢ = 1,...,m, can only report y; = h;(z;). There are a variety of situations in
which such limited communication can arise. One such is the “team problem” (see Section
1.2) in which each individual reports only his posterior density for § based on z;. Another
such is when communication is expensive, and each individual can, say, report only one bit
of information (y; = 0 or 1); see Section 1.3. A third such scenario is when, for reasons of
confidentiality or secretivity, only the limited y; can be reported. We will denote the joint
density of Y = (Y1,...,Yy) (induced from g(z|0) by the transformation (h1,...,km)) by
f(yl6). Based on y = (y1,...,Yym) and a prior distribution 7(f), Bayesian inference or

decision concerning 8 is to be undertaken.

Interest will focus on comparing the reported posterior distribution under the avail-
able limited information, 7(6|y), and the full posterior distribution under all information,
7(0]z). When the parameter of interest is = %(0), we will compare the limited informa-
tion posterior distribution, 7(n|y), with the full posterior distribution 7(n|z). (An example

of this that is related to reliability demonstration is given in Section 3.3.)

1.2. The Team Problem.

The first limited information scenario that will be considered is that of combining
individual reports expressed as posterior distributions, when the group of individuals forms
a team. The concept of a team was introduced, from an economics viewpoint, by Marschak
and Radner (1971) and developed from a statistical viewpoint in DeGroot and Mortera
(1988). A team is a group of m individuals who each report their posterior distribution,
7(0|z;), based on a common prior distribution 7(d), a common joint model g(z|d), z =
(Z1,-..,Zm), but on different data sets z;, = = 1,...,m. A single final distribution for §

must be chosen by the team by combining the individual posterior distributions, 7 (8|z;).
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This can be formulated in the framework of Section 1.1 by defining y; as 7 (8|z;). (The
implicitly defined h; will be described in Section 2.) The suggested final pooled report is
then 7(f|y), which is clearly the optimal pooled report. This approach will be illustrated

in Section 2, with two examples, and compared with previous suggestions for pooling.

1.3. Optimal Limited Communication.

If the amount of information that can be communicated by each individual is limited,
it is natural to seek the optimal choice of information to communicate: i.e., the optimal
choice of the h; for the reports y = (y1,...,¥m) = (h1(21),...,hm(Zm)), subject to the
constraints on the amount of information that can be reported. This will be considered in
Section 3 for the case where each y; can only be one bit of information, that is y; = 0 or

1. Such y; arise as

1 ifz;€C;
yi = hi(z;) = { Lt
0 ifz; ¢C,,

+ = 1,...,m, so that optimal choice of the h; is equivalent to optimally choosing C =

(C1y-..,Cm).

For general inference about 8, it is natural to define “optimal” in terms of closeness
between the limited information posterior density, 7 (f|y), and the full (but unobtainable)
posterior density 7(f|z). The Kullback-Leibler measure of distance between 7 (f|y) and
7(8|z) will be used to measure closeness. Since neither X nor ¥ will be known when C is
chosen, it is necessary to consider the expected Kullback—Leibler distance, the expectation
being over X as well as §. Thus we seek to choose C' to minimize

=% {os [T

This is equivalent to choosing C so as to minimize

A(C) = —EX* [1og (%?)] : (1.1)

(Only the term involving Y depends on C; 7(0) has been included for later notational
convenience. For related uses of similar measures see Bernardo (1979a,b) and Zellner

(1977). At times, we will refer to A(C) as the shifted Kullback-Leibler distance.) This
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will be considered in Section 3.2. A version applicable to inference about n = () will be

considered in Section 3.3.

Instead of inference, one may face a decision problem, with loss function L(8,a) for
action a € A. For specified C, a Bayes decision rule 6 (), is given by any action that
minimizes the posterior expected loss. Before observin; Y (or X ), the overall expected
loss for a given choice of C is thus the frequentist Bayes risk

r(C) = EX[L(8, 6 (). (1.2)

In a decision problem, therefore, an optimal C' will be one which minimizes r(C). An

example will be given in Section 3.4.

Note that there is a certain similarity here to optimal Bayesian design, which seeks to
optimally allocate a limited number of possible observations among possible design points.
Indeed a formal analogy could be made by defining X to be the set of all observations
at all possible allocations, and having the limited information constraint be that only
the observations from a single allocation can be reported. Literature on Bayesian design
includes Smith and Verdinelli (1980), Pilz (1983), Chaloner (1984), and DeGroot and Goel
(1988). Example 4 in Section 3.3 is also related to design.

2. THE TEAM PROBLEM

In DeGroot and Mortera (1988), the optimal rule for combining the team members
individual posterior reports, 7(6|z;), t = 1,...,m, was given when the Xj; are conditionally
independent given §. This is equivalent (for the conditionally independent case) to our
m(fly) defined below. When the X; are not conditionally independent given 6, DeGroot
and Mortera (1988) considered use of a linear opinion pool to combine the =(6|z;), and
determined the optimal weights for the pool. Here we derive the optimal pooled report,
7(0ly), and compare it with the optimal linear opinion pool. The optimal pooled report
can be dramatically better. (Note, however, that there might be computational and other
reasons to use the suboptimal linear opinion pool approach. For general reviews of pooling,

see French (1985) and Genest and Zidek (1986).)
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Analogously to Winkler (1968), French (1980), Lindley (1983), and Lindley and
Singpurwalla (1986), the optimal Bayesian pool of 7(#|z1),...,7(6|zm) is found by treating
these as the “data” y = (y1,...,Ym), and then determining 7 (6|y). More formally, define
Y; as a minimal Bayes sufficient statistic corresponding to X; and the prior 7(8). In other
words, Y; = hi(X;) is a statistic such that 7(8|X;) = n(0]Y;) with probability one (i.e., ¥;
is Bayes sufficient with respect to ) and, if y; # y!, then 7(0|y;) and 7 (0|y}) differ (i.e., ¥;
is minimal). The information actually conveyed by 7 (8|z;) is thus y;. Note that, because
of minimality, y; can be retrieved from 7 (0|z;) (whereas z; may not be retrievable). Note
also that there is no need for each individual to have the same prior =; if each has a known
prior 7;(6), and Y; is minimal Bayes sufficient with respect to X; and 7y, then the following
analysis still holds. (In this case, it is assumed that there is a central decision maker with

prior m(6) that is doing the analysis.)

Since Y = (Y1,...,Y:,) is a statistic, one can determine its density f(y|f), and then

calculate the posterior density 7(f]y) « f(y|0)7(#). This will be the optimal pooling of
7(0|z1),...,7(0|zm).

This approach will be illustrated on two examples in which ¥ has lost some of the
information in X. In Example 1, the loss of information arises because the team mem-
bers have some common data, while in Example 2 the loss of information results from
the team members separately eliminating a relevant nuisance parameter in determining
7(8|z;), ¢ = 1,...,m. Thus the information sources are dependent (cf., Winkler (1981),

Clemen (1987)).

Ezample 1. Overlapping normal samples.

As in DeGroot and Mortera (1988), consider a 2 person team where both members
observe ¢ common observations, u = (u1,...,%), and n; and ny “private” observations,
v = (v1,...,Vy,) for the first member and z = (21,...,2,,) for the second member. All
observations are iid N (4, %), 7 known. The common prior density for 8 is N(e, %) Let
Z1 = (€ +n17)/(c+n1) and T, = (@ +n2Z)/(c+ n2) denote each team member’s sample

mean, respectively.



The individual posterior reports are

ha + v;T; 1
h+y; > h4y; ?

m(0)z;) = N (2.1)

where v; = 7(c + n;), 1 = 1,2. Clearly, the minimal Bayes sufficient statistics are (up to
one-to—one transformations) the sample means X, and X,. For notational simplicity we

set Vi = (c+n))X;, 1 =1,2.

The joint density of Y; and Y3 is

o) = ([ 1700, }[‘”"1) c ])

(c+n2)d c (¢ + n2)

The team’s pooled posterior report,

7. (0) = 7(0ly1,y2) x f(y1,y210)7(6),

can easily be shown to be

r1(0) = Nluz, i], (2.2)

where
r(n1 + nz)(c + n1)(c + nz)

¢(n1 + n2) + ning
Tn1(c + n2)y1 + ™ng (c + n1)y2
e(ny + n2) + ning )

vp =h+

1
pr = — |ah+
v

The full, but unobtainable, posterior distribution, given all the information u, v and

z, is

nr(0) = 7(0lu, v, 2) = Nlur, i], (2.4)

where
vr = h+ (ny +na + c)7,
(2.5)

1 —
pr = —[ah + 7(cT + n1T + n2Z)).
43
One can easily see, from (2.3) and (2.5), that, if ¢ > 0, the posterior variance given the full
information, 1/vp, is always smaller than the posterior variance based on the individual

reports, 1/vy,.



The optimal linear opinion pool is given (see DeGroot and Mortera, 1988) by
nLp(0) = wr(f|z1) + (1 — w)n(0|z2), (2.6)

where the 7(8|z;), 1 = 1,2, are given by (2.1) and

[h + 'r(c +n1)]1/2 _ [(h+r(c+n1))(h+r(c+nz))

1/2
h+r(c+n1+n2) ]

w =

[h+ 7(c +n1)]Y2 + [+ 7(c + n2)]V/2 -2 [(h+f(°+n1))(h+1'(0+n2))

1/2°
h+r(c+ni+n2) ]

A variety of numerical comparisons of 7, g, and np were performed. Figure 1 is
typical, presenting the three posteriors (labelled L, F, and LP, respectively) for randomly
generated data when 8 =2, ¢c=1, n1 =2, ng =1, a=0,and 7 = h = 1. The variance
associated with 7y p is greater than that for 77 which, in turn, is greater than that for 7p.
Also, 7y, is clearly closer to mr than is 7z p, but the latter is not greatly different. These

conclusions held for most of the cases analyzed.

Ezample 2. Normal Variance.

In this example, the team members’ reported posteriors result is a loss of information
because individual elimination of nuisance parameters yields Y;’s that are not jointly suf-
ficient for the full parameter. Assume a 2 person team where each member observes n; iid
Xij ~ N(u,7), j=1,...,n4 ¢ =1,2. The common prior distribution on x and 7 is given
by the improper prior density

w(u,7) oc 7 1ePT;

that is, 7 has a Gamma distribution with parameters a and 8 (i.e., 7 ~ I'(e, §)) and p|r ~

constant.

Suppose that u is a nuisance parameter, so that the individual posterior reports for

the parameter of interest, 7, after integrating out u, are
n(r|zi) =T(a+ (n; — 1)/2, B+ s2/2), (2.7)

ng n;
where z; = (z1,...,Zin;), s? = E (z:j — %) and T; = (Z :c,,) /ni, 1 =1,2. Thus the
minimal Bayes sufficient statlstlcs (for each individual) are Y; = S?, ¢ = 1,2. Computation
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yields (noting that the Y;/r are independently x%n‘__l))
mr = 7(rly1,y2) = I'(az,BL), (2.8)

where af, = a + %(nl +ny—2), b =B+ -;—(s% + s2). Finally, the (unobtainable) full

posterior distribution can be shown to be

TF = 7(r|%1, T2, 8%, 82) = T'(ar, Br), (2.9)

where
nin2

aF=aL+ y Br = ﬂL+2(n e

)(171 ) .

A variety of numerical comparisons of 7z, 7r, and 7 p were performed. Figure 2 is
typical, presenting the three posteriors (labelled L, F, and LP, respectively) for randomly
generated data when 7 =2, ny =ny; =20,and a =6 =1. (Beca.use n; = ng and a = G,
it can be shown that the optimal linear opinion pool is wLp = ( |z1) + 1r( |z2).) In
this example, 77 p is markedly inferior to 71, and indeed is almost bimodal. In contrast,

g, is a very accurate approximation to 7p.

3. OPTIMAL LIMITED COMMUNICATION

In this section we assume that only one bit of information can be reported by each
individual, so that the reports are
_J1 ifzeC
Yi = 0 if z; ¢ Cy,
for ¢ = 1,...,m. The goal is to choose C = (C4,...,Cy,) optimally: i.e., to minimize
expected Kullback-Leibler distance between 7(8|Y) and w(8|X) for inference problems,
and to minimize expected Bayes risk for decision problems. These are discussed in Sections
3.2 and 3.4, respectively. Section 3.1 presents needed expressions involving 7r(0|y). Section

3.3 considers inference for a function n = ¥(4).



3.1. Preliminaries

It will be assumed throughout the section that the X;’s, and hence the Y;’s, are

conditionally independent given 8, so that

£(yl0) = T] s (wilo),
fwilo) = {Po(Cf) =Pr(X;€Cilf)  ifyi=1

1—pe(C;) = Pr(X; ¢ C;|0) ify;=0.
Thus f(y|0) can be written

m
f(ylo) = [T »¥ (C)(1 — po(Ci)) 4. (3.1)
i=1
The marginal density of Y, for a prior density , is given by

16:0) = [ raip)r©)as (3.2

(We include C as an argument here, and in the following, because the ultimate problem

will involve optimation over C.) The final posterior distribution is thus

w(fly) = K(y Hpo' Ci)(1 — po(Ci))' ¥, (3-3)

%

where the normalizing constant is
K(ya Q) = [f(ys Q’)]_l- (3'4)

When the X;’s are identically distributed and a common choice C; = C, for ¢ =

1,...,m, is made, (3.3) reduces to
m(8ly) = K(¢(C),C)n(8)[ps(C)]* D1 — po (€)™, (3.5)
where .
pe(C) = Pr(X; € C|6), t(C) = Zyg



and, abusing notation,

-1

K(t(€).0) = | [ s (@FO 1 - poC) et (3.6)

The marginal density of ¢(C), in this case, is
s = () /xwe)o) (5.7

It will prove convenient to use the notation

k
- Z v; log v;,
1=1

when v = (vy,...,vx). This will be used when the v; are the probabilities associated with
a discrete random V, so that En(v) is then just the entropy of V. We will also use the
notation
_f1 fwe
la(w) = {0 if we Q.
3.2. Inference About 4.

When inference about @ is of interest, an optimal choice of C, according to expected

Kullback~Leibler distance, is any C that minimizes A(C) of (1.1).
Lemma 3.1. For the situation defined by (3.1) through (3.3),
A(G) = —E°% [log(x(0[1) /()

- Z E°{ps(C:) log ps(C) + [1 — ps(C:)] log[1 — pe(C:)]} — Enl[f(y,C)]. (3.8)

Proof. From (3.3), one has that

A(C) =- EY[log K(Y,C)] - Z E*{EY: I‘9(Y) log ps(C;) + EY"Io(l — ¥;) log[1 — pe(C;)]}-
From (3.4),
EX g K(Y,C)] = - DK (3, €)™ log K (y, C)
all y
=Y f(y,C)log f(y,C)
all y
= _en[f(y’ g)]’
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and EY19(Y;) = ps(C;), thus proving (3.8). O

Corollary 3.1. If C; = C for all 1,

A(C) = —mE’[ps(C) log ps(C) + (1 — po(C)) log(1 — ps(C))] — E*[log(K (¢(C), C)]. (3.9)

Also,

Et[log(K(t z___: <t>-loiKI(—{ttC—§J)

En(f((C),C)) + E'[log (’:‘)] (3.10)

Proof: Equation (3.9) follows immediately from Lemma 3.1, and (3.10) follows directly
from (3.7). O

Ezample 3. Uniform distribution.

Suppose that X;, ¢ = 1,...,m, are i.i.d. U[0,0] random variables, and consider the
choice C; = C = [¢,00). (Note that this is equivalent to the choice C; = C' = [0, ¢) because

of symmetry in (3.9).) Here

1—¢/0 forc<?
C)=Pr(X; €Cl|0) =
Ps(C) r(X: %) {0 forc > 4.

Assuming the natural conjugate Pareto prior density for 8,
7(0) = cf~(@F Dy L{wo,00)(0), a>0 and 0< wo <4,

the final posterior density (3.5) is

awd

7(0ly) = K(t(e), o)t (1= 2)" (2)™7 1y o 0),

where K (t(c),c) is the normalizing constant defined in (3.6) and given in equation (A.1)
of Appendix Al.

10



The following lemma gives a useful expression for A(C) in this example. For use in

the lemma, define

r= wio and ap; = (—1)'" (2) m (3.12)

Lemma 3.2. For the uniform example,

0= {1 Tz @1
where
m m t i t
Ar(c) = —r— Z ( . ) [Z aht] alogr — log(z Ght)]
t=1 h=0 | h=0
- + a)] log |1 - r—a(mT- a)] - (ar-t 1) Z %’ (3-13)
and
Az(c) = — (o:f 1) {(a +1—7"%)log(1l —r) + arlogr — log(1 — r)] + z—: (z‘r__ :x) }
+ f: (T’) (Z ahtrm'h) log (Z ahtrm_h) . (3.14)
t=0 h=0 h=0
Proof. See Appendix Al. ]

Lemma 3.3. For ¢ > wo (i.e., r > 1), the minimum of A;(c) is attained at

Crnin = Wol

min +exp{(1 + %)Am}]l/a, (3.15)

(m+a)

where

m a 1 m m t t
= 3L 3 (7) (hg:; a,,t) log (hgzj aht) | (3.16)

Proof: Differentiating A;(c) in (3.13) with respect to ¢ and setting it equal to 0, after

some algebra one obtains (3.15). O

11



It seems likely that ¢,;, in (3.15) is actually the global minimum, because A;(c)
appears to be monotonically decreasing in ¢. This is proved in Appendix A2 for the case

m = 1. In all of the many numerical studies we performed for m > 1, this was also true.

Figure 3 presents a typical numerical example of A(C) for various values of m. The
graphs are presented as functions of r = ¢/wo, for convenience. Observe that, as m
increases (i.e., more individuals report information), min = ¢min/wo moves closer to 1.
It was also observed in the numerical studies that, as « increases (i.e., the prior becomes
more concentrated), A(C) becomes more sharply peaked, implying a greater sensitivity to

the choice of C.

3.3. Inference About a Function of 0

Often a function n = () , and not 8 itself, is of primary interest. We illustrate this
possibility here for the situation of testing Hp: 6 € A vs. Hy: 0 ¢ A. The quantity of
interest is then n = 14(6), where 14(0) is the indicator function of the set A. In this case,
(1.1) and the development in Section 3.1 should be applied to 7, rather than to 6.

For simplicity, we further restrict consideration to the case where the reports are,
independently, Y; = 1¢(X;). Then (3.5) and (3.6) give the posterior for #, so that the

posterior for 7 is given by

m(0ly) =1 —=(1]y),

n(l]y) = =(1}t(C)) = K(t(C),C)/A7’(‘9)[1’0(0)1”(0)[1 — po(C)™ ) dg.  (3.17)
Thus (1.1) becomes (ignoring, for convenience, the constant term E"[log 7 (n)])

A(C) = —E"Y [log 7 (n]Y)]

= —E'E"¢[log 7 (n|Y)]]

m

= — Z (T) [K(t,¢)] [ (0]t) log #(O]t) + w(1]t) log 7 (1]¢)]

= <T) [K(t,c)] " En[n(n|t)]. (3.18)

t=0
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Again, the goal is to minimize A(C) over the choice of C. An example follows.

Ezample 4. FEzxponential Distribution.

Suppose X;, ¢ =1,...,m, are i.i.d. I'(1,0) and C; = C = [0,¢). Then

1—e % ify; =1
16) =
T{w:10) { e—c? if y; = 0.

Suppose further that n = 14(f), with A = [a,0), @ > 0. Finally, consider the natural
conjugate prior density for 8, 7(6) = I'(e, ) with >0, 8> 0.

This situation arises in reliability demonstration (cf. Mann, Schafer and Singpurwalla
(1974)) where ¢ is the termination (truncation) time of life tests X;, only “failure” or
“nonfailure” (Y; = 1 or 0, respectively) are reported, and a~' is the desired level of

reliability. Our problem corresponds to the optimal design choice, c.

Lemma 3.4. The posterior distribution of n is defined by #(1]t) = 1 — «(0|t) and
m(0]t) = K(t,c Z an ()T o(a[c(m — k) + B]), (3.19)

where t = > 1", yi,

1 ¢ 1,6
- a—1,—
To(v) = T(a) /o 0" e="dl,

antle) = (1) O HE(m =)+ 1172,

K(t,¢) = !Z ah,t(c)] : (3.20)

h=0
Proof. See Appendix A3. O

Using (3.19) and (3.20), A(C) in (3.18) can easily be calculated. Numerous cases were
investigated; Figure 4 presents a typical graph of A(C) for various m. It is interesting that

increasing m (i.e., increasing the number of reports y;) has almost no effect on the optimal
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choice of ¢ {¢min). Also, as ¢ increases, A(C) decreases only by a relatively small amount,

indicating that each reported Y; carries (in this example) relatively little information about
n.

It was observed in other numerical examples (not given here), that ¢pi, was strongly
affected by the prior mean a/8, but was only slightly affected by the prior variance /2.

Also, A(C) became slightly more peaked as the prior variance decreased.

A natural question to consider in this example is whether the report of an interval
such as (c¢1,¢2) would be superior to the report of [0,¢). Unfortunately, we could not
answer this question in general, but the following theorem shows that [0, ¢) suffices for the

casem=1, a=1.

Theorem 3.1. If m =1and a=1, inf )A((cl,cz)) is attained at an interval for which
C1,C2

¢z = oo or, equivalently by symmetry, for which ¢; = 0.
Proof. See Appendix A4. O

3.4. Decision Analysis.

As stated in Section 1.4, the optimal C in a decision problem will be the C that

minimizes the frequentist Bayes risk given in (1.2). An example follows.

Ezample 5. Suppose m = 2, where the Xj, ¢ = 1,2, are i.i.d. I'(1,8). Suppose that the
reports are Y; = 1jo .;)(f), where ¢; and ¢ are allowed to differ. Define ¢ = (e1,¢2). Note
that, for : = 1,2,

1—e %% ify; =1

s = {176

3.21
if y; =0. ( )

Suppose that the prior for  is the natural conjugate prior () = I'(1, 8), and consider
the decision problem of estimating # under the quadratic loss L(,a) = (d—a)2. The Bayes
decision rule, é¢(y), is simply the posterior mean and the frequentist Bayes risk can be

written

r(c) = ) m(y) Var (9]y), (3.22)
all y
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where m(y) is the marginal probability of ¥ and Var(f|y) is the posterior variance. (This
formula for r(c) follows easily from the observation that r(c) is the expectation over Y
of the posterior expected loss given Y, and the posterior expected loss here is simply the

posterior variance.)

To simplify notation, we will make the transformations ' = g6, X! = X;/8, and define
r1 = ¢1/B, r2 = ¢2/B. Then the X! are i.i.d. I'(1,6'), n(¢') = I'(1,1), and the reports are
Y: = 1jo,r,)(X}). The posterior distributions, 7(6'|y), and the marginal probabilities, m(y),
are given in Appendix 5. The posterior means and variances for §’ are therein shown to

be

I+ (1 +r) "+ (L4r) P+ (A +ri+r) =224 +12)" ! fory=(1,1)
6 (y) = (14+r) 1+ @ +r+r)? for y = (0,1)
~F (L+r) P+ (147 4791 for y = (1,0)
(147 +7r2)7 1 for y = (0,0)

and, for the corresponding y,

1+ (14+r) 2+ +r) 24+ (1 +r1+r2)2—4(2+4 71 +1r2)"2
A+r) 2+ (1 +r1+72)72

(1+7r2) 2+ (1 +r; +1rg)"2

(L+ri+79)72

Var(0'|y) =

Using this in (3.22), together with the definition of m(y) from Appendix A5, yields
after lengthy algebra

1 1 (24714 72) 4
=1+ _
= e T Wone T Mintr)?  @in i TinTs)
(2+ 71 +72) (r1 —r2)?

(At r)(4r) ()2 +72)2 2+ +r) (3.23)

Numerical minimization of r(c) reveals that the minimum occurs at r1 = ry = 0.9004, which
corresponds to ¢; = ¢z = (.9004)0 as the optimal choice of ¢ = (c1,¢2). It is interesting to

note that the optimal ¢;’s are equal and are near the predictive mean E°[EX:!9(X;)] = g.

The posterior means and variances at the optimal ¢* = ((.9004)3, (.9004)3) are

(1.883)8 for y = (1,1)
bc (y) = { (0.8832)8 for y = (0,1) or y = (1,0)
(0.3570)8 for y = (0,0),
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(1.4044)8% for y = (1,1)
Var(6ly) = { (0.4044)8% for y = (0,1) or y = (1,0)
(0.1274)8% for y = (0,0).
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Appendix Al

a) Derivation of the normalizing constant K(t(c),c) for Example 3:

-1 _ f::/\c m(0)(5)™d0 + f:,o 7(0)dd, fort=0
Al = { Joune n(0)(552)(§)™*do, fort >0
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(JooneT(O)(§)™d0 + [1 - (22)°]+, for t =0,

woAc

t
3 (i) (—1)t-hawgem—h ::/\c g—(m—htatl)dg  fort>0
\ h=0

’1—r‘°‘r'%5 forr>1andt=0

t
_r E_:Ght forr>1andt>0 (A1)

t

S aper™h forr<i,
\ k=0

where wo A ¢ = max{wo, ¢}, [z]* denotes the positive part of z, and r and ay; are defined

in (3.11).
b) Derivation of equation (3.12): Substituting pg(C) = (1 — ¢/6) in the first term of
(3.9) yields

— m{E’[ps(C) log ps(C)] + E°[(1 — po(C)) log(1 — po(C))]}
= ~m{E[(1 - £)log("5-5)] + B[ log 2]}

6
= —m{E°[log(8 — ¢) — slog(ﬂ —c¢) —logl + glog c}. (A.2)
Now o
E®[log(d —¢)] = wg‘a/ 0~ Iog(0 — ¢)df
woAc
o 1
= 00‘1 da'
wO[ og( )]woAc + Wy v/‘l:Uo/\c (0 _ c)0°‘
Integration by partial fractions yields
a—1
1 1
—di=c"“ ““logd
/ (0= c)o= log(6 £ B A
so that
o—1 1 oi——a [o's)
6 - = w@|(ec™*—§ < —¢)—c % — — . .
E°[log(6 — ¢)] = wg [(c 0~*)log(8 — c) — ¢ *logd ; oy a)]ww (A.3)
Similarly,
8 __E _ — a alf.—a _ pg—(a+1) 1 1
B[~ log(0 - o)) = 7 gyt |[e~ — 0~ log 7))

gi—(a+1) :I Rt

~*log 0 + Z ctl S Py (A.4)

woAc

18



Simple computations yield
0 —a 0~
E’[—log 8] = w§ [0 log 6 + ——] (A.5)
o woAc

and

Eo[glogc]= ———wocloge[—0~ (a+1)]wo/\c (4.6)

(a+1)

Since

01—-(a+1) a—1 1 0i—a 0 a—1 1 0i—a

1
(a+1)Zc‘ 1(i— (a+1)) ;F(;_a)+ a =Z§m’ (A.7)

t=0

substituting (A.3) to (A.7) in equation (A.2) yields, after some simple algebra,

™[ (%) 0\ _ qewzg-(a+) ¢
(a+1)[ (c) IOg(ﬂ—-c> acwo? lOg<0—c)

L) -SE(0) el

+ (a + 1)( 0) log<0

For r = ¢/wg > 1, this reduces to

m |
e+ ;: (4.8)
and, for r = ¢/wo < 1, this reduces to
-1 -
__m {(a+1—r"%)log(1l — r) + arf[logr — log(L — )] + QE: T }- (A.9)
(@+1) 2 G-a)

From (3.10), the second term in equation (3.9) is given by

> (77 i~ oglac 1

t=0

Substituting (A.1) for [K(¢,¢c)]~! and using (A.2), (A.8) and (A.9) in (3.9), yields (3.13)

and (3.14). O
Appendix A2

Lemma Al. For m =1, Az(c) is a monotone decreasing function of r = ¢/wq for r < 1.
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Proof. For convenience, we will slightly abuse notation in the proof by writing Ay(r)

instead of Az(c). For m =1,
1 -
Az (r) = —m{(a +1—r"*—ar)log(l —r) —arloga

+(ar—a—1)log(a+1—ar)+(a+1)log(a+1)+az: r }

=0 1, —a)
Thus
d - 1 —a—1 (Cl(l — r) +1-— r_a—l)
A2() =~y { @t - Dlogl1 1) - +1
a—1 i )
st o1+ 5 ).
Note that
log(l—r) > —r+ l,.2 lrs
g 2 37
all—r)+1—r—@ a1 o
e Dl

and alog(a +1 — ar) > 0, so that

d 1 1 1 1 1
—A e e —e—atl  — —a+2 .2 — .3
arh2() < (a+1){°‘( Y 37 TTTan T3
a—1 a—1
—i—1
+i§=o r'~* —aloga+ E (a—z)r - } (A.10)

a) For a =1, and since 0 < r < 1,

2 1 1
—Az(r)<—-- [—+§ ——2'T2+ r] 0,

so that A2(r) is decreasing.

b) For a =2,

2 2
——§+2r—r2+§r3—210g2].
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It is easy to show, by minimizing a quadratic over (0,1), that

2 13
2r — r2 + §r3 > ?r,

so that
d 1 2 13
— ——[2—(= 2)r + —r?|.
drAz(r) < 3r[2 (3 +2log2)r + 5" ]
It is easy to verify that the quadratic in brackets is always positive; hence A;(r) is decreas-

ing.

c¢) For a > 3, equation (A.10) can be rewritten as

d
EAz(T) < -

1 1
{a(rl_“ +r—=r¥4 Era)

1
(e +1) 2

a—1 ) a—4 ‘ ]
+ Z r'T 4+ E =+ _ glog a}.
i=3 i=0 (e —1)

Note that, for 0 < r < 1,
14 13

r 1r+ = > (=)r
2 3 167"’

so that to prove that Az(r) is decreasing it suffices to show that

13 = ~ :
1— P —(i+1)
ar % + 16ar+§r Zo a—z) T > aloga. (A.11)

Equation (A.11) is trivially true for r(1=9) > log a. For r(1-2) < log o or, equivalently,
(log &)/ (=) < r < 1,

note that (A.11) is implied by

a+ ?—a(log a) /(=) 4 (o —4)t Z > alog a, (A.12)
=1

where the summation is defined to be 0 if @ = 3 or @ = 4. Simple substitution verifies

(A.12) for a = 3, 4, and 5.
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It remains to verify (A.12) for a > 6. Defining
a—4

Lo B 1/(1-a) 4 (o — _t
¢a_a+16a(loga) + (« 4)+; @—1) alog

it is clear, by induction, that (A.12) will be true if we can show that o1 — %o > 0 for
a > 5. This reduces to showing that

1+g—+alog —log(a+1)+%[(a+1)[10g(a+1)]_1/a—a(10g a)/1=*)] > 0 (A.13)

(a+1)
for ¢ > 5. Note that log[a/(a+1)] > —1/(a + 1), so that
1+ alogle/(a+1)] > 1/(a+1). (A.14)

Also note that, for a > 5,

S+ _ log(a +1) > 0. (A.15)

(x+1)
Finally, since log(1 + a) < 2log a,

[log(a + 1)]/* [2log ]/
[log a]1/(2—1) [log a1/ (e~1)

<2V <14 —1—,
a
which can be rewritten
(a + 1)[log(a + 1)] 7Y/ > aflog a]*/(1—9). (A.16)

Equation (A.13) follows directly from (A.14), (A.15), and (A.16), completing the
proof. O

Appendix A3
a) Proof of (3.19): Equation (3.17) with pg(C) = 1 — e~ yields
W(Olt) = K(t, c) / 7['(0)(1 — e—OC)te—O[c(m—t)]do,
0

where K (t,c) is the normalizing constant (derived below). Since 7(f) = I'(a, #) and since

(1—e%)t — zt:(_l)t—h <;) e—0e(t—h),

h=0
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one has that

w(0]t) = tc)Z( 1)t h( ) (a) /0 " go1eflelm—h)+Al4g

The conclusion follows by a change of variables from 6 to 8[¢c(m — k) + B]. O

b) Proof of (3.20): The normalizing constant is

K(t,c) = Z( 1)* ( ) ‘Z:) /0 oooa—le—"lc(m—h)+ﬂ1da]

= |20+ Glm— h)]“"] )

Lh=0

= Z ah,t (c)] .

Lh=0

Appendix Ad.
Proof of Theorem 3.1: For notational convenience, define ry = ¢;/8, r2 = ¢2/f, and
b = af. Note that, for C = (1, ¢2),

pe(C) = 701 — g70c2,

For m = 1 and a = 1, (3.17) and (3.6) yield (noting that y =t = 1 or 0 are the only

possible reports)

1—7(1]1) = #(0]1) = 1 — g7 Y(r1,r2)R(r1,72),
1—x(1]0) = 7(0[0) = 1+ [1 — g(r1,72)] " [h(r1,r2) — 7],
1-K'(1,¢) =K"(0,C) = g(r1,r2),

where

glri,re) =1 +r) 1= (1+7r2)7t,

h(ri,ra) = (1 +71) e (Hm)b _ (1 4 pp)le(1Hr2)b,
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Writing g = g(r1,72) and h = h(ry,r2), for convenience, (3.18) becomes

A(C)={(1—-g)log(1 —g) +glogg}— (1 —g+h—e)log(l—g+h—e?
— (g — h)log(g — k) — (¢7® — k) log(e~® — k) — hlog h. (A.17)

Calculation yields

(1 + Tl)zairlA(C) = A(Tl,rz) + [1 + (1 + rl)b]e_(l""‘)b[A(rl,rg) + B(Tl,rz)], (A18)

1+ m)?%A(C) = —A(r1,72) + [+ (1 + r2)ble= 2 A(ry,72) — B(ry,73)], (A.19)

where

7(0[1) 1—m(0|1)
A =1 , B(ri,rz2) =1 — .
rvra) =18 (T ) Bler) =1os (1=
Case 1. ry = 0: It is clear that, when ry = 0, A(C) cannot be minimized at ro = 0 or
re = 0o. Hence the minimizing r2 must be a zero of (A.19). Setting (A.19) equal to zero
yields
-1
A(ry,r3) = —B(r1,72) [1 +(1+ @+ rz)b)_le(1+'2)b] :

Substituting this into (A.18) yields

(1+ rz)zg%A(c) - (A.20)

B(Tl,rz)
[14 (14 (1 + r2)b)e—(11r2b)]

{[1 + (1 + rl)b]e"(1+'2)‘b -[1+1+ r2)b]e_(1+'2)b} .

Note that (1+z)e~* is a decreasing function and r; < r2, so that the term in curly brackets

in (A.20) is positive. Also, at r; =0,

B(0,r3) = log((1 4 r3)e™® — 1) —logry > 0,
since r2 < (1 + r2)e™® — 1. Thus a%lA(C) is positive at r; = 0 and the corresponding
maximizing rs.

Case 2. r9 = 0o0: As has been stated before, the problem is identical whether one considers
the interval (0,7,) or the interval (r;, c0). Hence it can be stated that, at ro = 0o, s2-A(C)

? 8r2

is negative for the corresponding minimizing r;.
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Case 3. 0 < r; < rp < oo: Any minimizing or maximizing r;,7r2 in this range must
be zeros of (A.18) and (A.19), and hence zeros of (A.20). But since the term in curly
brackets in (A.20) is nonzero, it must be the case that B(ry,r2) = O or, equivalently, that
7(0]0) = 7(0|1). Algebra shows that this, in turn, implies that 7(0|0) = 7(0]1) = 1 —e~®
Hence, the only possible zeros of (A.18) and (A.19) yield (using (3.18))

A(C) =—(1—e ) log(1l —e®) + be®

But this is clearly a maximum, since it is easily seen to be the value of A(C) in (A.17)
when r; = ry, corresponding to a noninformative report. Thus the minimizing interval

must be of the form (0, r;) or, equivalently, (ry, o). O

Appendix A5

The posterior distribution of ¢', given y = (y1,¥2), can be calculated to be

’

7(6'y) = < "‘(3,1) [e—(1+r;)0’ B e—-(1+"1+"2)9'] for y = ©.1)
: A [e-(1+'2)"' - e—(1+r1+rz)0'] for y = (1,0)
\ m(O,O)e_(1+rl+r2)0, for y = (0,0),

where the marginal probabilities are

1—(1+r1) 1 (Q+r) (44 r2)t fory=(1,1)

m(y) = (1+r) 1 —(Q+r+r)? for y = (0,1)
= (1+1r)" 1 (1+r1 +rg)" ! for y = (1,0)
(1+ry+72)7?1 for y = (0,0).

As an example of the posterior mean calculation, observe that

6e((1,0)) = /0 ” o' (8'](1,0)) 0’

— 1 /-OO 0!6—(1+r2)0'd01 _ /OO 0!6—(1+r1+r2)0'dol
m(l,O) 0 0

=1 +r) (At +r) ) L+ r2) 2= 1+ )7
=Q4r) " +1+r+r)7t
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As an example of the posterior variance calculation, observe that

Var(4'|(1,0)) = /ooo 0"%x(0'|(1,0))do’ — 592((1,0))

~

oo

C2f(4re) (14 + ra) 3] _
(M)t = (L)Y
=1+r) 2+ (1+r+r)72

(T+r) ™"+ (1 +ri+ ra) 1)
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