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Abstract

This note gives some generalizations of Berger (1975) concerning minimax estimation
of location vectors for nonnormal families of distributions. An unknown scale parameter
is involved here and the estimator of it is distributed either as a linear combination of
independent chi-squares or as some other random variables in a certain class. Consequently
minimax estimators for the location vectors are generalized in the case when the dispersion
matrix is only known up to a multiplicative constant.
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1. Introduction

This note gives extensions of some results in Berger (1975) in which minimax estima-
tion of location vectors for densities of the form f((z — 6)'S2~!(z — 6)) with Z,x, known
and p > 3 was considered and a characterization of such densities was also given.

The model that we use is slightly generalized in that it involves an unknown scale

parameter 72, specifically, the densities of the random vector z,x1 is of the form

o0 -1 z—08Yx-1(z=
Feley = [ DT -temEe=t )
(2772v)2

where 6,1 and 72 > 0 are unknown parameters and ¥ is a known positive matrix and
F(v) is a known c.d.f. on (0,00). This includes, for example, the usual normal density,
the e-contaminated Normal density and the p-variate elliptical ¢t-distribution (which itself
occurs in regression with random regressors) etc. See Muirhead (1982).

In section 2 and 3, generalizations of Theorem 1 and 3 of Berger (1975) are obtained via
estimating the unknown scale parameter 72 by a random variable w which is distributed as
a linear combination of independent chi-squares or other variables in a certain class. Such
an estimate of the (variance) 72 arises in a number of practical situafions, for example,

the estimation of the variance of some random effects in a mixed-model, say, a balanced

one-way ANOVA,
ij=ptaite; (G=1,...,J;i=1,...,I)
where €;; ~ i.i.d. N(0,0?),a; ~ii.d. N(0,7%). The UMVU estimation 72 of 72 is therefore
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where S2 = J2(Y;. - Y. )?,58% = 2(Yi; — Yi)?. It is clear that % is a linear combination

of two independent chi-squares. Another situation that may occur is where we have

. . iid.
ZiiGi=1,...,L;j=1,...,J) & "N(&,0%)
and we want to estimate 6% when there is some prior information available about (¢;, 02),
say, as in Lehmann (1983) the prior assigns 53 the distribution I'(@, 1) (the gamma
density) and takes £1,...,£r to be independent of # with uniform noninformative prior.

So the Bayes estimators for o2 for each group (each 1) is

a2 /\+S,
o; = —m
¢ J+2a—-3

J —
where S; = ¥ (Z;; — Z i.)2. A reasonable estimator of 2 is the linear combinations of 52,
i=1

i=1,...,1.

2. Minimax Estimators

Suppose f(z|0) is of the form in (1.1) and we want to estimate 8. Since 72

is unknown,
we suppose it is estimated by w and 72w is distributed as a linear combination of two

independent chi-square r.v.s. Consider the estimation of § under the loss

_(6-6YQ(6—6)

T2

L(6;9,7%)

(2.1)

where Qpxp is a known positive definite matrix. When p > 3, we can take advantage of the
Stein effect and obtain a class of estimators which improve upon z in risk, and consequently
those estimators are all minimax estimator of # in that z remains to be minimax in the

present problem.



In the known —72 case, Berger’s ¥ corresponds to our 723, and @ to our 72Q. Thus,

2

the class of estimators shown by Berger to dominate z in the known —7* case is of the

form

Iv—1n)-—1 _12
(I - hEE L 50 a s (22)

Since 72 is unknown, we replace 72 by w, and consider estimators of the form

Z'A_l Q—lA—l
w

5(z,w) = (I, — h( Q=) (2.3)

where 72w dist.

ciwi + cowy with wy ~ an and wy ~ X%, in which it is assumed ¢y > 0
(without loss of generality) and X7 is the chi-square r.v. with the degree of freedom I,
and the function A(t) is a function from [0,00) to [0,00) and satisfies the following two
requirements:

(1) h(uw) is nonincreasing in u > 0

(2.4)

(ii) 7(u) = uh(u) is nondecreasing in u > 0.

Theorem 2.1. Suppose that Ez'z and E(z'2)~! are ﬁnite when § = 0 and 72 = 1. w and

6n(z,w) are defined in (2.3). Then 6;(z,w) dominates z in risk (and is hence minimax

estimator of #) provided that

2
0<r; =supr(t) <

2.
t>0 fE0=0,,.2=1(z’E—1z)—1 (2:5)

where
cym + con + 2max(e1,c2) if ez >0
= 2_ R
clm+02n+£l2-c-fz—n if g <O0.

Before giving the proof, a repeatedly used integration by parts formula is given as

follows.



Lemma 2.1. Let w ~ 72x?. If g(w) is sufficiently regular in w for integration by parts, and

if Fwg(w) exists, then
Ewg(w) = IT*Eg(w) + 27 Ewg'(w).
PROOF OF THEOREM 2.1. Note that
Sn(t712, 77 2w) = 161 (2, w)
so that for all A (including k = 0, yielding §(z, w) = z)
L(6x(z,w); 0,7%) = L(8p(77 2, 7 2w); 7716,1).

That is, the estimation problem for the class of estimators é;(z,w) is invariant under
the transformation z — 7712, — 7716. Consequently, we can assume without loss of
generality that 72 = 1.

As in Berger (1975), let Ay > Ay > ... > A, > 0 be the eigenvalues of AQ~1. Then

there exists a nonsingular matrix B such that B'QB = I,,B'Y"!B = A=, where
A = diag (A1,...,4,).

Transforming

z— B 12,6 - B¢,

yields a “canonical” estimation problem in which the distribution of z has parameter
2 = A, the loss function in (3) has centering matrix @ = I, and the estimators 6, (2, w)

have the form
Z/A"2,

w

- 6n(z,w) = (I, — h( JA™Y)z : (2.6)
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Let A(6) be the difference in risks between z and 6x(z,w), then

A(8) = Eg[(z — 6)'(z — 0) — (6n(z,w) — 0)' (61(2, w) — )]

Note that 72 was already assumed to be 1. And we need to show A(6) > 0 for all 6.

Since w and z are independent, the expectations

E'(wz) — E‘sz|w — EYEZ.

Let hy(t) = h(L). It is clear that hy(t) (as a function of t) satifies the two requirements in

(2.4), that is, h,(t) nonincreasing in t € [0,0), and that r,(t) = th(¢) is nondecreasing

in t € [0,00). Since ry(t) = wr(L), if r; = supr(t), then
£>0

supry(t) = rw.
>0

Now the estimator is
6n(z,w) = (Ip — hu(2' A722)A7 1)z,
Therefore we follow the steps on pp. 1320-1322 in Berger (1975) to obtain

mw

AB) 2 B¥( / " @p - 2) — )R (v))To(w),

v

where

To(w) = /0°° /R ,, v (A2 ) exp{—k (2 — 0) A" (2 — 0} . um o).

(2m)|4]%

Let v1 = [;° +dF(v) = EX, then

A(8) > 2(p — 2)ETy(w) — riv1 EwTy(w)

6

(2.7)

(2.8)



where the expectation is taken over w. In the following we’ll use Lemma 1 for w; and ws.
Note w = cyw; 4 cawy, and also the subscript 6 in Tp(w) is suppressed, i.e., To(w) = T(w),

in the following calculations. Thus

EuwT(w) = c; EwiT(w) + co EwyT(w)
= E"?E"'w T(w) + c2 EV* E¥2wo T(w)
= a1 E?{mE"' T (w) + 2¢1 E**w; T'(w)}
+ e E¥* {nE"*T(w) 4+ 2c2 E*?wo T' (w)}
= (eam + c2n)ET(w) + 2¢3 Ewy T' (w) + 2¢3 Ew, T (w)
= (exm + c2n)ET(w) + 2¢1 EwT'(w) + 2(c2 — ¢1)ca Bwa T (w) (2.9)

= (eym + con)ET(w) + 2co BwT' (w) + w(cy — c2)e1 BwiT'(w)  (2.10)

U(ZLA__21)
Note in fact T(w) = E”Ezh’rv—h'*guL2L where v has c.d.f. F(v), and zjv ~ N(§,v"1A).

Since z|v has normal density, the derivative can be taken inside the integral. So

| P r(zLLzz.)
T — EYEAlv — 2'A-22
(w) ow w

But

= — =r'( )-
ow 2/A-2z 2! A-22 w w

0 [wr(zlAw_zz)} _r(z'A722) —1—r 2 A%,

So

w w

1 A—2 1 A—2
W' (1) = 22y poplvyr (ZA Z)

EwT'(w) = ET(w) — Er'(") (2.11)

Also note ¢; > 0. There are two cases to consider.

7



Case (i) ¢z > 0. Moreover if ¢z < ¢, by (2.9)
2(62 — Cl)CQE’lDzT,(UJ) < 0.
So
EwT(w) < (eim + ean)ET(w) + 2¢1 EwT' (w).
But if ¢2 > ¢1, by (2.10)
2(61 — C2)c1Ew1T'(w) <0
so EwT(w) < (eim + can)ET(w) + 2¢c2 EwT'(w). Thus in case (i) when ¢z > 0,
EwT(w) < (eym + con)ET(w) + 2max(cic2) EwT' (w).
Combining (2.9),
EwT(w) < (cim + can) ET(w) + 2max(cy, c2) ET(w) — 2max(cic2) ET'(+)
so
EuwT(w) < (exm + ¢an + 2max(cic2))ETy(w).

By (2.8),

A(6) > 2(p — 2)ETy(w) — ryv1(e1m + con + 2max(cr, c2)) ETo(w)
= [2(p —2) — rivi(cim + ¢con + 2max(ey, ¢2)) | ETo(w)
Note the fact when 8 = 0,v 712’4712 ~ XIZ,, which is independent of v. Then

1 ] 1—1 (%1
Ep—o(z'A7'2)" ! = E= 242 =
o=o(2 ?) v p—2

S0
v1 = (p — 2)Ep=o(2' A712)71,

8



Therefore the conditions in Theorem 1 yields
2(p — 2) — ryvi(eim + c2n + 2max(ey,c2)) > 0

SO

A(8) > 0.

Case (ii). cg < 0.
By (2.9) and (2.11)
EwT(w) = (cym + can) ET(w) + 2¢1 BwT' (w) + 2(ca — ¢1)e2 Ewa T (w)
= (c1m + c2n) ET(w) + 2¢1 ET(w) — 2¢1 E* E*ur' ()
+ 2(c2 — cl)c2Ew2f'(w)

Thus
EwT(w) < (c1m + con)ET(w) + 2¢1 ET(w) + 2(ca — ¢1)ea Ew T (w). (2.12)

But

Ew;T'(w) = E¥?w E**T'(w) (2.13)

while integrations by parts gives

E™ T (w) = L (fx,zn(wl)T(w)]O“’ —/ T(w)dfxgn(wl)) (2.14)
C1 0
where
m_y
wy) =2~
P (o) = "ree



the density of x2,. Calculus gives

fa,(w1) = —%fxz,,(un) + %fxgn_2(w1) (2.15)

Also note lim T(w)fy2 (w1) = 0. This is because that lim f,2 (w1) = 0, and hA(t)
Wy —00 m m

w1 —00
U(ZILLIIl)
. . . 1N e, .
is nonincreasing, h,,(z' A™'z) = —4=1z=— is nondecreasing in w;, Monotone Convergence

Theorem implies

v(241z)
lim T(w)=E"EY v Z4Tz = EE=lvyp(0) < co.
w

w1 —00 lim
wy — o0

Further lim0 Frz (w1)T(w) = lim0 Frz, (w1)T(cowz) = 0. So by (2.14)

ErT'(w) = -—% /0‘00 T(w)dfxfn(wl) (2.16)

and combining this with (2.15) and (2.13),
, 1 1 e
Ew,T'(w) < ——EwyT(w) — ——E¥=Xm-2 Y29, T'(w).
261 261

So

1
EwT'(w) < =— Ew,T(w).
201
Lemma 1 again gives
Ew,T'(w) < i——(nET(w) + 2¢o Ewy T (w)) (2.17)
1

l.e.

2(c1 — ¢2)EwaT'(w) < %ET(U))
1

l.e.

Ew,T'(w) < ET(w).

461 (Cl — Cz)
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Combining this with (2.12),
EwT(w) < (ecam + can + 2¢1)ET(w) + w(ez — ¢1)ca Ewa T (w)

2(62 —C1 )62 -n

< 2¢1)ET
< (e1m + con + 2¢1)ET(w) + yyy p—

ET(w)

(= Cz)n

= (cam + can + 2¢1 + = BT(w),
By (2.13),
A@) 2 [2(p ~2) ~ ravs(am + ean + A7)
(2.5) then implies
A(6) > 0. Q.E.D.

3. Other distributions

For a generalization of Theorem 3 of Berger (1975), consider

f(elp) = p(E= A28,

The same reduction leads to estimate § using estimators of the form (2.6).
Theorem 3.1. Let f((2—8)'S71(2—60)/72) be a density, with respect to Lebesque measure,
satisfying the following four conditions:

(1) Eg=02'z <00 Ej=o(2'2)"2 < 0

(ii) The Lebesque measure of all points € (0, 00) such that f(-) discontinuous is 0.

(i) ¢ = ;gg*f-‘oo—fi(;:—)-d—u >0, where U = {s ¢ W : f(s) > 0}.

(iv) Regularity conditions for ZR(w) = [ g%h(Z'AT_zz)f(s)dz, where s = (z —

6) A~ (z - 6).

Define é,(z,w) by (2.3) where v(-) is nondecreasing and 0 < v < (p — 2)¢ with

c1m+czn+—1? 1szS0

{ cam + can + 2max(c1c2) ifep >0
= 4c2—con

11



Then 65, is a minimax estimation of  under loss (3).

PROOF: A(0) = E(|z — 8|2 — |6p(zw) — 6]?). Still hy(t) = ) w(t) = thy(t). Follow the

w

steps on pages 1323-1324 in Berger (1975)

20 2 B [ W) [p-2) s Fluydu — wr(CEZE ) f gy A7 (s — )| s
Ak(6) > (p - 2)B / MY [ f)du)de - (- DB uRelw)
where
s=(z— a)'A~1(z _6)
Ro(w) =

Note the proof in Theorem 2.1 can be apphed to this case directly. So we have

EwT(w) < bERy(w)

where
cam + con + 2max(cicz) if g >0
= 2_ .
c1m+02n+£12clﬂ if cg <0
so

IA2

A@®) > (p—2)E® / ) / Fluydy — £ (s))d=

Condition (iii) clearly implies [, f(u)du — ¢f(s) >0 so
A(6) > 0. Q.E.D.

4. Remarks. The point to make all the proofs through is that the distribution of w allows

certain kind of integration by parts. Let & be the set of all random variables such that

E(w — p)g(w) = Ea(w)g'(w)

12



where a(w) > 0,y = E¢w, as is considered in Hudson (1978), then we can expect the same
result for the minimax estimation of 6, since as long as we can obtain an upper bound of
EwT(w) of the form:

EwT(w) < b ET(w).

Then if supr(t) < 373 2 then the estimator defined in (2.4) would dominate z

v =1,
° 0=0,‘r2=1zE Z

in risks. Note our previous w%cl x2, +c2x? is not in &,. The distribution of ¢; x2, +c2x?2

is considered in Bock and Soloman (1987). As an example, let w = le and wy ~ (_n——lﬁHX?z

So fe(w) e_(%‘l)’“"_l#e_(%“l)bg“’ = w1~ (3-Dr% with u = E¢W and a(w) =

w’ . > 0. Then

n__q1)»
7 —1

1 A—1 -
EuwT(w) = ///w_%_le"(%_l)“%h(z A~z e~3(:=9 Avl(z_e)c-dwdzdF(v).
w

By Fubini Theorem (Note integrand > 0) and set = =y

EwT(w)=///y%+3e_(%_1)“yh(yz'A_lz)e_%(2_0)1AZI(Z_o)dydzdF(v),

which is finite for most choices of h. Hence (Hudson, 1978, (2.3))

EewT(w) = pET(w) + Ea(w)T'(w)

= pE(w) + Ew’T' (w)

o]

By (2.11) (Here assume derivative can be taken inside the integers sign)

Ew*T'(w) = EwT(w) — Ewr'().

So

1
2]

EwT(w) = pET(w) + —— EwT(w) — — B ("),

n
2

13



Then

EwT(w) < "(f—_“zl)ET(w).

2

>0 A(8) > 2(p — 2)ET(w) — ryv1b ET(w)

= ET(‘U))[2(p — 2) — Tlvlbo] _>_ 0

2

] < <
provided 0 < v; < b0 Eporems (2 A1) 1

where by = ”—(12,_%__71) So the estimators defined by (2.6) with r; = supr(A) satisfying the
above condition would dominate the usual estimator z in risks and hence are minimax

estimators.
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