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ABSTRACT

We consider the problem of sequentially estimating one parameter in a class of two-
parameter exponential family of distributions. We assume a squared error loss with a fixed
cost of estimation error. The stopping rule, based on the maximum likelihood estimate
of the nuisance parameter, is shown to be independent of the terminal estimate. The
first order asymptotic properties of the risk function are investigated. It is shown that
the suggested procedure is an asymptotically risk efficient procedure. This procedure is
exemplified for the normal, gamma and the inverse Gaussian densities, which follow as

special cases of our general results.




1. Introduction. Consider a model in which the underlying distribution of a sequence of
(i.i.d.) random variables X;,Xa,...... depends on twe unknown parameters 6; and 8;.
For a fixed (and finite) sample size, measures of accuracy of an estimate for the parameter
of interest 6, say, typically depend on the unknown value of the nuisance parameter 6; .
Thus to achieve a given level of accuracy on has to proceed sequentially: to determine the
final (random) sample size based on an estimate of 6;, and then the terminal estimate of
0, is determined based on this sample.

Procedures of this nature were discussed initially by Stein (1945, 1949), as two-stage
procedures for estimation and interval estimation of prescribed accuracy, for the mean

of normally distributed r.v.’s , when the variance o?

is unknown. Later, this problem
(for the normal mean), was tackled by purely sequential procedures proposed by Robbins
(1959), (for point estimation) and Chow and Robbins (1965), (for fixed width interval
estimation). Although the normal case has been studied extensively, there are, to the best
of our knowledge, only few studies (cited below), dealing with other cases of underlying
distributions. ’

To illustrate the general problem on hand, consider the following point estimation prob-
lem. Let X;,Xo,...... , be ii.d. random variables with unknown mean p ( the parameter
of interest) and variance o%. Having recorded the first n observations z1,..., 2y, let the

loss incurred in estimating p by fn, =Y z;/n be:

(1.1) Ly(fin) = p(fin — W) +n

where p ,(> 0), is the known weight of the estimation error relative to the sampling cost.

The objective is to minimize the associated risk;

(12) Ry(n) = B (Ly(n)) = 2= +1.

with respect to the sample size n. When ¢ is known, the expected loss, R,(n) is minimized
by taking a sample of size (an integer adjacent to) ny = pto, with corresponding risk,
" Ry(no) = 2no. However, when ¢ is an unknown nuisance parameter, no fixed sample
size minimizes R,(n) simultaneously for all o. This motivates the following choice of a

2

random sample size N,, when o* is unknown,

(1.3) N, =inf{ n > mo, 62 < a,n?/p}

2

2 is a suitable estimate of o2, (fbr example;

where mg (> 2) is the initial sample size, &

62 = 82 = Y (z;i — %)?/(n — 1)), and a, is some nonincreasing sequence, (a, — 1 as

2




n — 00). According to this procedure, the parameter u is estimated at termination, by
gn, . Clearly then, the study of the stopping variable N, and the risk associated with it,
become important. '

For normal random variables, the statistic s2 is ancillary to x and it can be shown
(by using Helmert orthogonal transformation), that the event {N, = n} and j, are
independent. This property was heavily exploited by most researcher who worked on the
normal problem. Robbins (1959) studied the properties of N, and provided a recursive
formula for its distribution. Later this problem was studied extensively by Starr (1966),
and Starr and Woodroofe (1969). Woodroofe (1977) has used second order approximations
to study this procedure and to analyze the regret in the expected loss incurred upon using
the sample size N, as compared to ng.

Extensions of this procedure to nonnormal cases were considered by several authors.
Starr and Woodroofe (1972) deal with the negative exponential distribution and provide
results on the regret. Here, even though there is one parameter, the problem becomes
interesting since the variance of the m.Le. depends on the unknown parameter. Ghosh
and Mukhopadhyay (1979) with a ’distribution free’ approach allowed the initial sample
size myp to be a function of p and to — o0 as p — oo. They proved first order result
for the risk, showing that the ratio of the risk associated with N, to that associated with
the hypothetical fixed sample size ny converges to 1, as p — co. Mukhopadhyay (1988)
surveyed results concerning sequential estimation procedures for the negative exponential
distribution, with and without a truncation parameter. Related studies are those of Aras
(1987, 1989), dealing with sequential estimation procedure based on censored data from
negative exponential distribution. He provided first and second order results, also by
allowing the initial sample size my — 0.

In the present paper, we consider a sequential point estimation problem in a class of
two-parameter exponential family of distributions. The model considered here will be
restricted by assumptions on its natural parameters (6;,60z), but is general enough to
include the normal, the gamma, and the inverse Gaussian distributions, as special cases.
This exponential subfamily was first introduced by Bar-Lev and Rieser (1982) in context of
UMPU tests based on single test statistics. A description and the basic properties of such
an exponential subfamily are provided in section 2. We also present a new independence
result, analogous to the one discussed for the normal case, which provides in the general
case discussed, the independence of the event {N, = n} with the terminal estimator.
Finally, in Section 3 we present an appropriate stopping rule along with the estimation

procedure for the parameter of interest. We then discuss the properties of the suggested
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stopping rule and provide the first order properties of its associated risk as p — oo, under
a loss function similar to (1.1) (and to (1) of Woodroofe (1985)).

2. Preliminaries; the exponential family and an independence result.
Let

(2.1) f(2;6) = a(z)ezp{61U1(2) + 62Us(z) + c(6)}, 0= (61,62),

be a density function (w.r.t. Lebesgue measure on R), which characterizes a reqular
two-parameter exponential family of distributions, (see Brown (1986)), i.e.; the natural
parameter space © is defined by;

O={0ecR?;e® = /a(x)ea:p{GlUl(a:) + 62Uy ()} dz < o0},

so that © = int© # 0. It is well known that for any 6 € © the r.v. U = (U,U;) has
moments of all orders. In particular, we denote;

(2.2) Ep(U) = (11, 12), v; = —0c(6)/06;, i=1,2

and

Vo(U) = (0i;),  0ij = —8c(0)/86:00;  i,5=1,2,

where Vp(U) is the corresponding covariance matrix, (positive definite).

Let Xi,...,Xn, n > 1, be independent r.v.'s having a common density of the form
(2.1). We set Tj.p, = E?=1 Ui(X;) and denote by Ti.n, ¢ = 1,2 the usual average. The
joint distribution of T = (T1:n,T3:s) is a member of the two-parameter exponential family,
and

(2.3) E¢(T) = (nv1,nve), Vo(T) = (noy;) 4,j=1,2.

The results stated in the following theorem were proved by Bar-Lev and Reiser (1982),
and are concerned with a characterization of (2.1) which admits a single ancillary statistic
for 8, in the presence of 6;, (that is, its distribution depends only on 6;). For additional
applications of this result see also Brown (1986 pp. 44-48). However, that characterization
requires the following two assumptions:




ASSUMPTION A.l. The parameter O, can be represented as; 6, = —019'(v2), where
V'(v2) = dp(v2)/dv;, for some function .
AsSSUMPTION A.2. Uy(z) = h(z), where h(z) is 1 — 1 function on the support of (2.1).

THEOREM 2.1. (Bar-Lev and Reiser, (1982)) Under the above assumptions, the following
hold: .

a’) Ul[h_l(TZ:n)] = '¢'(T2:n) a.s. ,('n > 1).
b) The distribution of the statistics

(2'4) Z, = Tyn — n¢(T2:n),

belongs to the one parameter exponential family with natural parameter 6; and den-

sity of the form,

(2.5) f2,(20,61) = q(2n) exp{b12, — Ho(6,)}, 61 € Oy.
¢) For each n > 2 and for any § € ©, the r.v.’s Z, and Ty., are independent.

By Theorem 2.1, the statistic Z, is ancillary to 6, in the presence of 6;, and therefore
may be used in fixed sample estimation procedures. However, in the context of sequential
estimation, we need a result stronger than that of part (c) of Theorem 2.1. This is given

below.

THEOREM 2.2. Under the above assumptions, for all n > 2 and 0 € O, the random
variables (Zs,...,2y,) are jointly independent of Ty, i.€.;

(Zay... 1 Zn) L Toun .

Since the proof of this theorem is rather technical, it is deferred to the Appendix. As was
mentioned in Section 1, the result of Theorem 2.2, will enable us to obtain an independence
property analogous to the one discussed for the normal case, and thus is of great importance
in context of sequential estimation. In light of this, we assume from now on that the two
conditions; A.1 and A.2, hold without further reference.

Using (2.2), one can introduce a parameterization of the exponential family by means
of the mapping (61,62) — (61,v2), which is a homeomorphism, and has its components
6,,v, varying independently, (see Barndoff-Nielsen (1978), Theorem 8.4). Accordingly,
(61,v2) € ©1 x M, where N; is connected and open. With such parameterization, and
under the above assumptions, the following results can be easily shown to hold, (see Bar-
Lev and Reiser (1982)).




LEMMA 2.1.
a) ¢'(v2) is not identically constaat.
b) The variance of Uy is given by:

allz _ -1
80, — 619" (v2)

(2.6) 0'22(9) = 7(> 0)1

¢) The functions ¢(6) and v1(8) when expressed by means of the mixed parameters 6, and

Vo, have the following form:

c(61,v2) = O1[va9’ (v2) — P(v2)] — G(61)
@.7)
v1 = ¢(v2) + G'(61)

where G(6:) is an infinitely differentiable function on ©; for which G"(6,) > 0, for all
0 € 0.

Here G' and G" denote the first and second derivatives of G, respectively. In fact, using
the above results it can be shown, (see Bar-Lev and Reiser (1982)), that the function H,
in (2.5) is given by:

(28) Hn(el) = nG(Gl) — G(n01),

so that Ey, (Z,) = H,(61) = n(G'(61) — G'(nby)) and V5,(Z,) = H!(6:) = nG"(6,) —
n?G"(nb;)). Moreover, since H,(61) > 0 and G"(6;) > 0, it follows that G'(6;) >
G'(nb,), for all 6; € ©; and n > 1. Furthermore, parts (a)-(b) of Lemma 2.1 suggest
that either ©; C R~ or ©; C Rt.

LEMMA 2.2. If ©; CR™  (if ©; C RY), then:

a) 1 is strictly convex (concave) function on N3,

b) Zy=0and Z, > Zp_y a.s. ,(Zn < Zp-y as.) ,n>2
c) G' is positive (negative) on ©;.

Proof: We will prove only the case © C R~ of the lemma, since the proof of the other case

is similar. That ¢ is strictly convex on N3, follows immediately from Lemma 2.1(a-b)
and that Z; = 0 a.s., follows from part (a) of Theorem 2.1. In fact, since Xi,...,X,
are identically distributed, we have by Theorem 2.1 (a) that U1(X;) = ¥(U2(X;)), a.s.,
for all j =1,...,n. Now, 9 is convex and thus:

1 1
z - P(Toin—1) + ;;Ul(Xn) a.s.,

")b(TZm) <
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which in turn, implies that:
Zp=Ty:p — n¢(T2n) > Tiin—1 — (n - 1)¢(T2:n--1)) = Zn-fl a.s. .

Furthermore, since for n > 1, Z, > 0, a.s. , it follows from (2.3), (2.7) and Jensen’s
inequality that for each 6; € ©;:

0< E(Zn) =y — E[?/)(Tzn)] <uy-— ‘¢Y(V2) == G’(01), | |

LEMMA 2.3. Foreach 6, € ©1, Z, = Z,/n =5 G'(61),

Proof: Clearly, Ti., ,% = 1,2 are partial sums of ¢.i.d. random variables having finite

moments (of all orders). So that T, == v;, i=1,2. Since 9 is continuous, we have by
(2.4) and (2.7), that

Zn 2 a a.s

— =T — ¢(T2:n)"‘—" vy — ¢(V2) = Gl(gl)

n

The following are some examples illustrating the construction of the statistic Z,.

Ezample I:  The Normal distribution, N(y,0?).
(z) 61=-1/20% 63 =p/o% © =R~ xR
(”) UI(X) = Xz’ U2(X) =X, T.p = E?:l X?v Tpn = Z?:l Xi
('LZZ) Vg = —-92/291, 92 = —2911/2
(iv)  n=1%—1/201, P(va) =2, G'(6:) = —1/26
(v)  Zp=Tin —np(Ton) = Yoy (Xi — X0)? > 0a.s.

Ezample 2  The Gamma distribution, G(a, A).
(1) bi=a, ==X @=Rt xR~
() Ur(X) = log(X), Ua(X) =X, Tim =Xy 10g(Xs), Toom = 0y Xi .
(tir)  va=a/d, P(ra) =log(rs), G'(a)=T"(a)/T(a) - log(a)
(@)  Zn=Tin —np(Tan) = Yo, log(Xi/Xn) <0as. .

Ezample The Inverse Gaussian distribution.
(i) F(z: A a)=2r)/c=3/201/2 exp{—az/2-7/2z+(a))*/?}, 2, ) € RF, « € RTU{0}.
(i) U(X)=1/X, U(X)=X, 61 =-)\/2, 0, =—a/2, © =R~ x (R- U {0}).
(i5) g = —(6:/62)"%, $(v2) = 1/va, G'(61) = —1/26;.
(v) Zpn=31,(1/X:)—(n/X) >0 a.s.; although this model is steep, all results stated
above for a regular model, hold for § € int(©). For further discussion, see Bar-Lev and
Reiser (1982).




3. The sequential estimation procedure. Suppose that on the basis of n independent
observations z1,...,Z, from (2.1), we wish to estimate v = Ey(Uz) in the presence of
the nuisance parameter 6;. Let 6, and 7, denote the maximum likelihood estimators of
6, and v, , respectively. So that by (2.2), §; and 7, are the simultaneous solutions of the

(log-likelihood derivatives) equations:

Ty —nvy =0

(3.1)

Tyip —nvy =0

Hence, by using (2.7) in (3.1) we immediately obtain that % = T%., and that f, satisfies

the equation:

(3.2) G'(61) = Tin — $(Toin) = Zn/n .

Further suppose that the loss incurred by using T5., as an estimate for v, is:
Lp(TZm) = P|‘/",(V2)!(T2=n - V2)2 +n,

where p > 0. The factor p|¢”(12)| represents the importance of the estimation error
relative to the cost of one observation. jFrom (2.3) and (2.6) it follows that the for a fixed
8, € ©; the corresponding risk is:

mw=mmmﬂ=ﬁ%wu

which is minimized (w.r.t. n) at integer adjacent to ng = (p/|61])% , at which R,(ng) =
2ny. However, since ; is unknown, the estimation procedure has to be conducted sequen-

tially, and to be terminated according to the stopping rule N, where:
(3.3) N, = inf{n > mq ;|61| > p/n?}

for some initial sample size mg , (mo > 2). Moreover, since by Lemma 2.1.c, the function
G'(6y) is strictly increasing on @1, it follows from (3.2) and Lemma 2.2, that the stopping
rule (3.3) has the following forms:

(?) If ©; C R~ then; N, =inf{n > mo ;Z, < nG'(3£)},
(i1) If ©; C R* then; N, =inf{n > mo ; Zn > nG'(%)} .
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Remark: In either case, the event {N, = n} is determined only by (Zn,,...,Zs), and
therefore by Theorem 2.2 is independet of Tb.r, .

By Lemma 2.2, the symmetry of the two cases; ©; C Rt and ©; C R~ is evident
and in view of (2.5) and proposition 1.6 of Brown (1986), there is no loss of generality by
assuming (conveniently) that ©; C R™. Accordingly, we let ©; C R~ (so that 6; < 0),
and consider the stopping rule N, as defined in (2) above. _

Since the function G' is strictly increasing (and positive) on ©; and Z, converges
a.s. to the finite limit G'(61), it follows that for each fixed p, the stopping rule N, is
finite w.p.1. Moreover, since G'(Z£) is decreasing as a function of p, N, is stochastically
increasing in p w.p.1, i.e.; for 0 < py < p2, N,, < N,, w.p.1, and hence, lim,—,oo N, = 0
w.p.1.

The main results of this section are presented in the following two theorems.

THEOREM 3.1. Let N, be the stopping time as defined in (i) above, then for all 6 € ©
the following properties hold:

a) For each fixed p, Eg(N,) < o0

b)lmyode =1 wp.l

¢) limy_o0 Eg(32) =1

As was shown by Starr (1966) and by Woodroofe (1977, 1982), the initial sample size
mg plays a crucial role in any attempt to analyze the risk (as well as the regret) associated
with N,. Moreover, it was shown, (see Woodroofe (1977), pp. 987), that the left tail
behavior of the underlying c.d.f. is also crucial in the risk’s assessments. For the general
case, we have a need to impose the following conditions on the model at hand. The first
condition pertains to G'. Notice that G' determines both; the boundary for the stopping
rule N,, as well as the moments of Z,. The second condition is imposed to ensure an

appropriate initial sample size mg.

ASSUMPTION A.3. For some v > 1/2, sup, 346, 27G'(—2) < M < co.

ASSUMPTION A.4. . The initial sample size myg is such that V 6y € ©,, Eg,(Z;F) < o0
for some B > @;72:1—)

THEOREM 3.2. Let R,(N) denote the risk associated with the stopping rule N = N,,
then under Assumptions A.1-A.4:

R _
»91320 R,(n0) =1

9




Theorem 3.2 asserts that the proposed estimation procedure is asymptotically risk effi-
cient. That is, the risk incurred by the sequential estimation procedure based on N,, is
asymptotically equivalent to the risk incurred by estimation procedure based on the opti-
mal (and hypothetical) fixed sample size ng. Note that for the normal case, Assumption
A.3 holds with 47 = 1 and Assumption A.4, is satisfied for # > 2 and mg > 6, (see in
comparison: Woodroofe (1977)). However, it should be noted that it may be possible to

relax the above requirements on my and S in particular cases.

Proof of Theorem 3.1:
a) Let p be fixed so that ng < co. Fix € > 1, clearly

mo < Eo(N,) Sno+ Y. Ps(N,>n)

(3.4) nenet -
—p

Sng+(no+1)(e—1)+ Z;(Pox(zn > nG' (=)

where K = [(no + 1)e] + 1 and [z] denotes the integer part of . But according to

Lemma A in Appendix, for all n > K

Py, (Zn > nG' ;—f)) < e~ (r-ma)C

for some constant C' > 0. Hence, the last inequality in (3.4), implies that

Eo(N,) S no+ (no+1)(e—1)+ Y e~(r=m)C
(3.5) s
e—Cno(e-1)
_<.no+(no+1)(5—1)+_f_:_.e.:.a_ < oo.

b) For this part, we make use of Lemma 2.2(b) along with the definition of N,, to obtain

the inequalities

(Np = DG (250 € 2 < 2, < NG(T5),
which hold w.p.1. Since Zy, /N,— G'(6;), as p — 0, it follows that lim,—,co G'(ﬁ? =
G'(61). Then, by using the relation —p = 61nZ, the required result follows.
c¢) From part (b) and Fatou’s Lemma lminf, .o E¢(N,/no) > 1 Also, by (3.5) above,
limsup,_,o, Eo(Np/n0) < 14 (¢ — 1). Finally, by letting ¢ — 1, the proof of (c) is
completed. |
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Proof of Theorem 3.2: By definition,
Ry(N) = Eqlo|¢" (vo)|(To:n, — v2)* + N].

Note that by the definition of N,, the event {N, = n}, depends only on Z;...Z, and
hence by Theorem 2.2 is independent on Ts.,. Thus:

Ry(Vp) = B (g7 ) + o)
-5 (3)
208 - 1o () 14 ()

In view of Theorem 3.1 it suffices to show that limsup,_,, Eo(]%%) <1.
Fix 0 <€ < 1/2, then

2o(37,) =Fe

(%
+E9(—-I(—— <N, < no(1~¢))
(%

+ Ee(NP))

and therefore:

>IN <o /z))

+Eq ——I(no(l —&) <N, < mo(1 +a))

+Eq (]—V-;I(N,, > no(1+¢))

=By + By + B3y + By, say.

By Lemma B in appendix, By — 0, as p — oc.

As immediate consequences of Theorem 3.1 and Lemma A in appendix;

3252P[15£v—’3<1—a] -0
2 g

By < P[-—-—>1+a]——>0

(1+

Finally, by using the dominated convergence theorem it is easy to show that B; — 1 as
p — oo, which completes the proof. |

Concluding Remark: It is evident that the independence result, presented in Theorem
2.2, is a crucial key in the risk assessments. It will also turn out to be an important tool in

other sequential problems concerning the family of distributions we have discussed here.

11




These problems include the second order properties of the risk, as well as problems similar
to those discussed in Siegmund (1985). Currently, we are studying some of these problems
and the results will appear in a future paper.

APPENDIX

Proof of Theorem 2.2. The proof will be carried in two steps.
Step 1. Show that (Z;_1,%;) L Ty forall j > 2.
Step 2. Show that if (Z,,...,Z;) L Ty; for all ¢ < k then (Z3,...,Zk41) L Toik41.
We will use the following notations in the proof. For j > 2, Z; = (Zs,...,Z;),

0; = (0,...,0), o = (ea,...,5), B; = (P2,...,0;) where a;’s are and f;’s are
N— —
(j-1) times
complex numbers to be specified later.
Note that the joint density of (Z;_y,Th.;,T5:;) is of the form:
f(2j-1,t1:5,2:5) = Kj(25-1,1:4, t2:5) exp(6t1:5 + Otz + 5 c(6))

for some function Kj;(-) > 0.

For each j, (j > 2), define the functions ¢; and b; as follows, whenever they exist.

j
¢i(ej,taj,61) =E [exp (izakzk> |T2:j = tz:j]

k=2
-1
bj(Bj,t2:5) = /Kj(Zj—htnj,tz:j)eXP (Z Brzx +ﬂjt1:j) dzy ... dzj_1dt1;
k=2

Note that the conditional density of (Z,,... ,Z;_1,T1:;) given Tp.; = to.; is given by

K;(zj-1,t1:5,t2:;) exp(f1t1:5)
bj(oj—l ’ 61) t2:j)

(A-l) f(zj—latlszTZU' = t2=]’) =

To prove Step 1, we need to show that ¢;(0;-2,j_1,aj,t2:5,01) = ¢(ej-1,0;j,12:5,61),
which is the conditional characteristic function of (Z;-1,Z;) given T3.; = t2.;, does not
involve t2.; for (aj—1,c;) in a neighborhood of 0 in R2.

Using (A.1),

e—iajj¢(-{2:j)bj(0j_2, iaj—l ’ ZOl] + 01 y t2])
b;(0j_1,6h,12:5)

Pajy,05,t2:5,01) =

12




where we have used the fact that Z; =Ty; — i0(Ta:5).
Thus

(A2) e ™ i¥(2)p.(0; 5,405 1,10 + O1,ta:5) = bj(0j-1,61,12.))p(aj—1, @, t2:j, 1)

Note that Z;_y L Th.j_; andhence Z;_; L Tp.j_1+U2(X;) = T3.j. Thus ¢(aj_1,0,12:5,61)
does not involve £2.;. Call this function ¢(a;-1,0,601).
Thus, by substituting a; = 0 in (A.2), we get:

(A.3) bj(0j-2,icj_1,01,%2:5) = bj(0j-1,01,t2:5)$(ej—1,0,61).

By extending the parameter space to the complex plane, it is easy to extend the definition of
¢(aj—1,0,61) to ¢(aj—1,0,ia;4+06;). Using analytic continuation, equation (A.3) continues
to hold when 6; is replaced by iaj 4+ 6. Accordingly

(A4) bj(0j-2,taj_1,ia; +01,t2.;) = bj(Oj_l, toj + el,tg;j)¢(aj_1, 0,¢a; + 64).
Hence, using (A..2)—(A.4),

—iaj j(Fay) Di(0j—2, taj—1, a5 + 01, t2:5)
bj(0j-1,61,2:5)

. —dos 5 '.b'(O'..l z'a-+91 tz;')

— o ,0,2&' +0 e ‘%J'l’(tzu) J\-J 2 J 2 J .
¢( -1 7 1) bj(oj—lyalatZ:j)

Comparing with equations (3.18)-(3.19) of Bar-Lev and Rieser (1982), (note that their
b(s,t2) = bj(0j_1,8,%2,;) and their U1g~ (2) = ¥(f2:5)), we get that for s = 61 +ia,a € R,
log b;(-) is of the form;

$laj-1,aj,t2:5,00) = e
(A5)

log b;(0;_1, 8, t2:;) = jsvp(t2:5) + Rj(t2:5) + Hj(s).

Using this, we immediately obtain that

bj(0j—1,i0; + 61, %2:5) _ i3 7(E2:5) —[Hj (i +61)—H; (61)]
bj(0;-1,01,%2:5)
This shows that (A.5) does not involve t,.;, completing the proof of Step 1.
To prove Step 2, we need to show that @gy1(ar+1,t2:k+1,61) does not involve ty.z41 for
041 in a neighborhood of 0 in R%.
Proceeding as in the proof of Step 1,

e_i(k+l)°”°+1¢(¥2=k+1)bk+1(ia1, cer 580, tOE41 + 01, tz;k+1)
br+1(0k, 01, t2:k41)

(A.6) drt1(otrsr,to:ntr,bh) =
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However, by hypothesis, (Z1,... ,2;) 1 To:x and hence (Z1,...,2¢) L To:p41. Thus

Sr+1(ak, 0,t2:641,01) = drpa1(ak,0,61),

is independent of #5.x+1. Accordingly,

(A4.7) brt1(6ar,- .. »i0k, 01, t2:k+1) = bk41(Ok, 01, t2:k+1)Prt1(a, 0,61)
Again, arguing as in Step 1,

brr1(iay,. .. yiag,tagyr + 01,%2:541) = beg1(Ok,tapya + 6, t2:k41) ¥

(A.8) i
X $r1(ak, 0, ik 41 + 61).

Using (A.6), (A.7), (A.8) and equations (3.18)—(3.19) of Bar-Lev and Reiser (1982) the
proof of Step 2 can now be completed exactly as in Step 1. |

LEMMA A. Let no = (p/|61])}/* ,(6:1 < 0) and € > 1, be fixed and let Z, be as defined
in (2.4) with the p.d.f (2.5). Then for all n > nge there exits a constant Cy such that:

Po(Zn > nG’(ig)) < exp{—(n — n0)Co(e — 1)/2¢}.

Proof: By (2.5), the moment generating functions, Mz, (t) of Z,, exists for all ¢t < —6,,
and is given by:
Mzn(t) = exp{Hn(t + 91) - Hn(ﬁl)}, i< —91,

with H,(-) as defined in (2.8). Let ¢, = (1‘;1‘1)2 < 1 and let ¢, = 61(ep, — 1). Clearly,
tn € [0, —61). It can be easily verified that

Pn = Py, [Zn > nG'(016,)] < e"t"”Gl(o‘e")Mzn (tn) = exp{en(ta)},

where we have put: @n(t) = Hn(t + 61) — Ho(6:1) — tnG'(6165), t = 0. However, by the
definition of Hy(-),

on(tn) = Ha(tn +61) — Ha(61) — tanG'(bs)

(4.9)
= n[G(b1€n) — G(61)] — [G(nbres) — G(nb:1)] + 61(1 — €a)nG' (b1€x).

Since G(nbie,) — G(nby) > 0, and G"(-) > 0, the last equality in A.9 implies that

Paltn) < —nbi(1 - €n)*G"(6167)/2
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for some & between 1 and ¢,. Note that G"(z) > Cp > 0 for all z € [6;,0], (see also

the discussion following (2.8)). In addition, since n > noe, we have:

(1-en)?>(1-1/6)(1 —€n) = (1 —1/e)(1 — no/n).

Accordingly:
Pn < explpn(tn)} < exp{=nCo(1 — ea)?/2)

| < exp{—(n — no)Co(e — 1)/2¢},
which completes the proof.

LEMMA _B. Suppose that G'(-) and myg satisfy Assumptions A.3 and A.4, then:

E(%I[Np <ng/2]) = 0 as p— oo.

Proof Let 1/2 < a < 1 be fixed, (to be chosen later), and let C' be a generic constant.

Then n
E(—=I[my £ N, < no/2]
NP

< noE(NiI[mo < N, <nf]
P

+ 087 P(n& < N, < no/2)
=L+ (say).

Now, for the first term I,

[n5]
1 1
B(Tmy SN, <) = 3 2P(Np = k)
N, = k
8] no
<) 752k < kG’(al("’: )
k=mg
[n3]
1 2y
< —P(Z; < )
& B <
[ng]
1 k1+2
<y EP(Z,,,O < ~—50C)
k=mo no
[rp]
SE(z;E)CnE’-?‘Yﬂ Z k(1+2'¥)ﬁ—1,
k=mg

15




where the last two inequalities following Assumptions A.3-A.4, and Lemma 2.2 (b). Ac-
cordingly
L<E ( Z,;;f) Cngl—2~/5+aﬂ(1+2'r)),

which — 0 for a < (298 —1)/8(1 +27).

Clearly, I < ngl-a)P [Zk < kG (01 (PEQ)Z) , for some k € (ng’, 1‘2-9-]] .
Define: Ly = ‘lek — k1, Lok = @(Ta:x) — p(v2), note that Zy = L.k — kLo, and by
(2.7), v1 — p(v2) = G'(61), hence;

I <n(1 a)P[le_kL2k<kAk, for some k € (ng, 2]]

with Ag = G'(91 (gko,)?) — G'(6,). Since G'(-) is increasing and k < %2,
Ak < G'(461) — G'(6:) = —2¢(< 0), say.
Thus,
L < ngl_a)P[Ll .k — kLo:k < —ke, for some k € (ng, %0-]]
< ngl a)P[lL .k] > ke, for some k € (no, 5 ]+

+ n(l_a)P[ k|La:x| > ke, for some k € (ng, nzo ]]
= Ipy + Iz, (say).
Since Ti.x has moments of all orders, it follows immediately, using submartingale inequality

that,

fn = "'7'(()1"‘0’)P[na <k<ng/2 ILl kl - 5]
(A.10) <" ng e E((Lygzg)) "), v > 0

— 0( l—a+r(d -a))

As for the second term Ipz, it follows by the continuity of ¢(.) that there is §(¢) > 0 such
that |z — v < 8(¢) = |p(z) — ¢(v2)| < €. Thus,

Iy < n(l—a)P[ITg & — vz| > 6(¢), for some k € (ng, 5 ]]

(A.11) < n$" Y P(|Tyx — v2| > n&é(e), for some k € (n, T;O]]

= 0(n¢1)~a+r( 2 —a)) )

again, by using submartingale inequality as in (A.10). Finally, by combining (A.10) and
(A.11) together, we obtain;

L < 0(ny ™47 1,
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for r large and a > 1/2.
Hence, upon choosing 1/2 < a < @r8-1) with B > 2/(2y — 1) as required, the proof is

B(1+27)
completed. ||
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