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SUMMARY

The ordered group reference prior algorithm of Berger and Bernardo (1989b) is applied
to the balanced variance components problem. Besides the intrinsic interest of developing
good noninformative priors for the variance components problem, a number of theoretically
interesting issues arise in application of the proposed procedure. The algorithm is described
(for completeness) in an important special case, with a detailed heuristic motivation.
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1. INTRODUCTION

Determination of reasonable noninformative priors in multiparameter problems is not easy;
common noninformative priors, such as Jeflreys’s prior, can have features that have an un-
expectedly dramatic effect on the posterior. In recognition of this problem, Bernardo (1979),
proposed the reference prior approach 10 development of noninformative priors, the key fea-
ture of which was a possible dependence of the reference prior on specification of parameters
of interest and nuisance parameters.

This approach was further extended in Berger and Bemardo (1989a, 1989b). The first
paper introduced a technically important modification: the reference prior algorithm was
utilized in two stages —first for thc nuisance paramcter and then for the parameter of interest,
as in Bernardo (1979)— but it was applied on an increasing family of compact subspaces
of the parameter space, allowing a crucial first stage prior normalization to be performed.
The second paper greatly extended this idea 10 deal with multiple nuisance parameters and
parameters of interest, allowing for iterative application of the reference prior algorithm to any
sequence of groupings of the parameters. This paper also contained examples and extensive
discussion concerning how and when to group the coordinates.

An interesting situation in which to illustratc the new algorithm is the balanced variance
components model, which has for parameters a mean g, and two variances 72 and o?; (see
Section 4 for specifics.) The interest in considering this situation, besides the basic importance
of the model in statistics, is that all the possible grouped reference priors can be determined

(*) Invited paper at the Indo-U.S.A. workshop on Bayesian Analysis in Statistics and Econometrics,
held in Bangalore, India, December 1988.
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Cooperation, Grant CC B8409-025, and by the National Science Foundation, Grant DMS 8702620.
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and compared, and that interesting technical issues arise in application of the algorithm. The
grouped reference priors are given in Section 4, along with a detailed derivation in the most
difficult (and theoretically interesting) case. This section also gives a useful calculational
expression for the ensuing posterior moments, an expression requiring only one-dimensional
numerical integration.

Section 2 of the paper presents needed notation and results about patterned information
matrices. Section 3 reviews a special case of the grouped reference prior algorithm that was
developed in Berger -and Bemardo (1989b), and presents a detailed heuristic motivation for
the algorithm. Section 5 presents concluding comments.

2. NOTATION AND PRELIMINARIES

The general algorithm will be presented for any parametric statistical problem in which the
random observation X has density p(x|0), where @ € © C R is the unknown parameter. We
assume that the Fisher information matrix

o

H(0) = —E,s Kaoa_a(;] logz)(wl9)>]

exists and has rank k, so that
S(8) = H ')

also exists. Often, we will just write H and S.
We assume that the 6; are separated into m groups of sizes ny,ng, ..., n,,, and that these
groups are given by

9(1) = (01,....(),,‘). 0(‘;’) = (071,1+1v-~~|9n1+n:)1--~
9(1.) = (05\4’,_1+l ----- 0\,) 0(111.) = (0Nm_1+11 .. -yﬁk))

where N; = Zle n; for j = 1,...,m. These are the groupings to which the reference prior
algorithm will be applied. (The coordinates of # can, of course, be reordered if necessary
—see Section 3.2— to achieve the desired ordered grouping.) Also we shall define, for
i=1...,m,

g{j]:‘(f)(l),...‘(;(]‘)) and ()[,,,J'] :(0('j+1)a-~-16(m))-
If we write S as
A, A, L. A,
Ay An ... AL,
S= . . .
Aml Am3 Amm

so that A;; is (n; x n;), and define

S; = upper left (N; x N;) comer of S, with S,,, = S, and
H; = Sj_l

then, the matrices

h; = lower right (nj xnj)comerof Hy, j=1....m
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will be of central importance. Note that, if onc defines B; = (A;;Ajs---A;;_1) for j =
2,...,m, of sizes (n; x N;_y), then it is straightforward to verify that, for j =1,...,m
h; = (Ajj ~ BjH;_.1B))™" (2.1)
and
H = (Hj—1+Hj—13§thjHj—1 - j—lBﬁ'hj) (2.9)
—h;BjH;_, h; ’

where any entry containing a factor of Hj is to be omitted. Thus, one may iteratively calculate
H;,...,H,, and hence h;,... h,,.

In the important special case where each n; = 1, no matrix inversions are needed above,
so that calculation of the h; is trivial il S is available. An even greater simplification occurs
if, in addition,

By = (B, Aig1i) (2.3)
for some constant ¢;. Then, (2.1), (2.2), and (2.3) can be used to show that

2

By = Ay ivr + G A — 20 Ay i — B (A — Aigr)° . (2.4)

This is particularly useful when (2.3) holds [or all , which often occurs in patterned covariance
matrices, since then (2.4) can be used to iteratively determine all the h;, starting with h; =
Al_ll, and defining ¢, = 1. Finally, if S is a block diagonal matrix, (i.e., A;; = Oforall : # j)
then h; = AJ'-—jl, J=1,... m.

We will use the common symbols

. . 1 ifyeq
|A] = determinant of A, lg(y) = )
0 otherwise,
and will throughout the paper adopt the conventions that Zi;}() = 0 and Hi;,l(-) = 1.
Also, we will often use p(u|v) to generically represent the conditional density of u given v.

3. THE m-GROUP REFERENCE PRIOR

3.1 The Algorithm

We suppose the §; have been ordered and divided into the m groups 61, .. ., 8(m). When the
reference priors that are developed turn out to be proper, matters are straighforward. Often,
however, they are improper, and care must be taken in their definition. In the improper case
we proceed by specifying (see Section 4.2 for discussion) a nested sequence ©' C ©2 C . ..
of compact subsects of © such that U2, ©' = ©. For simplicity, we shall assume that

I _ ol { i
O = Oy, X Oy x - X Of ).

For a discussion on the existence of parametrizations in product form, see Kass (1989); also,
the situation of arbirary ©' is considered in Berger and Bernardo (1989b).

A reference prior is determined on each compact ©', for which the result is typically
a proper prior, followed by performing a limiting operation. Specifically, one follows the
following algorithm. Note that expressions for the h;(@) have been given in Section 2.

Start: Define

"T:u (o(mv)|0[m.-— 1})
LI E

feim) A (0)11/2d07m)

'/T,‘”_ (0[~(m— 1] |()[m - I])

(3.1.1)
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Iteration: For j = m—1,m —2,..., 1, define

7} (Bt 1)105- 1))

(B 0) exp {11 [(1o8 115001 6]} 1oy 1o
o exp {387 [(log 1;(0)]) 0] } 9 B
where, letting ©f_;; = ©f;, ;) X - X Of,,,
Ej [9(0)16] = /@ (0) 7 41 (03316157 g1 (3.1.3)
701
(Note that it is easy to check, by integrating in wurn over 6y, é(nl_l), ..., 0(;), that 7} defines

a probability distribution.) For j = 1, interpret 0. q) as ¢ and 0y} as vacuous, and write
7 (0) = 7| (Op~ylfp0)) - (3.1.4)

Finish: Define the m-group reference prior, assuming it yields a proper posterior, by

) 7'(0
m(0) = zliTo rr’((f?‘))

(3.1.5)

where 6* is some point in ©!.

If the integrals and expectation in (3.1.1) and (3.1.2) are finite when the “{” is removed
(ie., when @' is replaced by © everywhere), then the reference prior is defined simply by =,
(i.e., (3.1.5) is not needed). It should also be observed that the condition

|h;(0)| depends only on 6, (3.1.6)
results (for the iteration corresponding to j) in (3.1.2) beingfeplaced by

I l B (O Lo
T (B 10— 1) = i (Or i1 | 65 2 (3.1.7
3 (O~Gi-1 1 61— 1) 100511651 f@;” [h; (6)[17% 6, )

3.2. Motivation and Discussion

We-suggest that in nonhierarchical models (as considered here) the ordering of the f;, should
be in terms of their inferential importance. For instance, in the variance components sce-
nario, to be considered in Section 4, if inference conceming the “between” variance, T2,
is the primary goal, with the population mean, u, and “within” variance o2 being nuisance
parameters, then the suggested ordering would be §; = 72,8, = u,03 = o2, or maybe
9, = 72,0, = 02,63 = p. For inference concerning 4, on the oher hand, (g, 72, 02) or
(g, 02, 72) would be the suggested orderings. On the issue of grouping of coordinates, our
advice is: do not group without a very good reason. Thus the k-group reference prior (each
stage having n; = 1) is generally recommended. Incidentaly, within groups the ordering of
the é; is immaterial.

When the reference priors are proper there is no need to consider compact ©'. And even
when improper, the reference prior is ofien unaffected by the particular sequence {©'} chosen.
When needed, our typical choice of the {©'} is simply a collection of nested rectangles in ©
(or other appropriate shape if © is not an “infinite” rectangle).
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In Bernardo (1979) the motivation for the reference prior approach is discussed. The idea
is basically to choose the prior which, in a certain asymptotic sense, maximizes the information
in the posterior that is provided by the data. We will now summarize the argument for the
simple case k = 2. We stress that the argument below is heuristic and that, rather than trying
to make it precise, we choose to define the grouped reference prior as that determined by the
algorithm in Section 3.1. (See Berger, Bemardo and Mendoza (1989) for an indication of
some of the difficulties in making the heuristic argument precise.)

Let z be the result of an experiment which provides information about §;, according to
the probability model p(z|8;,62), (61,62) € O, where 6, is some nuisance parameter, and let
©' be a compact approximation to the (joint) parameter space ©. Let z; = {z;,...,z,} be
the result from ¢ conditionally independent replications of the original experiment; the amount
of information I?*{p(8;,62)} to be expected about §; from z, when the prior is p(8;,02) is
defined to be (Shannon, 1948; Lindley, 1956)

. . (64120
I {p(6,,0)} = / 7»(:/)/ p(01]=) log ";(;'1)‘ df\d=,.

Using a variational argument, it may bc shown under certain conditions that, for any fixed

p(81192), this is maximized by a prior 7,(¢,) which satisfies

7i(61) oc exp { [ vt 1ogp(01|z:)dzt} | (3:2.1)

Note that (3.2.1) only defines m,(6,) implicitely for given t, since p(6, | z;) depends on m;(6; ).
Ast — oo, perfect knowledge is approached, so that 7;(61) approaches that prior which, given
p(02]01), maximizes the missing information about 6; this is referred to as the reference prior.

Moreover, as t — oo, and under appropriate regularity conditions, p(6:|z:) is ap-
proached by the asymptotic marginal posterior distribution of ,, N {6, |él , Sl(él , 92)}, where
S:(8,02) is the upper left corner of S(0y,0-), the inverse of Fisher’s information matrix
H(8,,02).

It follows that, for each conditonal prior p(#-|6;), and for ¢ large enough, one may write

m(81) o< exp {/p(ztwl) log N {6,6,. 31(01,03)}dzt}

= eXp // 91,0‘;'01 lOb’\{()]lgl 31 é ,ég)}déldég}

{

e‘{p{//{ p (60218, 82)p(020, d()q}logN{()llél,Sl(él,ég)}_déldég}
{
=/

il
o

Xp // 01 04 l()l ) /])(()-_:I(h)l()g‘ /\’!{()1|g1,31(01‘62)}([63d61d62}

IZ

p(9->|01 log |81 (0. 04)]7 '/ dfy }
since, as t — co, p(él, (52|61,92) will concentrate on (6, 02) and

exp {IIOgN{gllély 31(91,92)}1 } =15:1(61,82)]7%/2.

(01,02) = (61, 65)

Furthermore, since b, = H, = S7', |h|/? = |S;|~/2 and hence,

7l'¢(01) X exp {%/ ])((93'91) lOg |h1(01,02)|d92}
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or, normalizing over ©',

(6,) = = , (3.2.2)
/ exp{%/ P(ozlgl)loglh1(91:92)|d92}d91
o! o!

) 2)

€exXp {,1—, /@l 7)(03|01 ) log lhl (:gl,gg)ldeg}].@l“)

which provides an explicit expression for the reference prior #!(6;) corresponding to a given
p(82161).

It is natural to choose p(f2]0;) to be the conditional reference prior m(83|6;), i.e. that
which, given §;, maximizes the missing information about 6,. By the same argument leading
to (3.2.1), this is obtained from

T (62]01) x exp {/11(:[|03,()1)10gp(93101, :t)dzt} -

Again, as t — oo, and under appropriate regularity conditions, p(#2|6,, z;) is approximated
by the asymptotic conditional posterior distribution of 8- given 61, N {062, h;'(61,64)}
where hy(61,02) is the lower right corner of the information matrix H(4;,62). Hence, for
large enough ¢, one may write

m(62]61) o exp {/p(zt|91,93) log 1V{03|§g, hz—l(él, ég)}d_lg}

= CXP{//ZJ((;1,02|91-02)10€ NW?WQ:hg_l(élyéz)}déﬁéz}
= |hy(61,60)]"/*

since, as t — oo, p(91,93|01,6’-_,) will concentrate on (f,,8-) and

exp {lOgN{lel,h;l(glﬂ_y)}’ } = |hg(91,92)|1/2.

{01,02) = (01, 04)
Therefore, after normalizing, ’

|ha(0:,02'/2 11
[ ha(01,60)1% a0
Jot

(2)

7!(6,16,) = (3.2.3)

Finally, the joint reference prior necessary 1o obtain a reference posterior for f; will be
defined to be 7'(8y,6,) = '(216,)7'(0,) on O hence, if {©'} is a sequence of compacts
expanding to ©, the desired reference prior is defined to be

!
7(01,02) = Ilim ™ (61,02)

7{01,02) 2.4
L T(6r.63) (3.2:4)

where (67,63) is some point of ©'; the denominator is necessary to cancel out irrelevant
multiplicative constants which may-diverge as | — co.

Equation 3.2.3 is directy analogous to “start” of the reference prior algorithm in Sec-
tion 3.1, which gives 7'(6(m)|0(1), . .-, 0(m-1)); Equation 3.2.2 provides the motivation for
the “iteration™ steps, and Equation 3.2.4 is a version of the “finish” element in the algorithm.

Further stages (when m > 2) are handled in exactly the same manner yielding (3.1.2) as
the stage-to-stage updating formula. The nct result is 7/(d), the m-stage reference prior on
the compact ©',
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Ordered Grouping Reference Prior
{(n, 0% )} o2 (nr? 4 o)=3/2
{(n,0%),7%} =52 (nr? 4 7)1
2 T2
(07,7 seussyy (1)
o2
{2, (1, )} o~ (nr? + o732
2
{r% (u,0”)} rlo=2(nr? 4 02)~ 12y <%>

{u, (0%, )} {(0%. 7))
{u,az,‘rg} (7_2(11-T2+0'2)~1

{o'zuth Tz}, {02. ru)

(e, 7%, 0%}, (P2 om0} {72 0% ) ey (5—)

Cn={l-vn-1(/n+Vn- 1)_3}, w(r:’/az) =[rn—-1)+(1+ nrz/az)—z]l/z.

Grouping of parameters is indicated by parentheses.

Table 1. Reference priors for the variance components problem

4. THE VARIANCE COMPONENTS PROBLEM

The determination of m-group reference priors for the balanced variance components problem
is of interest, not only methodologically, but also because it provides an interesting illustration
of the techniques (and possible difficulties) of the general limiting derivation of () via
(3.1.5). Section 4.1 presents the model and the m-group reference priors. Section 4.2 discusses
some of the interesting technical issues that arose in the development. Section 4.3 briefly
discusses using the reference priors in posterior calculations.

4.1. The Model and Reference Priors
We consider the balanced variance components model
‘Xij:/,z+cy,-+s,-j . (=1,....,p and j=1,.... n,

where the o; are iid. N(o;|0,77) and, independently, the ¢;; are iid. 1\’(sij|0,02). The
parameters (u, 72, 0?) are unknown.

Since there are only & = 3 paramcters it is easy Lo list all m-group reference priors. The
possible ordered groupings are given in Table 1, along with the associated reference priors.
Note that Jeffreys’s prior is that associated with the single group {(,u,az,r'“’)}; the prior
suggested by Box and Tiao (1973, p. 251) is that associated with {u, (02, 72)}. Observe that
C, is typically very near 1, and that

VA=< 9(5) <V

thus, replacing C, by 1 and ¥ by a constant is reasonable for all but very small n.
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As indicated in Section 3.2, we are most favorably disposed towards the last two reference
priors in Table 1, since they correspond to the various 3-group reference priors (each group
having only a single element). Note that, among the 3-group reference priors, only the order
of o2 and 72 affects the answer; thus there are only two 3-group reference priors instead of
the possible six. Thus all that need be spccified, in order to determine the 3-group reference
prior, is whether o2 or 7° is deemed 1o be of more importance.

4.2. Determination of the Reference Priors

To implement the algorithm in Section 3.1, compact sets ©' must be selected. In deriving
the reference priors in Table 1, nested boxes of the form

O' = (a1, b1) x {c1,di) x (e1, f1), for (p,0%, 7%, (4.2.1)

were chosen, where a; — —oc, ¢; and ¢; — 0, and the upper endpoints — oco. This would,
intuitively, correspond to a presumption of prior independence among the parameters. In most
cases, the precise choice of the endpoints in (4.2.1) was immaterial to the result. Disturbing
exceptions were the third and last reference priors in Table 1, where the reference prior actually
depends on

. log d
7 = lim !'ﬁTIl

I—o {log ¢
If this limit does not exist, there is no rcference prior for these situations. If the limit does
exist, the third and last reference priors are, in general, as given in Table 1 but with C,
replaced by

Colm) = 1= = Mn—A)~%, (4.2.2)

where A = /n — 1/y/n. Recalling that (¢;.d,) is the range for o2, the implication is that we
must specify the relative rate at which we arc “noninformative” about log o2, as 02 — 0 and
0?2 — 00, to determine the reference prior. In Table 1 we made the natural choice n = 1, but
the need to make such an extra choice is clearly unfortunate.

For the third prior in Table 1, it is indee¢d not even possible to choose a value of 7 such
that 7 < A(VBA + 3 ~ 1)/(3X + 1), for then it can be shown that C,(n) > 4/3 and the prior
will have a nonintegrable singularity al 7 = 0, a singularity which persists in the posterior;
these values of 7 thus lead to unusable reference priors. Note that 7 = 1 does yield a proper
posterior.

Alternatives to ©; in (4.2.1) can also be considered. One reasonable choice is

o' = {(#,0'2| ) p € (@, ). @ € (er,dy), -1% € (6l,fl)} .

(o2

The point is that it is sometimes natural to be “noninformative” about the ratio 72/c? rather
than just 72 (cf. Hill, 1965).

If such ©' are used, the reference priors are as in Table 1, except for the second, third,
and last cases, which become o=3(nr? 4 0%)7!, r=307%¢(2/0?), and 720 2¢(72/0?)
respectively. These last two priors have nonintegrable singularities at 72 = 0, which persist
in the posterior, and hence are not usable.

We shall present here the development of the last reference prior in Table 1, for the
ordered grouping { u, rz,o-'-’}. The analyses for all other cases in Table 1 are similar, but
simpler, and are hence omitted.
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We apply the algorithm in Section 3.1, with the ©' defined by (4.2.1). Note that the
Fisher information matrix for (g, 7%, o?%) is

pn -
(nr? 4+ 0?) v 0
2 oy o __
H(u, o ) - 0 2nt? + ¢2)2 '2(77,7'2 + 0'2)2 !
. pn ol p
2(nt? 4 0%)? 20% 2(nt? 4 o2)?
so that
(n7? +0?) 0 0
pn
201 2(nt? + 0?)2 20t
2 2\ __ _
S(,u,r 7 ) - 0 [1)-;1?(1'z -1 + pn? pn(n~1)
0 201 204
pn(n—1) p(n—1)

In the notation of Section 2, the 3-group case {u, 7%, 0} corresponds 1o 61y = 6; = p,
B2y = 62 = 7%, and 63 = 63 = 0. Also, S satisfies (2.3) with By = 0, ¢; = 1, and
Az = —20'4/[pn(n - 1)], so that

pn

h=o7t=z ——
1 nrl 4 o2

and (2.4) yields
hr_?: [Agg'f‘All_hlAilll]_l
[ Vo 2nt? + 03)3]—1
5 + ) )
pni(n—1) pn-

and ' -t
hs = [Asz + Ayy — 2435 — ha(Agy — Agy)?]

[P(g‘; 1) 4 Q(nTQI:_ 02)2] |

Start: To begin,

= |h3(,u1 Tzv Uz)ll/zl(clvd')(az)
fj' [ha(p, 72, 0?)[1/2 do?

m3(o? |, 77)

. 1/2
pln—1) p \
1
_ [ 204 '2(711'34.@2)3] (cl,d!)(a)
B Vi (r2ler, dp) :
where y
d
! _ 1) p
¥ 2 d;) = P(TL d 2'
1(7%|er, di) /C! [ P +,'2(n7'2+02)2 o
lteration for j = 2.
Wo(77ler, dp)

£ {log el 7)) = G
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where
. d, 204 Q(n.,.z_,_az)z -1
Lalrler di) = /c, (log [1)n3(1z -1 + pn? ]
% p(n - l) p 12 d0'2
204 2(nr? + 02)2 ’
'Hence /
1/2
p(n —1) p 2
1, 2 o [ 204 + 2(nt? + 02)2] Lera(@”)
7['2(7' O l/‘l‘) =
\I’l(Tzlcl,d()
exp { $a(r*|c1, &) /W1 (?|er, di) } e, 1)(7)
X — )
K(ci dy,er, fi)
where

i
K(c,,dl\e,,f,):/ exp{%,-\lfg/\lll}drz.

Iteration for j = 1. Since neither hy, nor ), depend on p,

E'[log 1hu(n, 7, 0)| | ] = " (er, diser, ).

Hence
mo(r2, 0% | )

(b[ - (L[)

71.1('“’7,210,2) = "Tll(ﬂ") TE]O,Q) = 1(a,,b1)(“)'

Finish. Choosing, say, the fixed point (u. 7. 0”) = (0, 1, 1), one obtains (ignoring multiplica-
tive constants)

[p(n - 1) p ]1/2

. 204 2nt? +072)2

2 2 =1

m(p, 7°,0°) I_l’rg{ Uy (r2er, d0)/ Y1 (Lfer, dr) (4.2.3)

o ex Ua(r?le,d)  ¥a(lle,di) }
P20 d) 20, (U, d) S

To determine this limit, note first that changing variables from o to v = 72/0? in the integrals
defining ¥, and ¥ yields

9 P | 1 H2
V(e di) = /= / - |- 1+Z———),, dv,
R 2

T3¢

2 1
\Ifz(Tzlcl,dl) = ——\/g / []0g r + log (1_7;1_2-) + log ((_ni—l)—v-f + (Tl + U_1)2)]

T2/d;

1 1/2
x—1In—-1- —1——,7 dv.
v (1 4 nv)?
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Divide the integrals up into integrals over the regions (72/d;, <), (¢,¢71), and (=, 72 /¢).
Clearly

/%[n—l—%m} - // [—+O(1)}dv

Vn [(log ﬁ) + log dz] + O(e) .

Likewise,

f 1 N\ 1 1/2
/‘°g((n—1> (T )‘[ (an)] i

T2/d;

_ ] n Yo

= / [log ((n—1)u2)+0( ] [T+O(l)] dv
r2/d,

= <1og - 2 1) NG <log§§ + log d,) + Vi [(log 72 — log d))? — (log)?] + O(e)

For the range (1,72 /c;) we get

73/ T

[ e g = [ (w0 ()

e~ et

= vn 1 (loger? — loger) + O(?)

and

S

1 AN S e
/log(—(n_l)v,_,+(n+u ));[n_1+—(1+nv)2] dv

e—1

2/

Pl re () T o )

£—

= vn — I(logn*)(loger® — log ¢;).
To complete the specification, define

-1

T I th
K = - |n- R E— {u.
K1(€) /E " [n 1+ (l+7w)”] du

-1

¢ 1 1 11
K = 1 —_— . H) 2 in- — dv.
2(€) /; og ((n—.— 102 +(n+v) ) - [n 1+ T o) v
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Collecting terms yields

Uy (r3c,d)) = f{flogd, Vn —Tlogc; + (loge) (Vn+ vn — 1)
+ (log P (VAT = V) + () + 0(e) |
pig] Wy (rer, dy)

\IIQ(T2|C{,d{) = — I:

- g{\/ﬁ(log d)? — (log d)2v/n(log 7?) — 2¢/n — 1lognlog ¢;

+\/_log )log(/1+[\ (¢, 2)—}-0(5)},

where K™ is a function of ¢ and 7.
As | — o0, logd; and logc ' converge o infinity, while all other terms in ¥, and ¥,
remain constant. (The O(¢) terms are uniform in {.) Hence, it follows immediately that

. U (e, d))
im ———= = 1. 424
I—eo Wy (1ey, dr) ( )

More difficult is the limit of ¥5/¥;. Defining

R(e,m*) = (loge) (v + vn = 1) + (log 7°) (Vn = 1 = v/n) + Ki(e),
S(e, ™%, c1,di) = vn(log di)? — (log di)2v/n(log %) + /n log ( > log d;
- 2vn = 1(logn)logc; + K*(¢,7%),

we have

\Ilz(Tzlcl, d])

DoAT 11, 81) | Niog 74 + log ——

U (e, dy) 8T T e

_ —{S(e, 7% ci,di) + O(¢)}
{Vn(logd)) — v/n'=Tlogc; + R(c,72) + O(e) }

— —{S(E)Tz)clvdl)+0(6)} [1_ : R(& T2)+O(€) +O< 1 )]
vn(logd)) —vn—T1logg vn(logd)) — vVn = lloge (log di/ci)?

- [\/ﬁ(log di)* +vn (1og E:T) log dz] .\ [R(e, %) + O(¢)] vn(log di)?
(Vn(logdi) — v/n — Llogcr) (vnallogdi) — Vi —Tloger)”

+ (2v/n(log r®)(log d;) + 2+/n — 1(log n)(log c1)) +0 ( 1 >
(Vn(logd)) — vn — Tlog ;) (logdi/cl) )
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Thus )
Ya(rle, di)  Wa(lle, di)

\Ill(T2|c;,dl) Uy (e, dp)
[R(e,7%) — R(e,1) + O(e ]flo«d,
(vn(log d;) \/n_—_logq)
2v/n(log 7*) log d; 1
+ (Vn(logd)) — vVn—Tloga)) <(logdz/c,)>
[(log 7)(1 = Vn = 1/\/n) + O(¢)]
1 ﬁ——/ﬁxlogcl/logdo]'“’

=—logr® +

—logr? —

2(log r? 1
[1 ~(Vn—=1/Vn)( 10501/108.‘11)] +0 ( logdl/01)> '

Noting that the O(¢<) term was uniform in /, and assuming that

lo (TCII
7= lim
l—co log ¢

exists, we thus have, defining A = V/n — 1//7,

-1

lim WQ(TE'Q.([[) v, (l](( (/,
i _
l—oo | W (T2|C1,dl) \ (]’(1 (/,
= —log 7 +logr* A= 2 O(e)
TR TR EARTET Y] R yE
Mn® = A)] O(¢)
= —(I 21~ -
(OgT ) [ (77+’\)3 (1 +77—1/\)2

Observing that O(¢) can be made arbitrarily small, this equation, together with (4.2.3) and
(4.2.4), yields the reference prior in Table 1, with C,, replaced by (4.2.2).

'4.3. Posterior Calculations

Note that the likelihood function is proportional to

=\?
—(n- 9 9 _pf9 np(p —T)*

l o2 r2) = (n=1)p(,, -2 2y=p/? sy _1
(p,0°,7°)=0 (nT” +07) exp ol R S

+ Tlg(fi - —T‘)Q + 22(171']‘2— ;_B—i)z] }

nri+4 o? -

Also, all of the reference priors can be written in the form
2 2 9 T2
(g, 0%, 7%) = 077" F(nr? + o)~ Ty <—2>
g

for certain constants «, 3,v, and 4~ either cqual to ¢ in Table 1, or equal to 1.
Finally, suppose one is interested in evaluating the posterior expectation of a function of
the form

H]

p(‘u,,O'.')‘T'

I X T.-)
)=pwotel = |,
o2
a form which clearly includes all posterior moments (and cross-moments) of u,o, and .
The following lemma shows that this calculation reduces to one-dimensional integration for
r = 0,1, or 2. (Integer » > 3 also can be handled using only one-dimensional integration,
but the formula gets messier.)
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Lemma 4.1. The posterior expectation of p(p, 0, ) for r = 0,1, or 2, is

T(i(c-
E[p(/l,O'Z,TQ)I data] = _2-‘§/22(Tc/52)))
[ s—c [=, (14 nv)S*(v) =2 - -
/0 [S(v)] {a: + =2 _3) 12(_r)} v2 (14 nv)™7 ¢(v)y~(v)dv

X

)

/0 [S(v)]—cu%i(l+nv)_"-1j)'(v)dv

where " = v+ 3(p—1), c=a+ 3+ 2y + np — 5, Lo(r) equals 1 if r = 2 and equals 0

otherwise, and
1/2

S('U): % +;;($U —-Ti)Q

Proof. First transform to the variables (p, o*, v), where v = 72 /o2, It is then straightforward
to integrate over u, followed by ¢, yielding the result. 4

5. CONCLUDING REMARKS

The variance components example clearly illustrates the difficulties that can be encountered
in applying the grouped reference prior algorithm:

(i) the grouping and ordering of the groups will frequently result in different reference priors,
(ii) the limiting process given in the algorithm can be difficult to carry out, and
(iii) the limit can depend on the compact sets chosen (and may not even yield a proper
posterior.)

Before addressing these points, it should be noted that it is rather rare to encounter the second
and third difficulties; indeed, the variance components problem is the most pathological we
have seen for the reference prior theory.

The dependence of the reference prior on the group chosen and their order is, we feel,
unavoidable. Many examples exist which illustrate that no single noninformative prior will
work well for all functions of a given high-dimensional parameter. As more fully discussed
in Berger and Bernardo (1989b), our own preference is actually to use the reference prior
corresponding to single element groups, with the groups ordered according to the inferential
importance of the parameters. That different orderings of the nuisance parameters can yield
different answers even has positive aspects; one can then conduct a sensitivity study over the
choice of the noninformative prior.

As to the possible technical difficulty of implementing the grouped reference prior al-
gorithm, again most examples we have seen are much easier than the variance components
example. Also, the determination of the reference prior can be thought of as the theoretician’s
work, to be done for all common models of statistical importance.

Difficulties with existence or uniqueness of the limit in the algorithm are more troubling.
It would be nice if such never occurred, and indeed occurrence of these problems is quite
rare, but there are no guarantees. As in Berger and Bernardo (1989a), one can surmount the
non-uniqueness problem (when present) if there is a natural sequence of compact sets that one
prefers.

At the very least, the grouped reference prior algorithm can be thought of as a method
for generating interesting candidate noninformative priors, either for sensitivity studies or for
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investigation of their performance. While our attitude is that study of the performance of
noninformative priors is certainly to be encouraged, we have found the group reference priors
to generally be highly satisfactory, and we would feel reasonably confident in using them in
situations in which further study is impossible.
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