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1. The General Decision Problem
Our problem has the following elements:
A parameter space 2;
An action space A and a o-field A on A;

A “sample space” Z on which all possible sample values are defined, a o-field B on Z,

and a probability measure p,, on B for each w € Omega.
A loss function; L: Q@ x A X Z — R (extended real line).
A decision procedure is a measurable function: d: Z — A.

A mixed strategy is a measure v on Z X A such that v(:|z) is a probability measure

on A and v(E|-) is a measurable function from Z to R for each E € A.

The risk function is the function p defined by
plw,v) = //L(w,a,z)du(a]z)dp(z|w).
The above symbols will have these meanings throughout except where other-
wise stated.
We first give an extension of a well-known game theory result.

Theorem. Let G be a game, X,Y the sets of strategies for players I and II respectively,

and M the payoff function. Then if
(i) X and Y are convex and X is compact;

(ii) M is concave in X, convex in Y, and upper semi-continuous in X for eachy €Y, i.e,,
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< 1 .
M(z,y) < zeUH(l)fpen flelgM(z,y), for each y;

(iil) v > —oo where g is sup inf M(z, y);
T Y

then the game has a value and player I has a good strategy, i.e., maxinf M(z,y) =
noy

inf max M(z,y).
y z

Proof Let
— F ={F:F CY,F is finite, F # ¢}

G ={G: G C X,G is finite, G # ¢}.
Consider the finite game (G, F, M*), where M* is the mixed extension of M. This game

has a value, and both players have good strategies.

Hence, there are procedures égr and ngr such that

/ M(z,y)décr(z) = vaF 2/ M(z,y)dncr(y)
G F
for all y € F,z € G, where vgr is the value of the game (Gm, F, M*).

Now G and F are directed by inclusion (The least upper bound of A and B is AU B)

and, for any F,vg, r < vg,r whenever G; < Ga.

Fix F' and consider the net {([ zdfar(z),ner)} where [zdécr(z) = T (égr)izi €
z;€EG
X since X is convex. Now ngF is a vector in the set {a : a; > 0 for all ¢ and Ya; = 1} in

the euclidean space with dimension ?, cardinality of F.

Hence the net has each coordinate in a compact space, so there is a convergent subnet

{(f zdéa,r(z),nG,F)} such that

/:I:dEGQF(:I:) — :L';- eX

*
NG F — 1IF
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Now M is concave and so

M( [ sdar(z),v) = M(_3 (€ar)iaiy)
> z;%G(gGF)iM(wi’y) = /GM(:c,y)dfgp(:c) > vgr for all y € F.
Also imM( [ zdég, r(z),y) < M(z%,y) since M is upper semi-continuous.
Hence for all y € F,
M(eh,y) > T [ adt, r(z),v)
> limvg, F
= Sup vGr,
G

since for any G there is an « such that G < G4 and so vgr < vg, F-

Since the net indexed by G is a subnet of the net indexed by G, and since z} € X,

we have £} € G4 for a sufficiently large.

So if « is sufficiently large

[ M5 v)in6,5) < vo,r < supvGr.

But [ M(z},y)dne,.r(y) = TM(z},y)nc.r{y} converges to LM (z},y)np{y} since

T]GQF - 77;"

Hence [ M(z%,y)dn}(y) < supvgr. So if player II is restricted to F', the game has a
G

value and both players have good strategies.

Now let yr = [ydni(y) € Y since Y is convex and then M(z},yr) < supvgr = vr,
€]
since M is convex in Y. So we have M(z%,y) > vF for all y € F and M(z,yr) < vp for
all z € X. Note that this last inequality implies vF > vg.
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The net {z},F € F} must have a cluster point since X is compact, so there is a

subnet {z}, } such that z — z', say.

By the upper semi-continuity of M, for any y € Y, M(z',y) > EM(:I:*Fﬁ,y). But
ify € Fﬂ,M(:v"i;.ﬁ,y) > vp,. Since for § sufficiently large y € Fg, M(z',y) > limvr, =
inf vp,. However, inf M(z',y) < irl%‘f M(z',yr) < i%f vp. Consequently, the game has a

Y

value and z' is a good strategy for player L.

learly, if both X and Y are compact, and M is lower semi-continuous in y for each

fixed z, then both players have good strategies.

This result is due to Maurice Sion, ‘On general minimax theorems’ Pac. J. of Math.,

8, (1958), 171-176.

Principles of Choice

This section is a brief digression to give an axiomatic foundation for principles which

we shall use later.
Suppose A is a convex class of actions — a,b,€ A — aa+(1—a)b € Aforall a € [0,1].

Axiom 1: There is a class A of non-empty subsets of A, including all subsets with
three elements or less, and a function C mapping each element E of A into a non-empty

subset of its convex hull, H(E).
Axiom 2: If F < H(E) and H(F)N C(E) # ¢ then C(F) = H(F)N C(E).
Axiom 3: C(aa+ (1 — a)E) = aa+ (1 — a)C(E).

The function C is a choice function, i.e., a method for choosing the best acts from a
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set E of possible acts. Axiom 2 says, roughly, that if we reduce the set of allowable acts,
we will choose the same acts as before which are available whenever there are any. Axiom
3 states, roughly, that the treatment of a problem should be independent of the probability

that the problem will be faced.
These axioms are sufficient to prove C(E) convex:

(i) Suppose E = {a,b} and c = aa+ (1 —a)b € C(E),0 < a < 1. Let F = {a,c} =
aa+ (1 — a)E. Then by Axiom 2, ¢ € C(F); hence ¢ € aa + (1 — a)C(E) by Axiom
3, so that b € C(E). Similarly a € C(E). So if C(E) contains any point of [a, b] other

than an endpoint, it contains both endpoints.

Forany d= fa+(1-8)b,0< S <1llet G = {a,d} =fa+(1-B)E so {a,d} C C(G)
by Axiom 3.
Hence, by Axiom 2, {a,d} C C(E)N H(F) so d € C(E) ie., if E = {a,b} then
C(E)={a}or {b}or{d:d=aa+(1—-a)b0<a<l1}

(ii) Suppose E = {a,b,c}, and C(E) contains some interior point z where z = aja +

agb+ azc,a; + az + az = 1,a; > 0. Then there is a

d=pBb+ (1 - B0 < B <1 such that

t=aa+(1-a)dl<a<l.

Then by Axiom 2, z € C{a,d} and by the argument in (i), d € C(E), and by (1)
again, [b,c] € C(E). Proceeding in this way, we can obviously show C(E) = H(E)
unless C(E) is either a corner point (a,b or ¢) or a boundary line of E.
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We now introduction a partial ordering (“preference ordering”) of elements of A.

Define: a > bif a € c¢{a, b}
a > bif {a} = c{a,b}
a~bif [a,b] = c{a, b).
Note that ~ is an equivalence relation and also that a ~ b = ac+(1—a)a ~ ac+(1—a)b
for all c € A and all a € [0,1], because
C{ac+ (1 — a)a,ac+ (1 — a)b} = Clac+ (1 — a){a,b})
=ac+ (1 — a)C{a,b}
=ac+(l-a)(fa+(1-)b0<F<1
= [(ac+ (1 — a)a), (ac+ (1 — a)b).
So ~ is a substitution relation.
If a > b and b > c, consideration of C{a, b, c} shows easily that a > c.
Similarly if a > b and b > c then a > ¢.

If we add a further axiom:

Axiom 4: If a > b > ¢, there is an « € (0,1) with b ~ aa + (1 — a)c, we have enough
for the derivation of the von Neumann result: there is a real valued linear function on A

such that a > b iff f(a) > f(b).

Now let  be the class of possible states of nature, and assume that for each w €
Omega there is a choice function C,, on subsets of A satisfying the Axioms 1-4. Further-

more, let Axioms 1-4 hold for A and also

Axiom 5: If for all w € Q,a >, b, then a > b.
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Then there is a relation >, on A4, and a function g,,(-) such that g, (a) > g.,(b) iff a >,

b, for each w € 2. So to each a € A corresponds a function g,(a) on £2.

Then we can set up a linear functional L; so that we have a real valued function
f(a) = L(g.(a)) where L(ahs + (1 — a)he) = aL(h1) = (1 — a)L(h;) and we can say a < b
if L(g.(a)) < L(g.(b)). L will be the expected value of g.(a) with respect to some prior

distribution.

As we have just seen, under Axioms 1-5, any consistent procedure is to maximize
expected utility. Unfortunately, these axioms are valid only if one has an infinitely fast,
infinitely large, costless computing machine available. For example, let it be desired to
estimate the number of redheads in a student body of 30,000. Suppose we are given the
names, school addresses, home addresses, sex, and marital status of each, and we are
allowed to sample 500 students. We certainly have some useful information; but to carry
out the procedure, assuming symmetry in the utilities given the state of nature, would
require us to first list the coefficients of L (“prior probabilities”) for each of the 239,000 sets
of students. Since electronic computers currently have memories on the order of 229, and

2250

it is estimated that the number of particles in the universe is on the order of , We see

that this is out of the question.
There are a number of methods proposed for selecting “best” decisions:
Unbiasedness.

This principle is applicable in the two-action case, A = {a;,a2}, when one of the

actions, say aj, is distinguished from the other. If £ = ; U €23, a disjoint union, and we



want to take action a; if w € ; and as if w € Q5, then a decision function d is said to be

unbiased if Py, (d(z) = az) > Pp,(d(z) = a2), for all 8; € 2,60, € Q4.

More generally, if for each 8 € (2 there is a unique correct act, each act is correct for
some 6 € ; and L(6;,d) = L(61,d) for all d if the same act is correct for both 8; and 6,

then a procedure v is unbiased if, for all 6,68’ € 2,

/ / L(8', a)dv(a|2)dP(2|6) > / / L(6, a)dv(a])dP(2]6),

i.e. “on the average”, the procedure v gives a smaller loss for the true 6 than for any other
§' € Q, that is, it comes “closer”, on the average, to the correct decision than to any wrong

one.

The following example, due to Hodges and Lehmann, shows that this is not a good

a~-1

rule. Let X be distributed with density ﬁzo—ae_z/ 9 o known, and let the loss of

announcing d be (6 — d)*>. Now E(X) = af and V(X) = a6?. The estimate d(X) = 35

02

+71> While the best unbiased estimate £ has risk 6?/a.

is not unbiased and has risk

Maximum Likelihood.

Broadly, this procedure chooses the act which minimizes the loss for that 8 which is
most likely to yield the observed result, e.g. in the discrete case, with Q = Q; U 25,4 =

{a1,az2}, we look at

sup po{z}
(1) :—eu%m, choosing a; if this is > 1, as otherwise. Though this is intuitively a very
€N

reasonable procedure, there are examples where it gives poor results, e.g. F = Q =
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{(n,i):n=1,2,...N;i=1,2}
A={1,2}, P[{(m,j)}: (n,i)] = /N ifi=j
= (1 — @)bmn if i # J.
Li(n,i),a] = 1 — 6ia. So @y = {(n,4) i =1}, Qp = {(n,7) : s = 2}.
Then 0 € @4 Po({(n, 1)}) = &/N, sup Pa({(n, D}) =1 - a-

Hence the likelihood ratio, (1), is wr—gy-

But if, say, & = .9999 and N = 10?° then I_V_(—la—_a) ~ 10713, So if the 2nd coordinate

is 1, the maximum likelihood procedure tells us to choose act az; similarly if the 2nd

coordinate is 2, we would choose act a;.

The probability of error in this procedure is .9999, i.e. It is much better to do the

opposite.

Minimax risk. Here it is assumed that the g,(a) can be compared. Then choose a to
minimize sup g,(a). This procedure gives too much weight to catastrophes; for example,
w
if g is
aq ag

w1 0 999
w1000 999,

ay should be preferred. This leads to the suggestion of

Minimax regret. Define h,(a) = gw(a)—irgf gw(b). This leads to the following paradox:

there can be actions a, b, ¢, d so that a is the choice, but of a, b, ¢, the action b will be chosen.

Because of the difficulties of deciding what is the best act, it is often useful to try -
to reduce the number of acts available. There are two ways to doing this: we can try to
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eliminate those acts which are clearly not best, and in a wide range of problems which
exhibit certain symmetries we can try to reduce consideration to those acts which also

exhibit these symmetries.

The first of these procedures leads us to the notions of admissibility and completeness;

the second to the notion of invariance.

We will later give an example to show the lack of general desirability of invariance;

this renders impossible an attempt at “objectivity”.

2. Classes of Actions: Completeness and Admissibility.

Definition A procedure d is admissible iff
p(8,d") < p(8,d) for all § implies p(8,d') = p(8,d) for all 6.
(See §1 for notation). Let Z be the class of admissible procedures. Unfortunately, 7 may

be empty, so we need to define a wider class of “good” procedures.

Definition A class C of procedures is complete iff, for all d € C, there is a d' € C such

that
(i) p(6,d") < p(6,d) for all § and
(i1) p(6o,d') < p(bo,d) for some 6, € Q.
If only (i) holds, C is “essentially complete”. It is easy to see that
(a) The intersection of any finite number of complete classes is complete;

(b) The admissible class is contained in every complete class;
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(c) The intersection of all complete classes is the admissible class.

We are interested in the question: under what circumstances is the admissible class

complete?

Some of the conditions which imply completeness are given in Blackwell and Girshick,
Theory of Games and Statistical Decisions (Wiley, 1954). In particular, Theorem 5.7.1
gives conditions under which the class of admissible procedures is complete. We give here

an extension:

Theorem If every (transfinite) sequence of procedures, {v4}, which is decreasing in
the sense that p(6,vy) > p(6,vy,) (with strict inequality holding for at least one §) whenever

v < 71, and which is of length less than N441, has a lower bound, and either

(a) € has a dense subset of cardinality < Ny41 and all risk functions p(6, v) are continuous

in 6, or

(b) Every subset of 2 has a dense subset of cardinality less than M, and all risk functions

of lower semi-continuous, then the class of admissible procedures is complete.

Proof. We note that if p is the risk, then p* = preserves the order properties of

—L
1+|o|
p, but [p*| < 1. Hence we can assume p bounded. In the following, we will identify any

procedure v with the function v(8) = p(v,0); and we will write v < n if p(v,0) < o(n,0)

for all 8 € Q, with strict inequality holding for at least one 8 € Q.

If the admissible class is not complete, there is an inadmissible procedure vy, say, such

that v < vp implies v is inadmissible. We will show that this leads to a contradiction.
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Let @ be a dense subset of  such that the cardinality of @, 5, is less than Myyy.

Then if R is the set of rationals, ﬁ = A < NMa41. We well-order the elements
(g,78) of @ X R.

If the theorem is false, we can establish a (transfinite) sequence, vg,v1,...,v3,...,
such that

vgy1 < vg and, in fact, if M)gg) = inf{n(gg) : n < vg}

we can choose vg41 from {n : n < vg} so that vg41(gs) < M(gg) + rs. Then n(gp) >

vg+1(gp) — rp for all n < vg. If B is a limit ordinal, we have vg < v, for all v < .

Since the sequence B has cardinality less than N,+1, the sequence has a lower bound
¢. That is

¢ Lwygforall <A

Further, if n < ¢, then n < vg for all § and hence, for any ¢ € @,

n(q) 2 vg+1(g) — rp for every S for which gg = ¢

> ((q) — rp for every B for which ¢g = g.
Since inf{rg : ¢ = ¢} = 0,7(q) = ((q).

Thus ¢ cannot be improved on @ and, since ) is dense in 2, ( cannot be improved on
any open set in §. If the risk functions are all continuous, n(w) < {(w) implies n < ¢ on an

open set, which provides the required contradiction: ¢ must be an admissible procedure.

For the case when the risk functions are lower semi-continuous, we define f*(0) =

inf sup f(p) for any function f. Clearly f* is upper semi-continuous.-
§€U open el
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Remark: If f > g, f is lower semi-continuous, and f* # g*, then f — ¢ > 0 on some open

set.
For there exists an € > 0 and a 6 such that f*(8) > ¢*(@) + 3¢, and

(i) There is an open set U such that, for all p € U,

g9(¢) < g*(8) + €, by definition of g*;

(i1) There is a ¢g € U such that

flpo) > f*(8) — e, by definition of f*;

(iii) There is an open neighbourhood V of ¢ such that, for all ¥ € V,

- f(¥) > f(po) — € since f is lower semi-continuous.

Hence if ¥ € UNYV, open, f(¥) > f(po) —e > f*(0) —2e > g*(6) + € > g(T).

Now let the ¢ obtained above be (p, and suppose we can get a sequence of procedures

Co,C1y---€By- > B < wuwt1, such that (g1 < (g for all .
We consider the upper semi-continﬁous functions ¢* — (3 and the closed sets
Eg(r)—{0:¢C"—=(s>r}.

Clearly Eg(r) C Eg41(r) for all . Let E(r) = U Ep(r). By assumption, E(r) has a dense
B

subset Z(r) such that Z(r) < Not1. If ¢ € Z(r), the set {8 : ¢ € Eg(r)} is non-empty, so
has a least element, say §,. The set {8, : ¢ € Z(r)} has cardinality < Ny+1 and so has an
upper bound 7., with 7, < Ngy1.
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Since Eg (r) is increasing and f; < 7r,¢ € Z(r) implies ¢ € E,, (). Hence E,, (r) is
a closed, dense subset of E(r). So E., (r) = E(r). The set {~, : r is rational} is countable,

and therefore has an upper bound §, since no sequence is cofinal in wqy1.

Then for every r,E(r) = E, (r) C Es(r). Now for any real number a, Eg(a) =

0 Eg(r) C 0 Es(r) = Es(a). Hence E(a) = Es(a).
r rational r rational
Thus for any f < wg+1 and any a, {0 : (* — (g > a} C {6 : (* — (g > a}. Hence

(s > (s, so that (s+1 > (s which contradicts the construction of the sequence {(z}.

Hence the sequence {(g} must terminate with an admissible strategy (s, and the class

of admissible procedures is complete.

Invariance

A decision problem is invariant if there is a group G of ordered triples of transformation

preserving the problems.

That is, we assume that if ¢ € G,9 = (99,92,92),90,92,94 are 1-1 mappings of
Q, Z, and A, respectively, onto themselves, gz and g4 are measurable, and L(ggq, (9), 9z(2),
ga(a)) = L(0,z,a) and P(gz(B)|ga(f)) = P(B|f) forall § € Q,z € Z,a € A,B € B, and

g € G. Furthermore (gh™1)q = go — (ha)™?, etc.

A decision procedure v is said to be invariant if, for all ¢ € G,E € A,z € Z,v(g;"
(Blgz'(2)) = v(El2).

Again, it seems intuitively reasonable that invariant problems should have reasonable
invariant solutions. The following example shows that this is not always the case.
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Stein’s Example.

Let @ = {(Z,0) : @ = 10 or 107!° and ¥ is a positive definite 2 x 2 matrix}.
Z = {(z1,22) : 21,22 € E3, and 21,2, are linearly independent}. F(z o) is given by
z1 ~ N(0,X%), 22 ~ N(0,aX) and 21, 27 are independent.

0 fa=a
1 ifas#a

A= {10,107 L((Z, @), z,0) =
G = {all 2 x 2 non-singular matrices} with, for g € G, ga(Z,a) = ¢X¢',a);g4(a) =

a; gz(z1,22) = (971, 972).

The only invariant procedure is to guess, since under G any result (21, 22) is equivalent
to any other result (z3,z4). In particular, (21,22) is equivalent to (22,21). hence the

probability of error is -;—

However the non-invariant procedure that consists of looking at the first coordinates
of z; and 23,211 and 293, and chooses “a = 101%” if |21;| < |221| has an error probability

of £ artan 1071, since 11 has the Cauchy distribution with density 773

There have been a number of investigations of conditions under which invariant pro-
cedures give “good” results. The most important of these is the generalized Hunt-Stein

Theorem, which we discuss only briefly, referring the reader to Wesler, A.M.S., Vol. 30

(1959), pp. 1-20, for details.

We let C be a Borel field of subsets of G, and assume that (g,2) — gz(2) isC xB—B
measurable and (g1,92) — ¢192 is C? — C measurable. We say that a measure y on
(G, C) is right invariant (left invariant) if u(Cg) = pu(C)(p(gC) = p(C)) for every g €

G,C € C; and that a net {§q} of measures on (G, C) is asymptotically right invariant if
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lim(pa(Cg)) — p(C)=0 for every g € G,C € C.

For example, if G is the additive group of reals, C' the Borel sets, and p the Lebesgue

measure on the reals, then p is both right and left invariant. Although no invariant

probability measure exists for this group, the sequence of measures {u, } given by p,(C) =

p(C N [—n,n])/2n, is asymptotically invariant (in fact uniformly so).

(i) The testing problem. Let Q = Qg U, a disjoint union, and suppose we wish to test

(i)

Hy : w € Qp against Hy : w € ;. We assume that there is a o-finite measure v such

that P, << v for all w € Q, and 4L = p(z/w).

The group G keeps the testing problem invariant iff w € Q; implies go(w) € Q;,¢ = 0,1,
for every ¢ € G. A randomized test is a B-measurable real-valued function @ : Z —

[0,1] where ®(z2) is the probability of rejecting Ho when z is observed.

The test @ is invariant if ®(gz(z)) = ®(z) except on a set of v measure zero, for all

g € G. If the exceptional null set depends on ¢, ® is almost invariant.
Then the Hunt-Stein Theorem is:

If, for the above testing problem, there is an asymptotically right invariant sequence
{1} of probability measures on (G, C), then there exists an invariant test @, among all
tests @ for which [ ®(z)p(z|w)dv(2) < a for all w € o, which maximizes 1r€1f§'2 [ &(z)

p(z|w)dv(2); i.e., there is an invariant minimax test at any level a.

For the “estimation” case, we observe firstly that if P, << v' for all w, then there is
a v' such that P, << v' for all and P,,(B) = 0 for all w implies v'(B) = 0. (Reference

given by Wesler).
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(i)

(iii)

(iv)

We write Q = sgSQa where the Q, are sets of the form {w : w = g¢(s) for some

g € G,s € Q}, and S C Q serves as an index set. (It is obvious that s € 25, and

Qs N Q # ¢ implies Q; = Q). We define a strategy @ to be at least as good as a

strategy ¥ in the modified minimax sense if S:(Iz) plw,®) < Sélg plw, V) forall s € S.
w ] w s

A class C of strategies is called essentially complete in the modified minimax sense

if, for every ¥ ¢ C, there is a & € C which is at least as good as ¥ in the modified

minimax sense.

Then we have:

The Generalized Hunt-Stein Theorem.

If (Z,B,Q,P, A, A, L) is a statistical problem invariant under a group G, and

There exists a measure v for which the Radon-Nikodym Theorem holds with respect

to which all P, are absolutely continuous,

A is separable metric, calA is the Borel field generated by the compact subsets of 4,
and L is such that, for each w € Q, L(w, a) is non-negative and lower semi-continuous

in a and, for every real number 7, the set {a: L(w,a) < 7} is compact, and

C is a Borel fields of subsets of § and there is an asymptotically right invariant net of
probability measures, {¢q}, on (G,C). Then the class ®* of almost invariant decision

procedures is essentially complete in the modified minimax sense. If in addition,

g is a locally compact, o-compact, topological group with C generated by the compact
subsets of G, then the class ** of invariant procedures is essentially complete in this

selse.
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The important condition in this theorem, the condition which determines which groups
satisfy the requirements for the Hunt-Stein Theorem, is that requiring the existence of an

asymptotically right invariant net of probability measures on G.

Peisakoff has shown that it is essential that the group be orgodic, and consequently

the following groups are among those which satisfy the conditions for the theorem:

Groups which have ergodic normal sub-groups, ergodic factor groups, and sufficient

continuity;

Groups which are the direct limits of ergodic groups, i.e. G = LEJA Go where G, is
a
ergodic and A is directed; e.g. the group of those permutations of the positive integers

which permute only a finite number of integers;
Abelian Groups;

Solvable Groups;

Compact Groups;

Connected Lie groups which are compact module their maximal solvable normal sub-
group. All other connected Lie groups can be shown not to be ergodic. Stein’s

example, given previously, is a case of this.

There still remains the question of admissibility of variant procedures. If measurability
is not imposed, Blackwell has shown that admissibility need not occur for the translation
problem for squared error loss for distributions concentrated on a finite number of points.

The best result for admissibility in the univariate translation parameter problem with
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L(w,a) = |w — a|* is that E(]X|**!) < oo (Brown), in which case if the best invariant
estimator is unique it is admissible almost everywhere. Farrell has shown that uniqueness is
needed. If the P, are absolutely continuous on all orbits with respect to Lebesque measure,
the “almost everywhere” can be deleted, but Fox and Rubin have given an example to show
that continuity is not enough for L(w,a) = |w — a|. For testing, Lehmann and Stein have
shown that if the optimal invariant test is unique, E(]X|) < oo is sufficient for admissibility,
and for a very powerful definition of admissibility of confidence intervals, Joshi has shown
that a first moment guarantees admissibility. Perng has shown that the additional moment

required cannot be replaced by 1 — ¢ moments for any ¢.

Stein (1960) has shown that for the multivariate normal distribution with squared
error loss, admissibility occurs in 1 and 2 dimensions, but in no more. This result has been

generalized by many others.

Sufficiency and Informativeness

For purposes of economy similar to those which suggest the use of concepts of in-
variance, admissibility and completeness, it is desirable to keep the sample space, Z, as
“small” as possible; that is, it is desirable to be able to ignore those parts of the data that
are uninformative about the true parameter 8, or are otherwise unhelpful in reducing the

risk of a decision. Consequently we introduce the following definitions:

Informativeness. An experiment, z, is a quadruple, {Z,B,Q, P,} where Z is a space
of outcomes, B a o-field of subsets of Z,§) the parameter space, and P, a function on
B x Q such that, for each w € 2, P,(0|w) is a probability measure on B. The experiment
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z = {Z,B,Q,P,} is more informative than W = {W,D,Q, Pw}(“W C 2”) if for every
action space and every loss function, any risk function attainable from a decision procedure

on W is also attainable from a decision procedure on z.

Sufficiency. To introduce this concept we need to discuss briefly the idea of conditional
expectation. Let (H, A, 1) be a measure space. Let Ay be a sub-o-field of 4; and let f be
a non-negative, integrable function. Then, since [, fdu exists for all A € A and hence for
all Ay € Ay, under suitable restrictions the Radon-Nikodym theorem asserts that there
is an almost-everywhere defined a function fo, integrable (Ao, i) (i.e. Ao measurable and
p integrable), such that [ fdu = [ 4, Jap for all Ag € Ap. We call fy the conditional
expectation of f with respect to Ay and p and write fo = E(f|Ao). If f is integrable, but

not non-negative, we define E(f]Ao) = Eft|As) — E(f~|Ao).

The restrictions on (u, Ag) are satisfied automatically if u is a finite measure. Since u
is usually a probability measure, there is usually no difficulty. They can be summarized as
follows: For every set of positive measure in Ag, there is a subset positive finite measure
in Ap, and any family of sets in Ap has a p-least upper bound in Ay, i.e., if H C Ay there

is an H € Ag such that
(a) if A€ H, then y(A~ H) =0,
(b) if K € Ay and A € H imply p(A ~ K) =0, then (K ~ H) =0.

A sub-o-field Ay of A is defined to be sufficient for a family P = {P, : w € Q} of
probability measures if E,,(f|.Ao) can be defined to be independent of w for every integrable

function f on (H,A). (It is easy to see that only bounded functions need be considered).
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A statistic T' (i.e. an A-measurable function T : (H, A) — (Y, I)) is sufficient if the subfield

it induces on H (i.e. the subfield B{T"~1(D), : D € D}) is sufficient.

We note that it is possible that Ay and A; are sub-o-fields of A, with A4y C A;, and
Ay is sufficient while A; is not. For if X is R x R, where R is the real line, P = {all
measures p X p where p is a probability measure on R}.

A = Borel sets, Ty = order statistics, Ap is the sub-o-field induced by Ty, T1[(z1, 22)] =

(21,z2) if (21,22)€B

To(sr.z2) Otherwise where B is not a Borel set and (21,22) € B = 21 > 22, A; is the sub-

o-field induced by T3, then T and A¢ are sufficient but 77 and A; are not. This example is
given by D.L. Burkholder, AMS 31, 1960, p. 232. However if P is domianted by a o-finite

measure, Ay C Ay and Ay is sufficient imply A4, is sufficient (Bahadur, AMS, 25, p. 440).

A slightly weaker concept than sufficiency is that of pairwise sufficiency: A sub-o-field

is pairwise sufficient for a family P if it is sufficient for each pair, { Py, P..}, of elements of

P.

Halmos and Savage (AMS, 20, 2, 1949, p. 236) give an example of a statistic which is
pairwise sufficient but not sufficient. It is of interest, especially since pairwise sufficiency
may be much easier to establish than sufficiency, to know what further restrictions, together

with pairwise sufficiency, will ensure sufficiency.
To discuss this we need the notion of dominated sets of measures.
Definition

(1) If 4 and v are measures on a o-field S, 4 is dominated by v(“p << v”)if E € § and

-v(E) = 0 implies u(F) = 0. If also v << y,v is equivalent to p.-
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(2) If M and N are sets of measures, M is dominated by N(“M << N”)if E € § and
v(E) = 0 for all v € N implies u(E) = 0 for all 4 3 V. If also N << M, N is

equivalent to M.
M is domianted by (equivalent to) v if M is dominated by (equivalent to) {v}.
Halmos and Savage have proved the following two results:

(1) If P is a set of measures on B, dominated by a o-finite measure v, then a sub-o-field
C of B is sufficient for P if and only if there is a o-finite measure A on B such that
P << AA<L<Pand % (Radon-Nikodym derivative) is measurable with respect to

C for each w.

(2) If P is dominated by a o-finite measure on B, then T is sufficient if and only if T is

pairwise sufficient.

We note that a sufficient condition for the sufficienty of C for P, is that there exist a
measure A with respect to which the Radon-Nikodym theorem holds such that % exists
and is C-measurable for every u € P. For if this is the case, and ¢ is any integrable
function, then if g, = E,(¢|C) and gx = Ex(g|C) where X is the dominating measure,
F e Ciplies [pgdy = [pguds = [pgu3d\. But [ gdy = [ g%d\ = [, gx2d). Since
-Z—% is C-measurable. This holds for all g and all F € C, so gu% = gA%[A]; since g, is
arbitrary where %f\i = 0 we can take g, = g everywhere; so g, is independent of u, and

hence C is sufficient.
We are now in a position to prove an extension of the “sufficient” assertion of (2):

Theorem Let C be a pairwise sufficient sub-o-field for a family P of measures on a

23



space (X, A). Then if every family of C-measurable sets has a common least upper bound

with respect to all measures in P, C is sufficient for P.

[Note: A least upper bound, with respect to P, of a family of A C-measurable sets is
a C-measurable set E such that P(F' ~ E) = 0 for every F € A and that if P(E ~ H) >0

then H does not have this property.

If P is equivalent to a finite measure )\, and U is any collection of C-measurable sets,
let S = sup{A(V): V is a finite union of elements of & }. For each n let U, be a finite union
of elements of U such that A(U,) > S—1. Let U = nch:l Un. Then U € C,NU) =S,V eld
implies A(V —U) = 0 since otherwise there is an n such that )‘(igl U;UV) > S contradicting
the definition of S, and A\(U ~ H) > 0 iplies A\(H N U) < A(U) which means there is an
n such that A(H NU,) < A(U,) so that A(Up, ~ H) > 0 so H cannot almost contain all
members of ¢. Hence U is a least upper bound of ¢ with respect to A, and hence is a
least upper bound with respect to all measures in P. Halmos and Savage show that if P
is dominated by a o-finite measure y, it is equivalent to a finite measure A. Hence the

conditions of the Halmos-Savage theorem imply the conditions stated above.]

Fix the non-negative bounded measurable function f. Let M = {(¢,P) : g =
E,(f|C),P € Pand g > 0}. Foreach P € P, thereisaset Ap = g.l.b. {4 : (¢9,P) € M and
A ={X:g(z) # 0}}. Note that Ap is not unique. Let F = {g : for some P € P(g,P) e M
and for every (h,P) € Mg < h ae. Q for all Q@ € M}. If (¢9,P) € M, then gxa, € F.
Now let B, be a least upper bound of {C : for some g € F,C = (X : g(z) > r}}, for r

rational. We may assume By C B, if r > s. Define f(;,) = sup{r : x € B,}.
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Observe that if g, h € F and (g, P),(h,Q) € M then
(i) on ApN Agg = h a.e. Rfor all R € P,
(ii) on Ap ~ Agh =0 a.e. Rfor all R € P,
(ili) on Ag ~ Apg=0a.e. Rforall R€ P,
(iv) on~Ap ~Agg=h=0ae Rforall Re ?, since C is pairwise sufficient.

Consequently if (g,P) € M,g € F, and for some h € F,C = {z : h(z) > r}, then
CNAp ~ {z : g(z) > r} has R-measure 0 for all R € P. Thus B,NAp ~ {z: g(z) > r} has
R-measure 0 for all R € P. Since the reverse relation holds for all r and P, if (g, P) €¢ M
and g € F, f* = g except on a set of P-measure 0. Thus f* is a common conditional

expectation of f given C for all P € P. Therefore P is sufficient.
We can obtain the analog of the other Halmos-Savage theorem also.

Theorem: Let C' be a pairwise sufficient sub-o-field for a family P of probability
measures on a space (X, A). Then if every family of C-measurable sets has a common
least upper bound with respect to all measures in P, and P is equivalent to the well-
ordered family Q, there is a measure p with respect to which the Radon-Nikodym theorem

holds for C-measurable functions such that for all P € P, % is C-measurable.

Proof Well-Order @ into Q1,Q2,...,Qaq,.... Let {Ey} be a net of C-measurable sets

such that

(a) Qa(lubEy) =1
7L

(b) Q(Eg N Ey) = 0 for all whenever § < a. (This is certainly possible, since we need
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only choose E, to be disjoint from €u<.b. E.).
<o

(¢c) Q+(Eqy) is minimal for Q4 € Q i.e. If U is collection of sets satifying (a) and (b), then

E, is a greatest lower bound of ¢/ with respect to P.

We define y(E) = £ Qo(E N E)a) for any set E € A. (“E Qa(E N EL)” means the
[¢ [

supreme of the finite sums).

Then p is countably additive since if {F;} are disjoint, u(UF;) = X Qo(UF: N E,) =
LY Qu(Fi N Ey) while & u(F;) = L Qa(Fi N E,) and the order of summation can be

reversed since all terms are non-negative.

For any E € A,u(E) = 0 implies Q4(E) = 0 since Qo(E N E,) < p(E), if v <
a,@+(E N Ey) = 0 implies Qo(E N E,) = 0 by the minimality of E.,, and by (a) and as

Qa(E) = %} Qa(ENE,). SoQ << uforal Qe Q.
Yo

Since P is equivalent of @, P << p for all P € P. Condition (b) shows that @ << @,

on E, for all Q € Q, hence for all P € P. Since @, is a finite measure on E,, by the

Halmos-Savage theorem dlgi can be taken to be C-measurable on E,; i.e., there is a

C-measurable function Ap, vanishing off E, such that for all F € A,F C E,,P(F) =
{: Ap,odQq. But by (a) and (b), only countably many P(E,) are positive; hence the sum
of those Ap, is a Radon-Nikodym derivative of P with respect to u. That the Radon-
Nikodym theorem holds for (u,C) is a consequence of every family of C-measurable sets

having a common @Q-least upper bound, which is also a u-least upper bound.

(It may seem that the axiom of choice was used in the proof; however, the E, are

unique up to sets of P-measure 0 for all P € P, and hence all that is required is the
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countable number of choices needed to prove the Radon-Nikodym theorem.)

Investigations of the relationship between the concepts of sufficiency and informative-

ness have been carried out by Blackwell and C.H. Boll.

Formally, z = (Z,B,2, Pz) is more informative than W = (W, Z,Q, Py ) if, for every

action space (4, .4) and every loss function L,
R(A, A, L|z) 2 R(A, A, L|W)

where

R(A,A,L|z) = {pa:d e D}

where D = {d : d is a B — A measurable function from Z to A} and p4 is the function
paw) = [ L, d(2))iPu(2).

We assume throughout that the measures {P, : w € Q} on Z are dominated by a

measure g4 such that -dg%ﬁ exists for all w € Q.

We note that the requirement
R(A, A, L|2) 2 R(4, A, LIW)

for all action spaces A is necessary in the definition of “more informative”, in the sense
that there do exist examples in which the above inclusion relation holds for one action
space but not for another. We exhibit a simple one here, due to Blackwell.
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Let @ ={1,2,...,n},Z = {z1,.. ., Zn,Tnt1}, W ={y1,.-.,un}, 41 = {1,...,n},
L(w,a) =1 —b4a, Pz(zilw =g if w=1 and let
rifi=n+1
0 otherwise
s it s

pw(yilw) = n-1

R : . If the action space is A;, the procedure d(y;) = ¢ on W has
fw=1

risk pg(w) = LL(w, d(y;:))p(yi|w) = 0 since L(w,?) = 0 unless p(y;|w) = 0. But if d* is any
procedure on Z, P(i|zp+1,d*) > 0 for some ¢, and then pg«(2) > p(i|zn+1,d*)p(Tnt1|w =

i) > 0.

However if there are at most n — 1 actions, let d be any pure decision procedure on
W (i.e., for each y; there is an a € A; such that p(alyi,d) = 1. We let this a be d(y;)).
Then there is some a* € A, such that d(y;) = d(y;) = a* for some y; # y;, since there are
ny’s and only (n — 1)a’s. If r < 15 we can define d* by d*(zn+1) = a* and extend the

definition to other observations.

Definition. We say that an experiment z = (Z,B,Q, P) is sufficient for any experiment

W = (W,D,Q,Q) if there exists a linear transformation K : M(W) — M(Z) (where

M(X) is the set of bounded measurable functions on X) such that, for each f € M(W),

/ FdQu. = / K(f)dP, for all w € ,

and a < f(w) < b for all w implies a < K9f)(z) < b for all Z.

We remark that this definition does not correspond exactly to the usual definition of
sufficiency because there may exist no transformation T': W — Z (a trivial example would
be W = {0}). That is, a sufficient statistic (in the usual sense) is only “as good as” a
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point in the sample space, but an observation from Z may actually be more informative

than one from W.

However if there is a measure preserving transformation, T' : W — Z, then under mild

further conditions the two definitions are closely connected.

If T is a sufficient statistic, then defining K(f)(z) = E(f|T = z) for all f € M(W)

shows that z is a sufficient experiment for W.

The converse is rather more involved. Suppose z is a sufficient experiment for W. If

A = {a1,a3}, and d is any procedure on
W,p(wd) = Lar,) [ plas o, d)dQu(w)
+ Lar,w) [ fazhw, d)dQu(w)
= L) [ 012)dp(2)
+ Lar,w) [ 92(2)aPu()
where gi(z) = K(P(as]o,d))(2),i = 1,2, so that

91(2) + g2(2) = K(P(a1)) + K(p(az)) = K[p(a1) + p(az)] = K(1) = 1.

So the strategy d* on Z such that pla;|z,d*] = gi(2),7 = 1,2, has the same risk for all w

as does d. Also if d* is any procedure on z, then d(w) = d*(T(w)) satisfies
p(w) d) = L(alaw) /p(allw,d)de(’IU) + L(a’21w) /p(a2a |w7d)de(w)
— L(a1,6) | plar|T(w), &')dQu(w) + Llaz,) [ plaz|T(w), d")dQu(w)

= L(ar,) [ parle, d)dpul2) + Dansw) [ plaalz,d")dpu(z) = ol ')
since T is a measure-preserving transformation. Hence z and W are equally informative for
-all 2-action problems and in fact (Z, B, R, P), (W, D, Q, Q) and (W, C, Q, Q) are thus equally
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informative for all 2-action problems, where C = T—'(B) C D. Now let {wi,w2} C , and

let
dpw
Fp(t) = (puw, +Puw, ){w : e i; = (w) <t} where py, ,pw, are taken as measures on (W, D)
(55} wo
dpe
Fo(t) = (Pu, +pw, {w : Puor (w) <t} where py,,pw, are taken as measures on (W, C).

" d(Puw, + Puwy)c
It is a triviality that if z and W are equally informative when the state space is 2, they
are equally informative when the state space is 2; C 2. Consequently the Bayes risks
against any prior on {w;,ws} must be equal. Let m——%:—);(w) = f(z),€ be the prior
probability that w; is the true state, L(a;,w;) = L(az,w2) =0, L(a1,w2) = L(az,w1) = 1,

and suppose we use a procedure d on (W, D) which causes us to take act a; with probability

Q(w). Then the risk of d is
R(d) = (1-¢) ] Q(w)dpay (w) + € / —Q(w)dpu, ()
= [ -90w)(1 - @) + €0 - QNI W)d(pur +pun)u

For fixed w, the minimum of the integrand occurs if @ is the function:

_ 1 >8-S ie f>1-¢&
Qui=4 f<1-¢

so that the Bayes risk is

Ro= [ (1= (1= f@)d(pur +po)0) + [ £5() dlpun +pu)w)
f(w)>1-¢

Flwy<i—¢
1+ 1-¢

= [ Q=61 -t)dFp(t)+ / ¢tdFp(t)
1-¢ 0—
1+

1-¢
_ (1—5)(1—t)de(t)+/0_ ¢+t — 1dFp(t)

0

But F(0—) =0, and £+t—1 is continuous and zero at t = 1—¢, so integration by parts gives

ST (e +t—1)dFp(t) = — f; ™ Fp(t)dt. Also (1-€) [, dFp(t) = 2(1—¢€) and [ tdFp(t) = .
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for T2 (w)d(Pa, + Pr) = fpy dpn(w) = 1. Hence R(1 — &) = 3™ Fp(t)dt for

procedures on (W, D). Obviously for procedures on (W, C) we have similarly

1-¢
Ry=(1-€)- / Fo(t)dt.

Since (W, D) and (W, C') are equally informative, we must have

1-¢ 1-¢ '
Fp(t)dt = Fe(t)dt for all € in [0,1]
0 0

so that Fp(t) = Fc(t) a.e. So if dR = 1d(pu, + Pu,), f is as before, and g = mﬁ)‘f—i‘”plm

we have

R(f <a)=R(g < a).

But ¢ = Egr(f|C). Hence f = g a.e. [R], so f is C-measurable and hence C is pairwise
sufficient for any {wi,w2} C Q. Since we assume the measures {p, : w € Q} on Z are
domianted by a measure with respect to which the Radon-Nikodym theorem holds, C is
then sufficient for Q. Hence the statistic T(w) € Z is sufficient in the ordinary sense for

Q.

For a further comparison of the two definitions of ‘sufficient’, suppose that Y = (Z x
W,B x D,Q, R) is a ‘combined’ experiment with R,(B x W) = P,(B) and R,(Z x D) =
Qu(D) for all w € Q,B € B,D € D. Then what is the relationship between (1)“Z =
(Z,B,8, P) is sufficient for W = (W, D, 2, Q)” and (2) “the statistic T given by T'(z,w) = z
is sufficient on Z x W for 27?7 We have been able to show that (2) = (1) but not that
(1) = (2). If, in the definition of ‘sufficient experiment’, we insist that K be countably
additive, we can show easily that (1) = (2), but not that (2) = (1) unless the conditional
probabilities obtained from T are true probabilities (i.e. countably additive), which will be
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true if there is a locally compact, separable metric topology 7 on W, and D is the Borel

field generated by 7.

We now return to the relationship between sufficiency and informativeness in the
comparison of experiments problem. We showed above that if Z is sufficient for W, then
Z is more informative than W for all 2-action problems; obviously this can be extended
to all finite action problems. If, further, the transformation K is countably additive (so
that, when applied to indicator functions, it gives conditional probabilities which are true
probability measures) then Z is more informative than W for arbitrary action spaces.
Again, an extension of the argument for finite action spaces can be used to show that Z

is more informative than W if the action space is separable metric.

We now give a theorem about the converse:

If 2 =(Z,B,Q,P) is more informative than W = (W, D,, Q) and the measures
{pw : w € Q} are dominated by a measure p with respect to which the Radon-Nikodym

theorem holds, then Z is sufficient for W.

Proof. Let
M(W) = {all bounded measurable functions on W}
Li(p) = {all Ly(u) functions on Z}
H={H:H:M(W)x Li(p) » R and H is bilinear, and
[H(f,9)] < [If1l llg]l for all f € My(W),g € L1(p)}
where ||f|| = sup|f], [lg]l = [;|g| dp. Then HC X (=LA NIl 11£1F gl 2

M(W)xLi(p)
compact space; and if {Hy} is a net of elements of H; and F € X[—||fl| llgll, 171l llg]]]

but F is not bilinear, then F' is not an accumulation point of H; since if f; € M(W),g; €
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Li(p),i =1,...,n, and Ba;figi = 0 but Ta;F(fi,9:) # 0, then {G : La;G(fi, g:) > 0} is
an open set containing F' but not containing any element of {Hy}. Hence H is a closed

subset of a compact space so H is compact.

Let A={A:ACQand A is finite} and for each A € Alet Hy = {H : H € H, and
H(f,pw) = [ fdQ. for each w € A}f € M(W) where p, = -'i%‘;’—.
Blackwell (AMS, 24, 2; June 1953, pp 265-72, Thm. 8) has shown that if Z is more
informative than W, then H4 # ¢ for every A € A. Also, if {H} is a net of elements

of Ha, and F € H such that for some f € M(W),w € A,F(f,pu) # [ fdQ., then
{G: G(f,pu) # [ fdQ.} is an open set containing F' but containing no element of H4.

hence H4 is closed.

If {Ax}k =1,...,n is a sequence of elements of A, then kLgl A € A and hence
A Hay = U 4
k=1 Ae = k=1 k ?é ¢

Hence the collection of closed sets, {H4 : A € A} has the finite intersection property
so that

Ha ={h: H € H and H(f,pw)=/fde for all w € Q, f € M(W)}

= AQ.A Ha # ¢ since H is compact.
Now choose any H € H,, and let, for each f € M(W) and each A € B,
Vf(A) = H(f, XA)'

Then

lvs(A)] < |IfI] w(4)
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v <<
and hence %LL = K(f) exists. Then for each w € 2, and f >0

/K(f)(m)pw(:c)d,,(:z:) = /pw(m)duf(m) by definition of K(f),
= lim/EaiXA..(:v)duf(:I:)
where Xa;x4;(z) T pw(z)
=limXa; H(f, x ;)
= lim H(f,Xa;x4,) since H is bilinear
= H(f,p.) since bounded linear functionals are continuous
= /fde since H € Hgq.

Clearly |K(f)| < |Ifll a.e. [g], so we can take |K(f)| < ||f|| everywhere. Then K :
M(W) — M(Z) has the properties: (i) |K(f)] < ||fl| everywhere; (ii) K(%aif,-) =
g)akK(f,-), since H is bilinear; (iii) [ K(f)dpo = [fdQ. for all w € Q,f € M(W).
1

Hence Z is sufficient for W.
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