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BAYESIAN OPTIMAL DESIGNS FOR LINEAR REGRESSION MODELS

1. Introduction

Consider the linear regression model

y=f'(z)0 +¢ (1.1)

where f'(z) = (fi(2),..., fe(z)), = is the control variable, 8’ = (fy,...,0;) is the vec-
tor of unknown parameters, and € is a normally distributed random variable with mean
0 and variance o2 independent of z. We assume that X' is a compact set, containing
at least k points, with Borel field containing all one point sets. The regression func-
tions fi, f2,..., fk, are k linearly independent real valued continuous functions on the
design space X', which are assumed to be known to the experimenter. As usual, uncorre-
lated observations y1,ys2,...,Yyn on the dependent random variable y, are taken at levels
Z1,Z2,...,Tn € X, respectively, and the n—dimensional random vector ¥ = (y1,...,yn)
is assumed to have a normal distribution with mean vector X6 and covariance matrix
021, where X = (f(z1),..., f(zs))" is the n x k design matrix and I is the n x n identity
matrix. We also assume that a prior distribution 7(8,0?) on 8,02 is given such that the
conditional prior distribution w(8|c?) of @ given o is N(p,0?R™1), where R is a given
positive definite k x k “precision” matrix. Under the above assumptions the posterior
2

conditional distribution 7(8|y, 02) of 8 given y, o? is normal‘with' mean vector

8y = E(8ly,0”) = (X'X + R)"'(X'y + Rp) (1.2)

and covariance matrix ¢*(X'X + R)™!. Thus, if we are interested in estimating A'6 for
some k x s matrix A of full rank s, 1 < s <k, then under squared error loss and with o2
either known or E(o?) finite, the best estimator of A’ is A’y and the expected posterior
risk of A’ is given by

E(c*)trAA'(X'X + R)™'. (1.3)

Thus for the Bayes estimator 8, (or any estimator with covariance structure proportional

to (X'X + R)~! with a specified positive definite k£ x k matrix R), a reasonable criterion
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of optimality is then to choose X to minimize some appropriate functional ® of the matrix
(X'X + R). For a more complete discussion of the above model and of the optimality and
robustness of the Bayes estimator 8; see Pilz (1983), Chaloner (1982,1984), Duncan and
DeGroot (1976) and Sinha (1970).

We are concerned here with the approximate design theory wherein the designs are
the class = of probability measures £ on X and the Bayesian information matrix (per unit
observation) of the design ¢ is My(€) = M(£)+ L R, where M(¢) = [y F(@)f'(z)é(dx) and
n is the total number of observations. Thus M(€) is a positive definite ¥ X k matrix and
M, 1(¢) is proportional to the posterior covariance matrix of the Bayes estimator of 6.
We let My = {Mp(€): € € E}. Then the family M, of all Bayesian information matrices
is a convex compact set. It is the closed convex hull of the set {f(z)f'(z) + 2R:z € X}
of Bayesian information matrices corresponding to one point designs. Moreover if A is
k

the dimension of the vector space generated by the products {f;f;} of the regression

i,j=1

functions fi1, fa,..., f&, then for any design { € =, the Bayesian information matrix M3(¢)

can be represented in the form My(¢) = 3 pi(LR+ f(z:)f'(z:)), m < h+1< -ki%l +1,
=1

m
0<pi <1, Y pi =1 If My(§) is a boundary point of Ms, then.h'+ 1 and ﬂk;'—ll +1
Z g5

can be replaced by A and ﬂ%} respectively. Usually the optimality criterion @ (to be

minimized) is finite on M} and satisfies the following conditions:

1) ¢ is convex on My, that is, if £ and 7 € = then for any 0 < a < 1, we have

(1 — a)M;(£) + aMy(n)) < (1 — a)@(My(£) + aMy(n) (1.4)

2) @ is non-increasing in the sense that if M; — M is non—negative definite, then ®(M;) <
D(M,).

3) @ is homogeneous of positive degree p, that is, for any @ > 0, ®(aM) = a " PO(M).

4) @ is continuous and differentiable everywhere on M.



The Bayesian optimal design problem is then to characterize the des'ignéb.fo which are

Bayesian ®—optimum; that is,

B(Ms(60)) = inf 2(Ms(6)) (1.5)

The convexity of M, ensure that there always exists a Bayesian ®—optimal design sup-
ported by m < h < k(kT'H) points. The main purpose of this paper is to study a Bayesian
version of Elfving’s Theorem for the c—optimality criterion and discuss some of its impli-

cations. This criterion is given by
®(My(€)) = c'M; ' (é)e, £ €E (1.6)

and corresponds to the case where one is interested in estimating a linear combination
of the form ¢'@ for some nonrandom k X 1 vector ¢. The famous Elfving’s Theorem for

classical (non-Bayesian) c-optimal designs is the folloWing: e
Theorem 1.1 (Elfving 1952)

Let G = the symmetric convex hull of f(X). A design £* is classical c-optimum (in
the sense that it minimizes ¢'M ~(€)c over all designs € for which ¢'6 is estimable) if and
only if there exists a measurable real valued function €*(z) satisfying |e*(z)| = 1 such that
(i) [ €*(z)f(=)&*(dz) = B*c for some positive constant #* and (ii) B*c is a boundary point
of G. Moreover §*c lies on the boundary of G if and only if infe ¢'M~(€)c = B |

Definitions and some preliminary lemmas are given in Section 2. Duality theory is used
to derive a Bayesian version of Elfving’s Theorem for Bayesian c—optimality in Section 3,
where emphasis is laid on the geometry inherent in the Bayesian c-optimal design problem
and the parallelism between classical and Bayesian e—optimal design theory is illustrated.
Conditions under which a one point design is Bayesian c-optimum are given in Section
4. In Section 5 the class of prior precision matrices R for Which fhe Bayesian c—optimal
designs are supported by the points of the classical c-optimal design is characterized. It is
also proved that the Bayesian c—optimal design, for n large enough, is always supported by
the same support points of the classical c—optimal design £* if £* is supported at exactly

k distinct points and for a large class of prior precision matrices R if £* is supported at
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1 < m < k points. In Section 6 the geometry—duality approach is extended for the U-
optimality criterion and a matrix analog of the geometric result of Elfving is derived and

in Section 7 its applications are discussed.
2. Definitions and Preliminary Lemmas

Assume that we are interested in the estimation of parametric functions of the form
c'8, where ¢ is an arbitrary nonrandom k x 1 vector. Let G be the convex closure of the
set of all vectors ef(z), z € X, e € {£1}, that is, G is the symmetric convex hull of f(X).
Thus G is a symmetric convex compact subset of k—dimension‘al Euc_l_ide,an space and every

vector a € G has a representation
m
a= Z eipif(z:) (2.1)
i=1

for some positive integer m, p; > 0, z; € X, ¢ € {£1} and i p; = 1. From our
assumptions on X and f it is evident that the set G has the origin iznzilts interior and every
half line through the origin intersects the boundary of G at exactly one point and so for
any nonzero k X 1 vector ¢, there exists a unique positive constant f* such that f*c € 9G
= boundary of G. The following simple lemma characterizes the boundary points of the

set G.
Lemma 2.1

A vector a of the form (2.1) is a boundary point of G if and only if there exists a k x 1
vector d such that e
|d'f(z)| <1lforallze X (2.2)

and equality holds for each z; with ¢; = d' f(z;), i =1,2,...,m and a'd = 1. |

Proof: See Lemma 2.1 of Studden (1968).

The vector d given in Lemma 2.1 defines the hyperplane {u:u € R*,d'u = 1} sup-
porting G at its boundary a, that is, d'u <1 = d'a for all v € G. Identifying a hyperplane

with its inducing vector d, we define

D ={d:d'u <1forall u G and d'uo =1 for some uy € 3G} (2.3)
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to be the set of all normalized supporting hyperplanes to the surface of G. For every d € D,
define the contact set

C(d) = {u:u € 9G, du=1} (2.4)

to be the intersection of the hyperplane d with G and for any point u, € 0G, let D,, =
{d:d'u <1 = d'ug for all u € G} denote the set of all supporting hyperplanes to G at u,.
The set D,, is either a single point or a closed convex set and D= |J D,. Now let R be

u€SG
a given k X k positive definite matrix, n be a given positive integer and let us define the

following;:
H={z:2=u+ L1Rd, d €D andue€C(d)} (2.5)
-3
D* = {d*:d* =(1+1d'Rd) "d, de D} (2.6)
-3
Y= {'v: v=(1+1dRd) (u+2iRd), deDanduc C(d)} (2.7)

It is important to note the dependence of w and d in the definition of H and V. In
addition both sets depend on the precision matrix R. For any set A, we shall use the

notation A to mean the set

A={tazac A 0<t<1} 7 (2.8)

We show in Lemma 2.5 that G €V C H. The sets V and ‘H will serve as Bayesian
analogs of G. The set V will be shown to be the convex hull of V. The set V is just the
“normalized” version of H. The set H is not convex in general and seems to be more useful

in practice than V.

We let {z;,pi}.. . denote the design ¢ which puts weights p; > 0 at the points z; €

X,2=1,...,m. The following version of the equivalence theorem for Bayesian c—optimal

designs; see Chaloner (1984), Pilz (1981) or El-Krunz (1989), will be needed.



Lemma 2.2

is Bayesian c—optimum if and only if

The design & = {zi,pi},.

|F ()M (6o)e|® < "M (&) M(&)M; (&o)e for all z € X (2.9)
and equality holds for each z;, 1 = 1,2,...,m, in the spectrum of the design &,.
Lemma 2.3

For any nonzero k x 1 vector ¢, there exists a positive constant vy such that

m

> eipif(zi) + LRdy = yc € H (2.10)

=1

m

for some dy € D and some positive integer m, where p; > 0, €;dyf(z;) =1 and ) p; =1,
=1

(uo = Zeipi f(zi) € 0G).

Proof: Let & = {z;, pi}:ll be the Bayesian c-optimal .de's',igﬁ'i As -‘fnciic'ated in Section 1,
Bayesian c—optimal designs always exist. Thus it follows from Lemma 2.2 that (2.9) holds
for the design &. Let 752 = ¢'M; ' (&) M (&) M; " (&)e and let do = oM, ' (&)c. Then
it follows from (2.9) that |dy f(z)| < 1for all z € X and |dyf(z;)| =1, i =1,2,...,m
and so dg € D. Let ¢, = djf(z:i), 1 = 1,2,...,m, then ¢ € {£1}, i = 1,2,...,m.
Since My(£0)do = ~oc and My(&o)dy = M(£o)do + % Rdy = i pi f(z:) f'(z:)do + L Ry =

Sepif(zi) + %Rdo, then > eipif(zi) + %Rdo = 7vo¢ and so vypc € H which completes
=1 i=1
the proof. [ |

If in (2.10), we let By = (djyc)~?, then premultiplication of both sides of (2.10) by dj,
gives |
Yo = Bo(1 + 2dyRd,) (2.11)
Note that Bgc lies on the hyperplane dy € D. Since'do_supp:c_).l.jts the convex set G at
uo: = Xe;p; f(z;) then By > B* if B* is defined such that ﬂ;"c € ég. Furthermore since
7o > Po then ypc and G lie on opposite sides of the support plane dy.

»

The set D is a “convex dual” of the set G and its boundary D is a “convex dual” of

0G as it is evident from the following lemma.
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Lemma 2.4

The set D is a compact symmetric convex set in R¥ which has D as its boundary.
Moreover for any nonzero k x 1 vector ¢, there exists a unique positive constant o such

that aceD.

Proof: Let d be any element of D. Then d is a supporting hyperplane to G at some point
uedG. Since G is symmetric, then —uedG and so —d is a supporting hyperplane to § at
the point —uedG and so D is symmetric which implies that D is symmetric. In fact from

the definition of D, we have

D = {d:|d'u| <1 for all uedG} e T (2.12)
Thus for any dy,dzeD and 0 < A < 1, we have
[(Adi + (1 — A)dy) u| < A|dju| + (1 — A)|dyu| < 1 for all ueG and so Ady + (1 — A)daeD

which implies that D is convex. Since G is a compact subset of R* with the origin in its
interior, then it follows from (2.12) that D is also a compact subset of R¥. For any uedg,
let @ = sup{u'ug: ueG}. Since G is compact, then this supremum exists and is attained

~lu, is a supporting hyperplane to G at the point

at some point #,€0G and so d = a
u1€0G. Thus for every uedg, there exists a positive constant a such that a~*ueD which
implies that any half line through the origin intersects D. Thus it follows from this and
the convexity of D that any half line through the origin intersects D at exactly one point

and D is the boundary of D. Thus for any nonzero k X 1 vector c, there exists a unique

positive constant « such that aceD which completes the proof
Lemma 2.5
The set V a convex compact set and G C 7 C ﬁ

Proof: Let ¢ be any nonzero k£ x 1 vector. From the definition of G, there exists a
positive constant f* such that 5*ce0G and from Lemma 2.3, there exists a positive constant
Yo = Bo(1+ %df, Rdy) such that ypceH. From Lemma 2.3 and the definition of V it follows
that the positive constant §p = So(1 + -};df)Rdo)% is such that dpceV. Since By lies on
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the supporting hyperplane to G at the point ug for which uo + %Rdo = vp¢c, then B* < Gy
and since R is positive definite, then dyRdy > 0 and so 1 + 1d{Rdy > 1 which implies
that 8* < 6 < v and so G C V C H. Note that the set inclusion is actually “strict in
every direction.” Since G and D are compact it follows that V is bounded and closed and
so compact. To prove that the set V is convex it is enough to show that there exists a

; = . +1Rdo .
supporting hyperplane to V at every point veV. So let vy = \/u—"é'— be any point on V.
1+L1d{ Rd,

. +1Rd d .
We will show that v'd* <1 = v'd* for all v = — €V where df = . Since
0 = 070 \/1+%d'Rd 0 V/1+1d Rd,
g lRd 1414 Rd v 1Rd
vody = d oty fdo 13 doR% _ 1 and v'd} = i Cas then

Vi+2d Rd, +/1++d R,  1+1d{Rdo i+xd,Rd; +/i+id'Rd’
it is enough to show that dju + 2 dyRd < \/1 + L d} Rd, \/1 + Ld'Rd. Since R is positive
definite, then (d — dy)'R(d — dy) > 0 with equality occurring if and only if d = dy and so

2dyRd < d\,Rdy + d'Rd (2.13)
Also from Schwartz’s inequality, it is immediate that
(d) Rd)* < (dyRd,)(d'Rd) (2.14)
with equality holding if and only if d = dy. Combining (2.13) and (2.14) it follows that
1+ 2dyRd + 2;(dyRd)* < 1+ LdyRdy + 2d'Rd + (dyRdy)(d' Rd)
which implies that
(1+ 2dyRd)® < (14 LdyRd,y)(1 + 1d'Rd)

and so

1+ dyRd < \/1+ LdyRdy - /1 + Ld'Rd (2.15)

Since dy(u + £ Rd) < 1+ 1d{Rd, the result follows.



Remark 2.1

The mapping from D to D* defined by d* = (1+ 1d’ Rd)_%d is one to one and onto
because d* = (1 + 2d'Rd) *d if and only if d = (1 + 1d*Rd*) ¥ d*. Also from Lemma
2.5 the set D* is the set of all normalized supporting hyperplanes to V. Note also that the
symmetry of G and D implies that both V and D~ are symmetric. Thus as in the case of G
and D, the set D is the convex dual of V, D* is the boundary of D" and V is the boundary
of V. Thus for any nonzero k x 1 vector ¢, there exists a unique positive constant ay and

a unique positive constant §y such that agceD* and épcel.

Thus it follows from (2.10) of Lemma 2.3 that every non-zeto k X' 1 vector ¢ has the

representation

-1 [ <&
(1 + 7dyRdy) ° (Z eipif(zi) + -:;Rdo) =éc€eV (2.16)

=1
m
for some dy € D and up = ) €pif(zi) € C(dp) for some positive integer m, where
t=1
m
pi >0, €dyf(z;) =1, > pi =1 and the unique positive constant § is given by
=1

1 .
6o = Bo (1+ 2dyRdy)> (2.17)

As in the proof of Lemma 2.5, one can easily show that the set H is a symmetric compact
subset of R¥, however unlike V, the set H (as mentioned earlier) is not convex in general.
Example 3.1 illustrates this point. Nevertheless, the set H satisfies other properties of G

and V as the following lemma indicates.
Lemma 2.6

Any half line through the origin intersects H at exactly one point and the represen-

tation (2.10) is unique.

Proof: Assume to the contrary that there exists uy,u2 € 0G, dy € D,,, d2 € D,, and
~v 2> 1 such that z = uy +%Rd1 and vz = ug + %Rdz are elements of H. Let 8 = (d}2)~!
and B, = (dyz)~!. Then it follows from Lemma 2.5 and Remark 2.1 that there exists



6 > 0 such that 6z € V and 6 = /1 = v/f27y. Premultiplication of z and vz by d] and
d), and using the fact that 8; = v82 we get

A1+ LtdiRdy) =1 (2.18)
Bi(1+ LdyRdy) = +° (2.19)
Bi(dyuy + =diRdy) = v v (2.20)

Bi(dyuz + %dllez) = (2.21)

From (2.20) and (2.21), we have djus = dyu; and combinin the above four equations we
1 2 g

get
L(ydy ~dp) R(ydy — d3) = % — 7% + L + 2ydyus < —(y—1)* <0 (2:22)

with equality holding if and only if v = 1 and djus = dju; = 1. Since R is positive
definite, then
%("ﬂll — dz)’R(’)’dl - d2) 2 0 (223)

with equality holding if and only if vd; = d;. Thus from (2.22) and (2.23) we get a
contradiction unless d; = dy = d (say) and v = 1. But if this is the case, then u; +1Rd =
ug + %Rd which implies that w; = us. This completes the proof. [

Remark 2.2

What Lemma 2.6 says is that for any nonzero k x 1 -ve;tdll"&cl, thére e%ist a unique
triple (#o,do,%0), #o € 0G, do € Dy, and o > 0 for which ug + ;ll-Rdo = ~9c € H. Thus
the triple (1o, do,8¢) in the representation (2.16) is also unique. That H is a symmetric
compact set which spans R¥ follows from this and the symmetry and compactness of V.

Thus H is a “starlike” set in R*¥ with boundary H.
3. Elfving’s Theorem, Geometry and Duality Theory

The following result is the Bayesian version of Elfving’s Theorem (mentioned in the

introduction) for the c—optimality criterion.
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Theorem 3.1

Given a nonzero k x 1 vector ¢ and a k x k positive definite matrix R, the design
o is Bayesian c—optimum if and only if ¢ has the representation (2.10), or equivalently
(2.16), with &o(z;) = pi, ¢ = 1,2,...,m. Bayesian c—optimal designs always exist and
inf M (€)e = ple) = 652 = (Bor0) .
Proof: Let £ = {z;, p,} be any design in = and let d* be any vector in D*. Then one

has
d'My(&)d

d*' M,(§)d* = Tt 1dRd 1L d,R y (sz(d'f(:c,))2 ld'Rd) (3.1)

Since |d'f(z)] < 1 for all z € X, then |d'f(z;)]*> < 1, ¢ = 1,2,...,m and so
Z pi(d f(z:))? < E pi = 1. Thus it follows from this and (3 1) that

i=1

d*' My(¢)d* < 1for all £ € E and all d* € D* (3.2)

with equality holding if and only if |d' f(z)| = 1 for all z in the spectrum of the design ¢£.
In other words, equality holds in (3.2) if and only if u = [, e(x)f(z)¢(dz) € 8G for some
function € being defined on the support of the design ¢ which takes values 1 and d is the
supporting hyperplane to G at the boundary point u. Let ¢ be any nonzero k x 1 vector.

Then it follows from Schwarz’s inequality that

, 1 - (d’c)2 _ (d*’c)2 (d*lc)2
My (0 = 0 I Od S FILEOT = d ML) (3:3)

which implies that
d* My(&)d* > (' ML (€)e)™ (d* ¢)? for all ¢ €Fand all d* € D* (3.4)
From (3.2) and (3.4) it follows that

érelf ' M (E)e > sup (d*'c)2 (3.5)

Since ¢ has a unique representation
Ug + %Rdo = YC (36)
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with dy € D, ug € C(dy) and vy > 0 is such that yoc € H, then it follows from Lemma
m
2.1 that uo = ) €;p; f(z;) for some positive integer m, p; > 0, €; = dy f(z;) € {£1} and

=1
>~ pi = 1. Thus it follows from (3.6) that
=1
djc)? 1 1 1
d*l 2 — ( 0 — — —- 3.7
e =T 1aRd~ B+ 14RA) B & (37)
and R
1 1 1
MY &)e = —c'dy = == 3.8
b (60) Yo 0 ﬂO"YO 63 ( )
if and only if £, = {:c,-,p,-}j;l. Thus it follows from (3.7) and (3.8) that
M (&)e = (dy )’ = R (3.9)
’ ° Bovo & '
if and only if €o(z;) = p,-, ¢ =1,2,...,m and so it follows from this and (3.5) that
1 1
inf ¢/ M; Y (e = ' M (&)e = (de)? = sup (d¥e)? = — = = 3.10
L MO = M E0)e = (e = sup (@of == (310

if and only if §o(z;) = ps, ¢ = 1,2,...,m. Thus ¢, is a Bayesian c—optimal design if and only
if ¢ has the representation (2.10) with &(z;) = ps, 2 = 1,2,...,m, and érelﬁ M (€)e =

p(e) = (Boyo)™* = 852 which completes the proof. [

The following result follows directly from (3.10).

Corollary 3.1

The Bayesian c—optimal design problem
Minimize ¢'M; ! (€)c subject to £ € E (3.11)
is the dual of the problem
Maximize (d* ¢)? subject to d* € D* (3.12)

and the two problem share a common extreme value p(c) = 652 = (Boy0) 2. n

The parallelism between Theorem 3.1 and its classical analog of Elfving’s Theorem

is now evident. To see that, let ¢ denote the set of all functions € defined on X which
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takes values 1. In Elfving’s Theorem we find the unique positive constant #* such that

B*c € 3G and the classical c~optimal design is then the design £* for which
/ e*(z)f(z)€* (dz) = f*c for some €* € € (3.13)
X

in which case the infimum of ¢/M~({)c among all designs ¢ for which ¢'6 is estimable
is equal to 8*~2 and is attained at £ = £*. In Theorem 3.1 we find the unique positive
constant 8 such that fpc € V (or equivalently the unique positive constant v such that

Yoc € H) and the Bayesian c-optimal design is the design o for which

/X e(z)f(z)éo(dz) = up for some e € £ (3.14)

where u(€dG is uniquely determined by the representation ug +%Rd0 = yoc (or equiva-

1
lently the representation %\/—ﬂ—% = bpc) of ¢ and dy is the supporting hyperplane to
n %o ftd0

G at ug € G normalized so that djuy = 1. The infimum of M £)c among all designs
0 b

¢ is equal to 8; 2 and is attained at & = &.

Following similar steps to those by which Corollary 3.1 is derived, one can easily see

that the classical c-optimal design problem is the dual of the problem
Maximize (d'c)? subject to d € D (3.15)

and that the two problems share a common extreme value. Thus finding the classical and
the Bayesian c—optimal designs can be achieved geometrically by visualizing the sets 0G
and V or equivalently the sets 0G and H. Also the design problem and its dual problem
are clearly equivalent in the sense that by solving any one of them one can, with the aid
of the unique representation (3.6), obtain a solution of the .E)t.héi‘":and so in addition to
the intuitive appeal of the above geometrical approach, it may be possible to solve certain
covering or dual problems both in theory and in practice. For more discussion of this and

the approximation theory interpretation of the above results, see El-Krunz (1989).

We now prove the following simple result which gives the condition under which the
Bayesian and the classical c-optimal designs coincide. Further applications are given in

later sections.
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Corollary 3.2

Let &y = {z, p,} be a classical c—optimal design and let By be such that Byc € 5G.

Then ¢ is a Bayesian c-optimal design if and only if

Rdy = apc for some ag > 0 and some dy € Dg, (3.16)

Proof: Since { is a classical c-optimal design, then it follows from Elfving’s Theorem

that there exists ¢; € {1}, : = 1,2,...,m such that Z zp,f(:l:,) = foc. If £o is also a

Bayesian c—optimal design, then it follows from Theorem 3 1 that ,30 c+ Rdo ~YoC, where
dy € Dg,c and v = ﬂ0(1+%d’Rd) which implies that Rdy = agc, where ag = n(vo—fo) =
BodyRdy > 0. On the other hand if Rdy = agc for some oy > 0 and some dy € Dg,., then
Boc+ LRdy = (Bo + 20)¢ = ape which implies that E eipif(zi)+ =Rdy = = 7o¢ and so o

is a Bayesian c—optimal design. This completes the proof

Example 3.1 In this example we consider the simple linear regression to illustrate the sets
G,V and H and also Corollary 3.2. Let f(z) = (1,z)', z¢[-1,1], R (1}2 ;;g) and
take n = 1. The sets G,V and H are depicted in Figure 3.1. The set G is readily seen to be
the square with side of length 2. To draw the set H we simply take each point uedG and
transform to the point h = u + Rd where d supports G at u. Note that the representation
h = u+ Rd is linear in both « and d; however they depend on one another. Thus the four
sides of the square transform to line segments since each corresponds to the same d. The
right vertical face has d = (1,0) so it transforms to u + Ri=u +(1, 1/2) . In particular
(1,1) corresponds to (2, 3/2) as indicated on the figure. Note that G C V C H; that § and
V are convex while H is not. The set V is just H pulled toward the origin by the factor

-1
(1+ Ld'Rd) *. In most of our examples we have found the set H to be easier to work

with than V; in fact in most cases we do not even consider V.

In extrapolating, say to o > 1, we take ¢ = (1,z¢)'. One can readily check that

the classical design puts weight « and 1 — a at —1 and 1 where a = 27(1 — z;') and

the minimum variance is 2. In the Bayesian case we use the same two points with
0

a=2(2—z;") and the Bayes risk is (2)%z].

This same example illustrates corollary 3.2. Thus if in the extrapolation case we
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take R so that R((l)) = ap (zlo) the design stays exactly the same. This is the case if

Rzk(q xl)wherek>0, p > 0 and pzy > 1.
0

Example 3.2

Assume that f(z) = ( L , £ € X =[~1,1]. This model actually arises

z )'
V14z2? 14z2
from the simpler standard linear regression model (1,z) except that the variances are not
assumed constant. More details can be found in DasGupta and Studden (1989). One can
easily see that f(X) = {(a, +v1—a?):a € [%, 1] } and that the boundary of G consists
of f(X), —f(X), the line segment joining the two points (—%, %) , (%, %) and the
line segment joining the two points (—%, —%),
(%, -—%) Note also that f(X)U(—f(X)) is the part of the circle a + 4% = 1 for which
|b] < a. For any nonzero k X 1 vector ¢, we want to characterize the entire class of Bayesian
c-optimal designs. So for each z € (—1,1), let u = (u1,uz)’ = f(z). Then % <up <1
and the supporting hyperplane to G at u is u itself. Thus it follows from Theorem 3.1 that

the one point design ¢, is a Bayesian e—optimal design if and only if
u="y(I+IR)c (3.17)

where 9 is chosen such that (I + TR) ¢ € f(X), that is, 7o = £||(I + 2R)'c||. Let
R = ((rij))f,,-ﬂ and let z; = (1+ %7’22)01 - %7‘1262 and 2o = —%rlgcl +(1+ %ru)cz. Then
it follows from (3.17) that the one point design ¢;, z € (—1,1) is a Bayesian c—optimal

design if and only if |21] > |z2] and z = £.

It also follows from Theorem 3.1 that the Bayesian c-optimal design puts weights
1—p, p, 0 <p<1at the two points —1,1 respectively if and only if
70c=p(§>+(1_p)<_§>+%3d0 (3.18)
V2 V2
where dy = (0,v2)', 70 = fo(1 + 2d} Rdy) and By = (d}c)~1. Since dljc = /2 cy, where
¢ = (c1,¢2)', then for the Bayesian c-optimal design to be supportev_d‘ at the two points
—1, 1, we must have c; # 0. Thus it follows from (318) thatthe Bayesian c—optimal
design puts weights 1 — p, p, 0 < p < 1 at the two points
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—1,1 respectively if and only if

——% (1+ %l‘) < (%;'7‘22 — 7‘12) < % (1 — %’2‘) (319)
in which case
p=1(2rn—m)+1(2+1) (3.20)

Finally, using the same theorem, one can easily demonstrate that the design ¢; which puts
all of its weight at the point £ = 1 is a Bayesian c—optimal design if and only if 0 < z; < 2,
or z2 <z <0, and, (ﬂrn — 7"12) >z (1 — 92-) or ¢z = 0; the de51gn &_1 which puts all
of its weight at the point 2 = —1 is a Bayesian c— optlmal de51gn 1f and only if 0 <z < —2
or —z9 < z1 <0, and, (Z:'T’zz — r12) <-%Z (1 + Z;) orca =0.

4. One Point Designs and Alternative Formulations

In the classical theory of optimal design, a one point design £;, cannot be a classical
c-optimal design unless *¢c = £ f(z¢) € 9G for some zo € X and some constant 3* # 0.
For the Bayesian theory of optimal design it follows from the unique representation (3.6) of
¢ that the one point design £, is a Bayesian c-optimal design if and only if uo = =+ f(zo)
for some zg € X. This will always be the case if 0G C f(X) U (—f(X)). The following
result is given in Chaloner (1984) and Pilz (1983).

Lemma 4.1

If the design space X and f are such that 0G C f(X ) U( f(X )) then every Bayesian

c-optimum design is a one point design for some z¢ € X, o u

The above Lemma states a simple sufficient condition for the existence of Bayesian
c—optimal one point designs. A necessary and suflicient condition however is that the point
g € 0G in the unique representation (3.6) of ¢ be an element of £+ f(X') and so if the prior
precision matrix R has some convenient structure, one point designs can often be Bayesian
c—optimum. One point designs are of special interest because they are exact designs which
are easy to implement and which keep the experimental effort minimal. What we are

interested in here is to characterize the set of precision matrices R for which the one point
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design &;, is Bayesian c—optimal for a given nonzero k X 1 vector ¢ and a point z¢.€ X for
which f(zo) € 0G. Consideration of this problem led to an alternate formulation of the
design problem given in Theorem 4.1. The following lemma will be needed. For a proof,

see El-Krunz (1989).
Lemma 4.2

Let @ and y be given k X 1 nonzero vectors and let R be an unknown k x k positive
definite matrix. Then a positive definite solution in R to the matrix equation Re = y

exists if and only if 'y > 0. The general solution is

!
r=2 L yav (4.1)

Ty
where U = (uy,...,uz) is an arbitrary orthogonal matrix for which u; = @/|#| and A =
diag (0, A2, ..., Ax), where Aq,..., A; are arbitrary posiﬁivé'rééil fhumbers. |

Let ¢ be any nonzero k x 1 vector and let ug € 3G with corresponding design £;. For
each do € Dy, let By = (dje)~!. Without loss of generality, let us assume that 8y > 0.
Let us define R to be the set of precision matrices R for which the design &, is Bayesian

c-optimal, that is, R is the set of all positive definite matrices R for which
ug + %Rdo = vpc for some dy € D,, and some v, > fy | (4.2)
For every dy € D,,, let R4, denote the set of all positive definite matrices R for which
ug + %Rdo = 7oc for some v9 > By (4.3)

or equivalently

%Rdo = (o€ — uyp) for some 9 > Sy (4.4)

Let Ny, be the set of all matrices UAU’, where U = (uy, ... ;) is an arbitrary orthogonal

matrix for which u; = j, - and A = diag (0, Az,...,Ax), where Ay,..., Ag are arbitrary
0%o
positive real numbers. Since (ypc — ug)'dp = %% — 1> 0, then it follows from Lemma 4.2

that

_ _ !
Ry, = R:R= n(y0¢ — o)(70e — o)’ | UAU', 4o > Bo and UAU' € Ny, (4.5)

(#-1)
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and R= |J Ra,. Thus, we have the following result.
do€Dy,

Theorem 4.1

Let ¢ be any nonzero k x 1 vector and uo € 0G have corresponding design £. The

design o in Bayesian c—optimal if and only if R € R. ||
Special Case
Assume that ¢ = ug = f(=zo), that is, we are interested in the estimation of f'(z¢)0
for some z¢ € X and that f(zo) € 8G. Then By = 1 and (4.5) becomes
Ra, = {R: R=n(y —1l)ec' + UAU', 70 > 1 and UAU' € Ny}
={R: R=agec' + UAU', ap > 0 and UAU' € Ny} (4.6)

which is independent of n and so we have the following result! -

Corollary 4.1

If ¢ = uo = f(zo) € OG for some 2y € X, then the one point design &, is a Bayesian

c—optimal design if and only if R€ R = |J Ra,, where Ry, is given by (4.6). Moreover
do€D.
R does not depend on n, i.e. R is a “cone.

Example 4.1
This example is described in Chaloner (1984) and Pilz (1983). Assume that the design
space X is such that f(X') is the unit ball, that is,

f(X)=08G = {u € R*:v'u = 1}. (4.7)

Then it follows readily that all the Bayesian c-optimal designs are one point designs.
Since the supporting hyperplane at any point ug € 8G is ug itself, then it follows from

Theorem 3.1 that the one point design £;, is Bayesian c—optimum if and only if
(I +1R)f(z0) = 20¢ (4.8)

or equivalently .
F(0) = %o(I + R) e (4.9)
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where 7o is chosen such that (I + +R)™'c € 86, ie, vg' = %||(I + 1R) lc||. If
¢ = f(zo) € 0G for some z¢ € X, then it follows from Corollary 4.1 that the one point
design £, is Bayesian c-optimum if and only if Re = agpe for some ap > 0, i.e., £;, is a

Bayesian c—optimal design for all prior precision matrices R for which ¢ is an eigenvector.
This suggests a more general simple result. The proof is straightforward.
Lemma 4.3

If the vector ¢ is such that the support plane to G, at fSyc € 9§, is proportional to
c then the classical design &, is Bayesian c-optimal for all prior precision matrices R for

which ¢ is an eigenvector. If Re = Ae then

e A\

Remark 4.1

Take the set of points of contact of G with either the sphere inscribed in or circum-
scribing G. If fyc is any of these points the conditions of Lemma 4.3 hold. If b denotes
either radius then (4.10) can be rewritten as 85 2(1 + A/nb?)~1.

Example 4.2

Consider the quadratic polynomial regression model for which f(z) = (1,z,z%), z €
X =[-1,1]. Then the set G is the convex hull of the parabolic arcs +f(z) = +(1,z,z?),

z € X. The “upper face” of G is the 2-dimensional convex set

C= {Uoi uo = p1 f(—1) = p2£(0) + p3 f(1), p: >0, Zpi = 1} (4.11)

i=1
and dy = (—1,0,2)' is the hyperplane supporting G at the whole face C. Thus the sphere
of radius b inscribed in G touches G at exactly one point ¢ € C and dy = 3% We shall
assume without loss of generality that fo = 1. Since djc = 1, then b®d}dy = 1 which
implies that b = —k and so ¢ = ug = b’dy = £(-1,0,2)". From (4.11), it follows that

p1 = p3 = % and p; = % and so it follows from Lemma 4.3 that the design & which

puts weights p; = %, p2 = % and p3 = % at the three points —1,0 and 1 respectively is
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Bayesian c—optimum for all prior precision matrices R for which ¢ is an eigenvector and
' M (&o)e = érenfE' M (é)e = (1+ %)_1, where A is the eigenvalue of R corresponding
to the eigenvector ¢. The sphere circumscribing G touches the boundary of G at the four
points¢; = (1,1,1), e2 = (1,-1,1), e3 = —¢c; = (-1,-1,-1)and ¢4 = —c2 = (~1,1,-1),
and has radius v/3. Thus for ¢ = +ey, the design ¢; which puts all of its weight at the
point z =1 is a Bayesian c—optimal design for all prior precision matrices R for which ¢ is
an eigenvector and érelg c' M, Y&)e = (1 + 3%11-)_1, where A; is the eigenvalue corresponding
to the eigenvector ¢ of R. For ¢ = *ec¢3, the design £_; which puts all of its weight at
the point £ = —1 is a Bayesian c-optimal design for all prior precision matrices R for
which ¢ is an eigenvector and iréf M (€e = (1+ 3%)_1, where Ay is the eigenvalue

corresponding to the eigenvector ¢ of R.

One can use Corollary 3.2 to characterize the set of all prior precision matrices R
for which the Bayesian c—optimal design and the classical c—optimal design coincide. For
example, if we are interested in estimating the highest coefficient in this example , i.e., c'8
for ¢ = (0,0,1)", then the classical ¢ —optimal design ¢{* puts weights 1,1, 2 at the points
—1,0,1 respectively and dy = (—1,0,2)". Thus it follows from Corollary 3.2 that £¢* is also

a Bayesian c—optimal design if and only if

Rdy = age for some oy >0 (4.12)

3

If we let R = ||ry| then it follows from (4.12) that ry; = 2ri3, r12 = 2ro3 and

i,j=1?
r13 < 2rs3. Since R is positive definite, then if r13 = 2r;3 and r;3 = 2ry3, then the
condition r13 < 2r3s is trivially satisfied and so the Bayesian and the classical c—optimal

designs coincide for all prior precision matrices R for which r1; = 2r13 and r12 = 2ra3.
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5. Bayesian c—Optimal Designs on the Support of Classical c-Optimal Designs

In the last section conditions on ¢ and R were given so that the classical and Bayesian
c—optimal designs coincided. In this section we consider the more general problem of when
the support points of the designs are the same. It was noticed in Chaloner (1984) that this
happened in certain polynomial examples for large n. If n. is large one expects the designs
to be close. The fact that the supports are identical for large n is not entirely clear. We
show this to be the case for any ¢ when the classical design is on a “full set” of k points.

Recall £ is the number of regression functions. The general result is in Theorem 5.1.

Assume that the design ¢* = {:1::‘,1)’1"}::1 is a classical c—optimal design. Then it
follows from Elfving’s Theorem that there exists ef € {£1}, ¢ =1,2,...,m and a positive

constant B*(= By) such that

m

Y eiptf(a}) = B*cedg (5.1)

=1
m
Thus it follows from Lemma 2.1 that ). €¥p;f(z;) € 8G for any set of non—negative
=1

weights py,pa,...,pm for which > p; = 1. Thus it follows from Theorem 3.1 that the
i=1

design &, = {x;,pj}:r;l which puts weight p; > 0 at the points 2} € X, i =1,2,...,m is
a Bayesian c—optimal design if and only if

m m

Y erpif(zr) = (1+ 2diRdo) ) €ipf (=) — LRdo (5.2)

1=1 =1
for some dy € Dgs+c. Let Fy = [ef f(z7),..., €5 f(z},)] be a k X m matrix of full rank m
and let F = [e}, 1 f(Thy1)s--- , €5 f(z})] be such that F = [F}, F3] is a nonsingular k x k
matrix, that is, if m < k we add k — m arbitrary points z} with corresponding weights
pf=0,1=m+1,...,k so that F = [e] f(2]),...,exf(z})] is nonsingular. We also let
p*=(p},-..,p5)s P=(p1,...,Pm), 7* = B*(1 + +dyRdy), F' = [?8] where F(!)
is an m X k matrix and b = (F{R™1F;)7'1, where 1 is the m X 1 vector of ones. It was
shown in El-Krunz (1989) that for (5.2) to holds, the prior precision matrix R must satisfy

the condition

F®Rdy=0for somedy € Dgee. = - - (5.3)
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or equivalently

R'F(F{R™'F1)™'1 = d, for some dy € Dp= (5.4)

in which case (5.2) becomes

p=(14+71b)p" - ;b (5.5)

Thus it follows from the equivalence of (5.3) and (5.4) that the choice of F; is irrelevant.
Note also that if m = k, then Condition (5.4) becomes F'~'1 = dp which trivially holds
because e€fdjf(zf) =1, : = 1,2,...,k and dp is the unique supporting hyperplane to G
at the point 8*c. Thus we have the following result.

Theorem 5.1

Let &* = {z}, p:‘}:n: , be the classical c-optimal design and let 8* be such that 8*c €
8G. Then the design & = {z¥,p;:}..
hold.

is Bayesian c—optimal if and 'on‘l.y’if (5.4) and (5.5)

i=1

Corollary 5.1

Let £* = {a:f{,p;f‘}f:l be the classical c-optimal design, f* be such that f*c € 0G,dy
be the unique supporting hyperplane to G at the point 8*c € 8G, and € = dj f(z:), ¢ =
1,2,...,k. Then the design & = {z;,p;}*_, is Bayesian c—optimal if and only if

p= %;p* —1F-'Rd, (5.6)

Let us define the set R to be

_ R¥. . ifm=k (5.7)
"\ {RReR}, RIFA(FRF) 1 =dy forsome dy € Dges} ifm<k

that is, R is the set of all positive definite k x k matrices if m = k and R is the set of all

positive definite matrices for which (5.4) holds if m < k.

Also define

B — {F—IR(F')—l ifm=k (5.8)

(FIR'F)™ ifm<k
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Then condition (5.5) becomes

p=(1+21R*1)p* - L1Rr"1 (5.9)
which can be written as
m m
pi=pi |[1+5) r5 | =1> 1, i=1,2,...,m (5.10)
ij=1 =1

We then have the following result which is very useful in characterizing the set of all
matrices R for which the Bayesian c-optimal design £ is supported at the same support

points as the classical c-optimal design.

Corollary 5.2

Let & = {x:‘,pf}zl be the classical c-optimal design. If R € R, and

m m

o< n+ Y ], i=12,...,m S (5.11)
j=1 i,j=1

then the Bayesian c—optimal design puts weights p; > 0 at the points z; € X,

1 =1,2,...,m and the p; are given by (5.10), i =1,2,...,m.

Corollary 5.3

For any R € R, the Bayesian and the classical c-optimal design coincide, i.e., £ = £*,

m m
if and only if Y rij =p; > i

Proof: If £y = £, then the result follows from (5.10) of Corollary 5.2. On the other hand
if 3 rf;=pf > rf, 1=1,2,...,m, then it follows from (5.10) that p; = p?,

i=1 =1
¢ =1,2,...,m and condition (5.11) becomes np} > 0 which trivially holds and so it follows

from Corollary 5.2 that the classical c-optimal design £* is also the Bayesian c—optimal

design which completes the proof.
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Corollary 5.4

For every R € R, there exists a positive integer ng = no(R) such that the Bayesian
c-optimal design ¢, is supported on the points of the classical c-optimal design £* and the

weights of £ are given by (5.10) for all n > n,.

Proof: Assume that R € R and R* is defined as in (58)S1ncep;" >'0, i = 1,2,...,m,

then there exists positive integers n;, ¢ = 1,2,...,m such that
erj<pf n+2r;‘j foralln >nj, 1=1,2,...,m (5.12)
Jj=1 i,J=1
Since m is finite, then we can take ny = max{ni,...,n,} and so (5.11) holds for all
n > ng. Therefore the result follows from Corollary 5.2 |

Corollary 5.4 is of special importance. For example if the classical c—optimal design
is supported at exactly k distinct points as in the case of extrapolation or estimating
the highest coefficient in polynomial regression, then the Bayesian c—optimal design is
supported at the same points of the classical c-optimal design for n large enough. The
same is true for any R € R if m < k, where R is expected, in general,v to be a very large
set. In fact, it was shown in El-Krunz (1989) that R is a nonempty, unbounded set which
is the union of closed convex sets with respect to the usual topology defined on the set of

all positive definite k x k& matrices. If for any given positive integer n, we define
R™ = {R: R € R and support (£,) = support (¢} (5.13)

to be the set of all positive definite matrices R for which the Bayesian c—optimal design
€o is supported at the same points as the classical c-optimal design, then R(™ is also a
non—empty unbounded set which is the union of convex sets and the sequence {R(™} is
an increasing sequence in n and nlil:réo R(™ = R. For moderate values of n, however, the

Bayesian c-optimal design is not necessarily supported at the same points of the classical

c-optimal design. This should be clear; the following is an example.
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Example 5.1

Assume that the design space X consists of three points z1,z9, 23, where f(z1) =

(1,0), f(z2)=(1,1), f(zs)=(0,2)" and assume that ¢ = (1,3)'. Thus f(X) is given by

wo-{(). () O)

Since £ = %(g) + %G), then the classical c—optimal design puts equal weights at the two

c
2
points (0,2)" and (1,1)'. Also since R = R, ,, that is, the set R is the set of all positive
definite 2 x 2 matrices, then for any positive definite 2 x 2 matrix R = ((r; j))f.j= ,» it follows
from Corollary 5.2 that the Bayesian c—optimal design puts weights py, p2 at the two points

(0,2)" and (1,1) respectively if and only if
—4n < 3r11 + 2ri12 — o2 < 4n (515)

in which case i, 1
p1 =75+ 355(8r1 + 2r12 — 7‘2,2)-, .
: (5.16)

P2 = % — #(37'11 + 2r1p — r22)
Thus R(™ = {R:R € R;’xz, —4n < 3r1;1 + 2r12 — r22 < 4n} and so for any prior precision
matrix R € Ry, ,, one can choose n large enough to force condition (5.15) to hold. However,
if n is fixed, then for those matrices R € Ry, , for which condition (5.15) does not hold,
the Bayesian c—optimal design is no longer supported at the two points (0,2)" and (1, 1)’;
If we define @ = 3ry; — r12 and b = ro2 — 3r12, then using Theorem 3.1, it follows that
the Bayesian c-optimal design puts weights at the two points (0,2) and (1,1)" if and
only if a € (—4n + b, 4n + b); it puts weights at the two points (1,0)" and (1,1) if
_and only if @ € (—3n,—2n); it puts weights at the two points (0,2)' and (1,0)" if and
only if a € (—3n — 3b, —2n — 1b); it puts all of its weight at the point (1,1) if and
only if a € [-2n,—4n + b], it puts all of its weight at the point (0,2) if and only if
a > max{4n + b,—2n — $b}, and it puts all of its weight at the point (1,0)" if and only if

a < max{—3n — 15, -3n}.

Example 5.2

Consider the cubic polynomial regression model, where f(z) = (1,z,22%,2%), |z| < 1

and assume that ¢ = (0,0,0,1), that is, we are interested in the estimation of 6, the
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coefficient of z3. Since

1 L 1
-1 1 —% 1 % 1 1
1,_ 1
=% 1) *ts| 2" | -s|1|t5]1 (5.17)
4 4
-1 1 1 1
3 8
4
thenﬂ*c:Ze tf(z}), where f* =1, e§ = -1, &5 =1, €} = ~-1, e =1, pt=p; =13,
=1
Py = pt = % and the z}’s are the “Chebychev” points —1, —% 1 and 1. Thus the
classical c—optimal design £* puts weights %, %, % a,nd at the points —1, 2, 5 and 1

respectively, dy = (0,—-3,0,4)' and R = RJ, , and so for any positive definite 4 x 4 matrix
R= ((r,-j))?j= ., there exists a positive integer ng such that R € R(™ for all n > ny. From

(5.6) of Corollary (5.1), it follows that

= 4 (557 o) 4 (352 = ra) — (B — )]
R ) R )G
ng =2 —4(322 _ry,) — 2[4(322 —ryy) — (3ra3 — 4r3a))]

= 8 (0 = r20) — (35— ) — (o — )]

where n; = np;, ¢ = 1,2,3,4. Thus if all the n;’s in (5.18) are positive, then R € R(")
and the Bayesian c-optimal design ¢, puts weights pj,p2,ps and ps; at the Chebychev
points —1,—2, 2 and 1 respectively. Moreover it follows from Corollary 5.3 and (5.18)
that the Bayesian and the classical c—optimal designs coincide if and only if R € R4X4,

3’!‘12 = 47’14, 37‘22 = 47‘24 and 37‘23 = 47‘34.

6. Bayesian ¥-Optimal Designs

In the previous sections, we considered the case where one is‘-'in‘tr;erested in the esti-
mation of a single parametric function of the form ¢'8 for some nonrandom & x 1 vector
c. The generalization of this is the estimation of a linear combination A'@ for some k X s
matrix A of rank s < k. Under squared error loss, the linear Bayes estimator for A'0 is
A8y, where 8, is given by (1.2) and the Bayes risk is proportional to tr ¥(R + X'X)™1,
where ¥ = AA' is a k X k matrix of rank s < k and R is the prior precision matrix. Thus

in terms of the Bayes information matrix, we are interested in minimizing the optimality
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criterion functional

$(My() = tr TM; () (6.1)

over the set = of all approximate designs. This criterion is what we called the ¥—optimality.
The main purpose in this section is to extend the results of the previous sections on ¢
optimality for ¥—optimality and to give a matrix analog of the Elfving’s Theorem for
Bayesian ¥-optimal designs. The treatment in this section is similar to that of c—optimality
and so some of the details will be omitted since the results will be direct extensions of that
in the previous section. So let e(z) = (e1(z),...,€s(2))' be a vector of s real valued
functions defined on the design space X and define G as the"sm’allest“ Con\}ex set of k X s
matrices which contains the matrices f(z)€'(z) for all z € X and all functions € for which
le(z)] < 1 for all z € X', where by |- |, we mean the usual Euclidean norm. Treating the
matrices in G as vectors in the ks—dimensional Euclidean space, it is not hard to see that
G is a symmetric convex compact subset in the ks—dimensional Euclidean space and that
any half line through the origin intersects G at exactly one point. Thus for any nonzero
k x s matrix A, there exists a unique positive constant #* such that 8*4 € 8G. Let Rixs

denote the set of all £ X s matrices and define
D={D €Rgxs: tr D'U<1forallU € G and tr D'Uy = 1 for some Uy € 6G} (6.2)

to be the set of all normalized supporting hyperplanes to the surface of G, where here we
again identify the hyperplane {U € Rgxs: tr D'U = 1} with its inducing k x s matrix D.
For every D € D, define the contact set

C(D)={U: U € 8G and tr D'U =1} (6.3)

to be the intersection of the hyperplane D with G. For any point Uy € 8G, let Dy, = {D €
D: tr D'U < 1= tr D'Up for all U € D} denote the set of all supporting hyperplanes to
G at Up. The set Dy, is either single point or a closed convex set. Now let R be a given
k x k positive definite matrix, n be a given positive integer and as in section 2, let us define

the following

H={Z €Rixs: Z=U+1RD, D€ DandU € C(D)} (6.4)

27



D* = {D* € Rgws: D* =(1+ L tr D'RD)"3D, D €D} (6.5)
V={VERkxs: V=(1+L tr D'RD)"3(U +1RD),D € Dand U € C(D)} (6.6)

and for any set A, we shall use the notation A to mean the set
A={tA:ac A, 0<t <1}, (6.7)

The following results follow directly from the corresponding results in Section 2 by con-
éidering every k X s matrix A as a vector a in the ks—dimensional Euclidean space and

replacing k in Section 2 by ks.
Lemma 6.1

The set D is a compact symmetric convex set in Rgxs which has D as its boundary.

Moreover for any nonzero k X s matrix A, there exists a unique positive constant a such

that a4 € D.
Lemma 6.2

The set D* is a compact symmetric convex set in Rgx, which has D* as its boundary.

Moreover for any nonzero k X s matrix A, there exists a unique positive constant ag such

that ay A € D*.
Lemma 6.3

The set V is a compact symmetric convex set in Rgx,s which has V as its boundary.

Moreover for any nonzero k X s matrix A, there exists a unique positive constant &, such

that 6o 4 € V.
Lemma 6.4

The set H is a compact symmetric set Ry, which has H as its boundary and ¢ C
VY C H. Moreover for any nonzero k X s matrix A, there exists a unique positive constant

7o such that vpA € H and the representation
Uy + %R.Do = ")/oA (68)

is unique, that is, there exists a unique pair (U, Do), Do € D and Uy € C(Dy) such that
(6.8) holds.
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If we define B3 ' = tr Dy A, then premultiplication of both sides of (6.8) by D} and
taking the trace gives

Yo = Bo(1 + £ tr DyRDy). (6.9)

Note here that Sy A lies on the hyperplane Dy but not necessarily on dG and so if 8* is such

that *A € 0G, then By > B*. From the definition of G, it also follows that every matrix

m
U € G has a representation U = ), p; f(z;)€'(z;) for some positive integer m, p; > 0,

=1
Yopi=1, |e(zi)] £ 1land z; € X, i =1,2,...,m and that every matrix Uy € G has a
=1

representation

Uy = Z pif(z:)é (z;) - (6.10)

for some positive integer m, p; >0, > p; =1, [e(z;)|=1and z; € X,1=1,2,...,m. The
i=1
following lemma, which is the matrix analog of Lemma 2.1, characterizes the boundary

points of the symmetric convex compact set G.
Lemma 6.5

A matrix Uy of the form (6.10) is a boundary point of G if and only if there exists a
k x s matrix Dy such that

|Dyf(z)| <lforallz e X (6.11)
and equality holds for each z; with e(z;) = Dy f(z;), ¢ =1,2,...,m and tr D{Up=1. W

The k x s matrix Dy in Lemma 6.5 defines the hyperplanes supporting G at its bound-
ary point Up. From (6.10), it follows that the unique representation (6.8) can be written

as

Zpif(:vi)e'(:vi) +1RDy = %A I (6.12)

=1
for some positive integer m, p; > 0, >.pi =1, |e(z;)| =1l and z; € X, ¢ = 1,2,...,m,
=1
where 7o is the unique positive constant for which y9A € H and Dy is a supporting
m
hyperplane to G at the point Uy = Y pif(z:)€'(z:) with e(z;) = D f(z:), i = 1,2,...,m.
=1
Let { = {z;,pi}>, be any design in = and D be any k X s matrix in D. Then
tr D* My(¢)D* = (14 L tr D'RD) ™" tr (Z piD' f(z:)f'(z:)D + %D’RD)
i=1
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=1+t DRD)™ (Z pil D' f(z:)? + L tr D’RD) - (6.13)
=1

Since |D'f(z)| < 1forallz € X, then [D'f(z;)| <1,¢=1,2,...,m and so 3 p;| D’ f(:)|?
=1

< X° pi = 1. Thus it follows from this and (6.13) that

=1

tr D* My(6)D* < 1forall ¢ € = and all D € D (6.14)

with equality holding if and only |D' f(z)] = 1 for all z in the support of the design £. In
other words, equality holds in (6.14) if and only if U = [, f(z)¢'(z)é(dz) € 8G for some
function e(z) satisfying |e(z)| = 1 for all z in the support of the design ¢ and D is the
supporting hyperplane to the surface of G at the point U.

We now prove the main result of this section which is the matrix analog for Bayesian

V-optimal designs of Theorem 3.1.
Theorem 6.1

Given a nonzero k X s matrix A and a k X k positive definite matrix R, the design
{o is Bayesian U-optimum if and only if A has the representation (6.12) with &(z;) = p;,
1 =1,2,...,m. Bayesian ¥-optimal designs always exist and

nf tr AMNOA = tr AM (G)A = p(4) = & = et

Proof: First from Schwarz’s inequality, it follows that

tr D' A)? (tr D* A)? (tr D* A)?
¢ rar—1 —_ ( — 7 > .
rAMT (A = s M ED . T DY MLE)D 2 i D AT A

which implies that

tr D* My(€)D* > (tr A'M;Y(€)A) ™ (tr D¥ A)? for all £ € = and all D* € D*. (6.16)

L]

From (6.14) and (6.16), it follows that

inf tr A'M;1(€)A > sup (tr D¥ A)2. (6.17)
¢ES D*eD*
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Since A has the representation

> pif(zi)é (zi) + LRDy = 1A (6.18)
=1 .

where 7o, pi, i, €(z:), ¢ =1,2,...,m and Dy are as in (6.9) and .(6'.12)‘, then

, 1
(4 D5/ 4" = (1% tr DYRDo) ™ (tr Dya)? = B2 (1+ & tr DRD) ™ = o = 5i2
0°J0 0
(6.19)
It also follows from (6.18) that
AM T (E)A= 7 tr DA = —— = L 6.2
tr A'M,(§0)A =, tr Dy =G - 8 (6.20)

if and only if {o = {x;, p;}[2, or equivalently é(z;) = p;, 2 = 1,2,...,m. Thus it follows
from (6.19) and (6.20) that

/ 1 1
tr A'M; Y (&)A = (tr D A)? = = — 6.21
b (60) ( 0 ) ,80’70 63 ( )
if and only if &(z;) = pi, 1 = 1,2,...,m and so it follows from this and (6.17) that

, o 11

inf tr A'M; Y (6)A = tr A'M;71(&)A = (tr D¥ A)? = sup (tr D* A)? = = =

cex T b (é) b (60) ( 0 ) D*E:%*( r ) ,8070 6(2)
(6.22)

if and only if o(z;) = pi, + = 1,2,...,m. Thus & is a Bayesian c-optimal design if

- and only if A has the representation (6.12) with &(z;) = p;, ¢ = 1,2,...,m and einf tr
€=

AM7Y(EA = tr A'M; Y (6)A = p(A) = ﬁ = ;102- which completes the proof. |
The following result follows directly from (6.22).
Corollary 6.1
The Bayesian ¥—optimal design problem
Minimize tr A'M; ' (£)A subject to £ € E (6.23)

is the dual of the problem

Maximize (tr D* A)? subject to D* € D* (6.24)
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and the two problems share a common extreme value. |

Theorem 6.1 is the Bayesian analog of a result of Studden (1971) for classical ¥—

optimal designs which is stated in the following lemma
Lemma 6.6

The design £* is a classical ¥-optimal design if and"orhl'l'y":if there exists a function
e(z) satisfying |e(z)| = 1 such that (i) [, f(z)€e'(z)¢*(dz) = B*A for some scalar §* and
(ii) B*A € 8G. Moreover B*A € 9G if and only if irﬁlf tr AAM~1(6)A = p*2. |

To see the parallelism between Theorem 6.1 and its classical analog Lemma, 6.1, let £
denote the set of all functions € = (e1,...,€,)" defined on X and satisfying |e(z)| = 1. In
Lemma 6.6 we find the unique positive constant #* such that $*A € 8G and the classical
U—optimal design is then the design £* for which

/X f(z)e' (z)¢*(dz) = B*A for some € € £ (6.25)

in which case the infimum of tr A’M~1(¢)A among all design ¢ for which A'6 is estimable
is equal to $*2 and is attained at ¢ = £*. In Theorem 6.1 we find the unique positive
constant &g such that égA € V, or, equivalently the unique positive constant v, such that

70A € H and the Bayesian ¥-optimal design is then the design &y for which

/x f(z)€ (z)éo(dz) = Uy for some € € £ (6.26)

where Uy € 0G is uniquely determined by the representation U, + %RDO = v A or equiv-
alently the representation (1 + % tr Dy RDg —%(Uo + %RDO) = §pA of A and Dy is the
supporting hyperplane to G at Uy normalized so that tr D{jUy = 1. The infimum of tr
A'M[ 1 (¢)A among all designs ¢ is equal to 652 and is attained at £ = &. Following simi-
lar steps to those by which Corollary 6.1 was derived, one can easily see that the classical

V—optimal design problem is the dual of the problem
Maximize (tr D'A)? subject to D € D (6.27)

and that the two problems share a common extreme value #*~2. Thus finding the classical

and the U-optimal designs can be achieved geometrically by visualizing the convex sets
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G and V or equivalently the set G and H although this, in general, is not an easy task.
Although Theorem 6.1 is mathematically attractive, the application of this theorem, as well
as Lemma 6.6 is, at present, somewhat limited, however, the above theorém can be very
useful in the characterization of those R’s, for a given value of n, for which the Bayesian
V—optimal design £ is supported on the same support points Qf the classical ¥—optimal

design £*.
7. Bayesian ¥—Optimal Designs on the Support of Classical ¥—Optimal Designs

Assume that the boundary representation
m m
B*A =) pif(a})e(a}), le(})l =1, p} >0, Y pj =1 (7.1)
=1 i=1

holds with m < k, that is, the classical ¥-~optimal design £* is supported at m < k distinct
points 27, ...,25,. If m <k we add k —m arbitrary points z} with corresponding weights
p;i =0,2=m+1,...,k so that F' = [f(z}),..., f(¢})] is nonsingular. Let T = F~! and
let £(z) = T f(z) denote the vector of Lagrange functions for the points z%,...,z%. If we

multiply (7.1) by T and let TA = B, we get

k , .
FB=Y GG (12)

Since £i(z}) = 6ij, 1,5 = 1,2,...,k, then it follows from (7.2) that §*b; = ple(z?),
t=1,2,...,k, where b} denotes the ith row of B. Thus it follows that

k _1
& (Z"”"> , 7 = 7[bil and e(a?) = bilbi] (13)
=1

Note here that if m in (7.1) is less than k, then b; = 0, ¢ =m +1,...,%. In this case we
let [b;|™! = 0 and ¢(z}) = 0 whenever |b;| = 0. Let us also define By = B;'B where B;!

is the diagonal matrix with |b;| = as its ith diagonal element, i = 1,2,..., k.

The following result characterizes the matrices A with a classical ¥—optimal design

supported on a given set of points z7,z3,...,z}.
Lemma 7.1 (Studden (1977))
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If F' is nonsingular, then a classical ¥—optimal design {* is supported on z3,z3, ..., z}

if and only if there exists a k£ X s matrix B such that
(i) €' (z)BoByl(z) <lforallz € X
(ii) A=FB ||
Let Ao = (e(z?),...,e(z})) and let B be the k x s mattix for which (i) and (ii) of

Lemma 7.1 hold. Then it follows from (7.3) that Ag = Bj = D{F. Let P and P* be the

diagonal matrices with nonnegative diagonal elements p; and p} respectively, i = 1,2,.. ., k.

27

then it follows from Lemma 6.6 that FP*Aj = ) p¥f(z¥)e'(zF) = B*A € 8G and so

=1

Since the classical ¥—optimal design £* puts weights p} at the points z¥, i = 1,2,...,k,
k

k
FPAy = Y pif(z})€e'(zf) € 0G for all diagonal matrices P with nonnegative diagonal
i=1

k
elements p;, + = 1,2,...,k for which )" p; = 1, and Dy is a supporting hyperplane to
=1 )
G at the points Uy = FPAj € 0G. Thus the following result is direct consequence of
Theorem 6.1.

Corollary 7.1
The design £, which puts weights p; > 0 at the support points z}, s = 1,2,...,k of
the classical ¥~optimal design ¢* is Bayesian \Il—optimum. if and only if -
PAy=(1+ % tr AgR*Ag)P*Aj — %R*Af, (7.4)
where R* = TRT". |
Remark 7.1

Note that the matrix R* is defined slightly different than in section 5. If s = 1, then
ezf) =+1,1=1,2,...,mand (z}) =0, =m+1,...,k and so Corollary 7.1 reduces
to Corollary 5.2 of Section 5 and (7.4) becomes

m m
pi=p} [ 1+L1 > el@e(a))rly | =1 ele)rly, i=1,2,...,m (7.5)
i,J=1 Jj=1

which is equation (5.10) of Section §.
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Remark 7.2

If s = k, then it follows from (7.4) that R* must be diagonal and so tr AgR*Aj =
tr R*AjAp = tr R*. Thus we have the following result.

Corollary 7.2

The design €y which puts. weights p; > 0 at the support points z}, 1 = 1,2,...,k of

the classical ¥—optimal design ¢* is Bayesian V—optimum if and only if

(i) R* = TRT' is diagonal

(7.6)
(ii) P=(1+2 tr R*)P* - 1R~
Example 7.1
Assume that the design space & is the k dimensionai un1t Ballv
X ={zeR: &'z <1} (7.7)
and consider the multiple linear regression model
E(y)=6z, zec X (7.8)

and assume that A is a k X k matrix of full rank k. From the equivalence theorem for

classical ¥—optimal designs, we know that £* is a classical ¥—optimal design if and only if
max tx M7 (€)TM(E)M(E) = tx UM (7, (7.9)

Since ¥ = AA' is a positive definite k£ X k matrix, then there exists an orthogonal matrix

U = (uy,...,ux) such that UAU' = ¥, where A = diag (A\;,..., ). Let F = U and
. 1Ak

assume that M(£*) = FP*F'. Then tr $M~1(¢*) = ) %} and so if we choose p} to be

i=1""*

k
proportional to v/, it follows that cp¥ = /i, c = 3. VA,
=1

k
tr UM™H(E¥) =) *pf = (7.10)

i=1

35



and

tr M~ (ENOMLEM(E) =c® tr M(£) <P forall { € E (7.11)

with equality holding if ¢ = ¢*. Thus it follows from (7.9) that £* is a classical ¥-
optimal design. Now for the design £, which puts weights p; > 0 at the points ¥ = u,,
1=1,2,...,k to be a Bayesian V-optimal design, the precision matrix R must satisfy the

conditions

(i) R* = U'RU is diagonal and R must have the same eigenvector as ¥ and R* =
diag (r,...,7%)-

k
(i) p=(1+13yr)2 — L1y i=1,2,...,k
=1 S UK |

i=1

In other wérds, we must choose the p;’s in such a way that p; > 0, zk: pi =1and p; + ;11-7':‘
is proportional to v/, i =1,2,...,k. =

The above approach is similar to the one adopted by Pilz (1983). His approach is
based on the idea of maximum compactness of the eigenvectors of the Bayesian information
matrix. For instance in the case A = I, he assumed the existence of an optimal design
whose information matrix has the same eigenvectors as the prior precision matrix R and

chooses the p;’s in such a way to make a maximum number of the smallest values p; + %r:‘

get equal, where r, 2 = 1,2,...,k are the eigenvalues of R.

In the case of polynomial regression with A being a k& x k matrix of full rank, it is
well known that the classical ¥—optimal design £* puts weights at k£ distinct points and
p} « Vkii, where K = ((kij))f,j=1 = TUT'. Thus if R* = TRT' is diagonal, then the
design &y, supported at the same support points of the classical U-optimal design £*, is

Bayesian ¥-optimal if and only if (7.6) holds.

Example 7.2

Consider the quadratic regression model with f'(z) = (1,z,2%)', = € [-1,1] and

assume that A = I. The classical ¥-optimal design ¢* puts weights pf = 1, p} = % and
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p3 = ;1- at the points 27 = —1, z3 = 0 and z3 = 1 respectively and we have

1 1
0 -3 3 0 -Z = 1
B=F'=T=|1 0 -1|,A=By=|7% 0 -—J| andf*=—>=
o 1 1 0 1 1 2v2
2 2 VA

From Corollary 7.2, it follows that

3
R = {R € Rt ;: TRT' = diag (r},r},r3) and r} < (n + er) Piy i = 1,2,3}
=1
(7.12)
is the set of all prior precision matrices R for which the Bayesian ¥-optimal design £, puts

weights p1,pz and p3 at the points 2 = —1, 25 = 0 and z} = 1 respectively, and

3 _ .
pi=( 41 mpr L i=1,23 0 (7.13)
=1

Remark 7.3

Assume that A is a k X k matrix of full rank £ and that the classical ¥-optimal design
¢* puts weights p; > 0, ¢ = 1,2,...,k at exactly k distinct points z},23,...,2%. Let R
denote the set of all positive definite matrices R for which R* = TRT" is diagonal and let
R* = diag (r],...,r%). Then it follows from Corollary 7.2 that if

k
1 1
; — 1 - Npr — —rf > 7.=1a2a""k -
p ( +nE rl)pz nT’z >0, (7 14)

i=1
then the design £, which puts weights p; at the points z¥, i = 1,2,...,k is a Bayesian
V-optimal design. Since k is finite, then it follows from (7.14) that for any R € R, there
exists no which depends on R such that (7.14) holds for all n-> ng.: Thus if R € R and n
is large enough, there exists a Bayesian ¥—optimal design on the support of the classical

VU-optimal design and the optimal weights of the Bayesian ¥~optimal design are given by
(7.14).
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