ON DETECTING INFLUENTIAL DATA
AND SELECTING REGRESSION VARIABLES*

by

Shanti S. Gupta and Deng-Yuan Huang
Purdue University Feng Chia University

Technical Report #89-28C

Department of Statistics
Purdue University

December 1989
Revised February 1992
Revised August 1992
Revised January 1993
Revised March 1993
Revised July 1993
Revised July 1994
Revised August 1994
Revised October 1994
Revised March 1995

* This research was supported in part by NSF Grants DMS-8606964, DMS-8702620,
DMS-8923071 at Purdue University.

<



ON DETECTING INFLUENTIAL DATA
AND SELECTING REGRESSION VARIABLES*

by
Shanti S. Gupta Deng-Yuan Huang
Purdue University Feng Chia University

Abstract

The analysis of residuals may reveal various functional forms suitable for the regres-
sion model. In this r, we investigate some selection criteria for selecting important
regression variables. In doing so, we use statistical selection and ranking procedures. Thus,
we derive an appropriate criterion to measure the influence and bias for the reduced mod-
els. We show that the reduced models are based on some non-centrality parameters which
provide a measure of goodness of fit for the fitted models. In this paper, we also discuss
the relationships of influence diagnostics and the statistic proposed earlier by Gupta and
Huang (1988). We introduce a new measure for detecting influential data as an alternative

to Cook’s measure.
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On Detecting Influential Data
and Selecting Regression Variables*
by
Shanti S. Gupta Deng-Yuan Huang
Purdue University Feng Chia University

1. Introduction

We consider the following linear model
.K =X é +e, (1)

where ¢ ~ N(0,021,), I, denotes the identity matrix of order n, ¥ is an n X 1 vector
of responses, X is an n X p, (n > p), matrix of known constants of rank p, Bisapx1
parameter vector. Several authors have studied the influence on the fitted regression line
when the data are deleted. Let _,fz be the usual least squares estimator of 8 based on the
full data and let é " be an alternative least squares estimator based on a subset of the

data. The empirical influence function for é, IF, is defined to be
IFy = éA - é (2)

For a given positive definite matrix M and a nonzero scale factor ¢, Cook and Weisberg
(1980) defined the distance D 4(M, c) between é and _,[?_ , as follows:

(IFa)Y M(IF4)

C

3)

DA(Ma C) =

They suggest that the matrix M can be chosen to reflect specific interests.

They pointed out that in some applications, measurement of the influence of cases on
the fitted values, ¥ = X é , may be more appropriate than measuring influence on é . They
mentioned an example to describe the fact that if prediction is the primary goal it may
be convenient to work with a reparameterized model where the regression coeflicients are
not of interest. They tried to treat their measurement of the influence on the fitted values
X é and used the empirical influence function for Y defined by X (IF4). In this paper,
we attempt to measure the influence on residuals and on X E . The large influence on the

residual should have much influence on E though the converse may not hold. Furthermore,

* This research was supported in part by NSF Grants DMS-8606964, DMS-8702620,
and DMS-8923071 at Purdue University.



Welsch (1982) pointed out that in an earlier paper Cook (1977) chose to measure influence
by
@ - é(i)),X'X(g - é(i))
s?p
where s? is the residual mean square for full data and é G is the least squares estimator
of § based on the data set with the ith component in Y deleted. Welsch (1982) gave an

example to explain that when all of the observations but one lie on a line, (4) can give

(4)

potentially confusing information since it may indicate that some observations on the line
are more influential than the one observation not on the line. This is counterintuitive
since the deletion of this one observation leads to a perfect fit. Therefore, finding a more
reasonable measurement is very important. We propose a new statistic to measure the
influential data and make a comparison with Cook’s D. We shall consider the case of one
at a time data deletion. Since, for the case of deletion of a subset, computations can be
similarly carried out, we refer to Cook and Weisberg (1980), and Gray and Ling (1984).

Next we propose a selection criterion to combine the influence measure and variable
selection. We derive a suitable choice of M and c in (3) to measure the influence and bias
for the reduced model. Then, inferior reduced models can be determined. An example

(Daniel and Wood (1980)) is studied to explain the idea for the proposed criterion.

In this paper, we discuss the analysis of the model structure, and try to obtain rea-

sonable models.

2. Influential Observations in Linear Regression Model

(n— 1)x1 A . Xé, e = ( )(n 1)x1

Let X = );é;)(n—l)xp Y = (}ﬁ)) o

nXxp £ 1><p 1x1

Yi—X!,i=12,...,n = X' X) 1X'Y. Then
goem = Xo — XoB) X — X»h)
=X~ XoB ) Xe — X b))
+(X@By) — X B) XwB ;) — XB),
Thus
e = SSEw + R,

where

R(i) = (_B_(,') - g)lxéi)X(i)(_B.(i) - g)
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and
SSE) = inf e

We have,
!

£EG) _ R (5)
SSE; SSEq)
Define R ;

(8 2
D(;y = —~, where s{;y = ———=SSE(;). 6
O = 52, )= o po1o0 b (6)

If D;) is large, we see from (5) that deleted i-th data will heavily influence the fitted line.
Since '

Ry = (é(,') - ﬁ)IX(’i)X(i)(é(,‘) -8)
= (X(i)ﬁ(,') - X(i)g),(X(i)_ﬂ_(,‘) - X(i)ﬁ)’ (7)

it is the Euclidean distance between X(;)8 and its ordinary least square (OLS) estimate

X(i)ﬁ(i)'
We define a statistic ﬁ(i) to measure the influence in (5) for the fitted line as follows:
A a Ay B A
f) o R(,-) _ (ﬁ(,-) ﬁ) X(i)X(z)(_ﬂ_(,‘) é) 8
&)= g2 2 : (8)
P3Gy P3G

Let the hat matrix
H = X (X, X )—1 X "= (hij)nxn,

nxp pPXp pXn

where

hij =_X_:(X'X)_li], ,3=1,...

, M.
Since tr(H) = p, H' = H and H? = H, hence ), h;‘-’j =hi;,0< h; <1,i=1,...,n and
=1

i hi; = p. We have
i=1
(X(oy X)) =(X'X - X, X))
X'X)1 X, X(X'X)?!
— XIX -1 ( £t
XX+ 1 - hi
_ hii
Xi(X(pXw) " Xi = 1—hi )

?
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Thus A
é(i) = (Xfi)X(i))_IXf-‘)Z(i)

= (X'X - XX (X'Y - X.Y5)

(X' X)X 6

=§ T—he where é,-=Y,-—l§§_,
hence (X'X)1X,é
A ~ —te' v
ﬁ(i) —B=- 1—hy; (10)
The i-th predicted residual is
és) = Yi —&gﬁ), i=1,2,...,n. (11)
Then
5. —=V. o _v.o_xy' A (X’X)_lxiéi
. hiié; €&
—ez+1—h,‘,‘_1—h,‘i’ (12)
and

Var (&)  o?
(1 — hii)? - (1- h,‘,‘).

Thus, we can obtain the following result,

Var (é;)) =

R = (B( - f?)’X(',-)X(i)(fi(.) )

C(X'X)TIX 8 (X' X)TIXe
= (1 — hii)hiiély = (Z h%)edy. (13)

J#i

Since _l?_ = HY, hence Vi=hiuVi+hiaYo+...+hiYi+ ...+ hinYy. Also H is a function
of X only, and so hi-js are fixed. If we now fix Y;, then R(,-) is a measure of the influence

of Y}’s, j #1¢, or Y;. Similarly, one can consider conditional influence of ¥; on Y:. Now

2

Day=4|—20 | ptl (14)

(?) D
5@ " h..)2

The first factor in (14), within the square brackets, is the studentized residual, that is, the
residual divided by its standard error based on a fit to the data with the ¢-th case excluded,

while the second factor is the leverage of the variance of the i-th predicted value.
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Since ﬂ() and s() are independent (cf. Graybill (1976)), and Y; and s() are also
independent, it follows that €:;) and s( ;) are independent. Thus
€G) €G)

t; = = 35
. 23 g
MON (1— h.,)Iz o (1—hig)3

is t-distribution with n — p — 1 degrees of freedom. Hence t? is F-distributed with degrees
of freedom 1 and n — p — 1.

For given a, let C; satisfy the following equation:
P{b(i) >Ci}=a.

Since D(,) t?h;; - L

it p’ we have
» 1
P{Dg; 2 Ci} = P{t}hs ; Ci} = P{t{ > I;LC = a,
thus c
Z;z,,’ =F(,n-p—-1; 1-a)
Hence .
Ci=Jhaf(, n—p=1; 1-a) (15)

where F(1,n—p—1;1—a) denotes the 100(1 — a)th percentile of the F-distribution. From
equation (5):

el e R,

=()=0) ()

i ) A e OO

SSE + SSE; (16)

The estimated value égE—(— is equal to

P 1
1+ —2 Day>1+—L . ZpFQ, n—p—1;1-— 1
a1 toTp—1 p (1, n—p o) (17)
1
_1+n_—p_—ih,,F(1,n—p—1,1—a)

Thus, if the i-th data is deleted, it will be the influential data, if 15(5) > C;. In the example
(Table II) below, we find that the observation number ¢ = 29 is an influential data. The
amount of the influence for the residual will be at least n_—;_Th,-,-F 1, n—p—-1; 1—a),
where F(1,n —p — 1;1 — @) is the 100(1 — a)th percentile of the central F' distribution.

6



From (17), we define
[Fo = 20
() Ci
as the measure of the strength of the influence on the residual when the i-th data is deleted.

Note that the ith data for which IF(; greater than one is the influential data.

Now, we rewrite Cook’s distance D; with ith data deleted as follows:
é; hi 1
-Di — i 2, it z.
{[8\/1—751':'] 1_hii}P
Both D; and b(i) in (14) are influenced by the standardized residual and h;;; however, D;

is influenced by h;; through hi;/(1 — hi;) and thus will put much more weight on variance

more than the residual as h;; gets close to 1.

In Table I (based on simulated data), we see that COOK’S D = 536.901 and DHAT
— 6381.64 for the 30th data. This is deleted by D and also by DHAT as influential data

and it represents departure from the fitted line:

X1 = 64.506 + 0.356 X2  RSQUARE=92% C.V.=0.595%
(0.356)  (0.02)

Note that the values in the parenthesis denote that standard errors of the corresponding
coefficients. We find that DHAT is more sensitive than D to detect the data which shows
departure from the fitted line.

3. Selecting Important Independent Variables

For the selection of important independent variables in (1), it is necessary to consider

the measurement of the influence.

In model (1) let Y' = [V4,...,Y3], X =1, X,,..., X, 4], B =1[Bo,b1,..., Bp—1] and
e~ N(0,021,); here I, denotes the identity matrix of order n X n. The model (1) having
p— 1 independent variables is considered as the true model. Any reduced model whose ‘X
matrix’ has r columns is obtained by retaining any r — 1 of the p— 1 independent variables
Xi,...,Xp-1, where 2 < r < p—1 Foreachr,2<r <p-—1, there are k, = (’;:})
such models. These k, reduced models of ‘size’ r are indexed arbitrarily with the indexing
variable £ going from 1 to k.. We will refer to a typical model as Model M. If the i-th
data is deleted, then the reduced Model M, is denoted by M,4;). A reduced model of

size r can be written as
E(Y|Xre) = szﬁrl’ £=1,2,...,k,. (18)

7



The reduced model for deleted i-th data is

E(Y_(i)ert(i)) = X'I(i)grt(i)’ £=1,2,...,k,. (19)

It should be pointed out that all expectations and probabilities are calculated under
model (1).

Usually, we use the residual sum of squares to measure goodness of the fitted model
for a random sample. Hence, the expected residual sum of squares is naturally considered
as the measurement for the goodness of fit. Large values of this expectation are not
desirable. But, the estimate of the expectation is heavily influenced by the influential
data. It is important to detect them, and consider them seriously. It should be first noted

that our comparisons of models are made under the true model assumptions.

For any r, 2 < r < p—1, the residual sum of squares SSr¢ and §S,(;) for the reduced
models My¢ and M4y, 1 <€ < kpy i =1,2,...,n, are respectively as follows:

SSre=Y'QrY, and Sreiy = Y Qrey Y (i) (20)
where
er = [In - Xrl(X:-ZXﬂ)—IX:-l]’
and
Qreciy = [Tn—1 — Xre(i) (X7 oy Xre(iy) ™ Xrag)-
Also 53
21"1 ~ X2{n -7, Are},
Og
and (21)
SSra(i
2( ) ~ X2{TL -r- 1a ’\rl(i)}
Oy
where
Are = (XB)' Qre(X B) /203,
and

Areiy = (X B) Qreci (X B) /207

We note that Q¢ and Q¢;) are idempotent and symmetric; thus they are positive semi-

definite. Hence Ar¢ and A.4;) are nonnegative, but not zero, in general.
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We have
E[SSre] = (n — r)o2 + 202 A,

and (22)
E[SS-,-((,)] = (n -Tr— 1)0’3 + 20’3)\,-1(,').
Since o is fixed, it is clear from (22) that Ar¢ and A, for all i, should not be large for

M, to be a good model.

Consider the coefficient of partial determination between the dependent variable Y
and X;, given Xi,...,Xp—1 except X; in the model, denoted by 7%, _;.
It is known that

. _ SSE(X||—X) _ SSE(—Xi)—SSE(X1,...,Xp-1)
Wi—i = GGE(Xy,..., Xp1) SSE(X1,...,Xp_1)

where SSE(— X;) is the residual sum of squares for the model which includes X, ... ,Xp—1

except X;. We can write

Yi—i ™ SSE(Xi,...,Xp-1) SSp1
d
an N ‘_n—p.SSp-—l’j_n—(p'—l) 1 1
p—liJ - 2 SSPI 2 7] - "",p .
Hence

2 - 1 1 -
Wi—i = n—_;/\p—l,j to s _p(2A,,_1,j +1).

Thus, we can use :\p_l, j»1 < j < p—1, for ranking the importance of the independent
variables X;,1 <7 <p-—1.

From the assumption e ~ N(0,021,), it follows that the statistic

L _ (85— 55,)/(p =)
" 55, (n - )

has the noncentral F distribution denoted by F'(p — r,n — p, Ari).

. kY —p SS;; —r
Since A;j = *5E Sor — Mgt it follows that
14

2 . n—r n—p
(Arj + ) -

Vrj = .
" p—r 2 p—r



And
By~ @7 £ 2)n=p)

(n—p-2)(p—-r)

We obtain an unbiased estimator A,; of A,; as

n_p_zl“ (p—r) ]

7 (n-p-2)
The quantity Ar; is the bias of the reduced model M,;.

Gupta and Huang (1988) have proposed some selection procedures for selecting good
models based on A¢’s. Now, we are interested in studying how large is the influence for

Are(i) When the i-th observation is deleted.

We have an estimate of A, 03, 03( ) and A as follows:

o  9S5p SSE ,, SSp13) SSE

0'0=n_ = — ,a'o(i)z — _1= — _1
D n—p n—p n—p

s n—pSSwe n—-r n-—r S.S',g/(n—r)_l]. (23)

T2 88, 2 5|

o
If $Sre/(n —r) = 62, then My is near the true model; and

_n—-p-1 SSre) n—r—1
MO T T 85, 2

D>

Since
(XB = Xra(i)B 1)) Qre(i) (XB ~ Xt By05)) = (XB) Qragiy (X B) = 205 A rei.

Hence, A4y also measures the influence of the i-th data on fitted values. We define the

measurement of the influence for the i-th data as follows:

(XB) Qrz(z)(Xﬂ)
Dyyiiy = Arei) = 203 (24)
We estimate D.y(;) in (24) by
. - n—p—18SnE n-—r-—1
Droiy = Arg(i) = 2 S8, - ) (25)

and use .b,.[(,') as a statistic to measure the influence. We want to find a constant d such

that

1nf P{D,,g(,) >d} =a. (26)
rl( )

10



where A > 0 and « are given. In order to do this, note that

[SSre(iy — SSp1(s)/(p—T)
SSp)/(n—p— 1y

Veey =

follows the noncentral F' denoted as F'(p —r, n —p — 1; Apyi)) (cf. Graybill (1976)).

Using this and the fact that the noncentral F is stochastically increasing in Are(i), 1t
can be seen that (26) is satisfied by

P{.[),.[(i) 2 dl/\,-g(,') = A} =« (27)
and that
n—r—1 2 n—p—1_ _, _ 1.
@+ 2~ — P n-p- 5 A) (29)

From (28), we have

_(r—-p-1) (p—1) . n—r-—1
d= 5 {(n_p_l)F(p—r,n—p—l, A)+1}———§—. (29)

Patnaik (1949) provided an approximation to the noncentral F' distribution (cf. Guenther
(1979)) by the relation

Fl(p—rn—p-15A)={[(p—r)+2A]l/p—r} F(p*, n—p—1),
where p* = [(p —r) + 2A1%/[(p — r) +4A]. (30)

- Hence the constant d can be computed as follows:

n=p-1)f(p-r)+2A_ , n—r—1
d~ 5 — F(p*, n—p—-1)+1 5 (31)
We summarize the results as follows:
If the :-th data is deleted, and
Dryiy > d, (32)

then we conclude that there exists an influential data in the reduced model My,.

A reduced model M, is called an inferior model, if there is some :-th data which

satisfies the condition (32), where i-th data is not an influential data in model (1). A

11



method to select important independent regression variables is given in Gupta and Huang

(1988).

4. Selection Criteria for Regression Variables

Consider the true model
Y; =080+ Xij++Bp1Xp1+e€;, 3=1,...,n
E(ej) =0, Va‘r(sj) = Ug’ cov(si’ej) =0, :#7.

Let
pi = E(Y;|X1j,...,Xp-1,5) and n;; = E(Yj|X1j,...,Xr—1,j) for areduced model M;.

The standardized total error is defined by
1 o 1 < N
Tri=— > (pi — i)+ = ) Var(Yy),
0 Jj=1 0 j=1

where Y,-j is the predicted value of 7;;. We rewrite the model in matrix form:
Y=Xp+¢
where Y = [V1,...,Yalhx1s B=[B0,B1,- .. Bp-1lpx1, and € = [e1, .. ., En]nx1-
It can be shown that

3w — i) = _[B(Y;X1j,. s Xp-1,5) = E(Vij|Xijs -, Xom1, )] = 205 2ns,
i=1 i=1

where Ari = (XB)' Qri(XB)/202, Qri = I — Xpi( X! Xri) ' X];, and Y, =[Yi,...,Vin] =
Xpi( X1, X))t XLY. Also

Z Var(Y;;) = 02 tr Xri( X1 Xri) ' X} =r03.

j=1

The expected residual sum of squares is
E(SSn) = B(Y. - ¥,)' (¥ — ¥3) = (n —)aj + 205 Ari.

Thus
Tri=—F——-(n—=2r)=2\i+r

12



and we can estimate A.; by

5 _n-—p SSyi n-—r
"2 S8, 2

Under the assumption that ¢ is normally distributed, we can obtain an unbiased estimator

of I';; (as shown in Gupta and Huang (1988)), namely,

§ o _n-p-2

ri P [2:\ri +(—r)—(p—2r),

n
which was used as a measure of goodness of fit for the reduced model M;.

Mallow’s C;; is defined as

Cri = (P - T)Vri - (p - 27‘),

so that 5
P _ NPT 4~ _ —(p—
Frz — n— p [Cﬂ + (p 2T)] (p 27')
2 -2
=N-——Jo.- 2=
n—p n—p

We know that C,; is a biased estimator of I';;, but when n — p is sufficiently large, then

I, is asymptotically equivalent to Ci;.

Gupta and Huang (1988) proposed a two-stage procedure to determine the sample

size and guarantee the probability of a correct selection.

5. An Example .

We take an example for the selection of influential data from Daniel and Wood (1980,
p 234). The data were obtained in a laboratory study of the distillation properties of
various crude oils with respect to their yield of gasoline. The four independent variables

measured were:
X1: crude oil gravity, *API,
X,: crude oil vapor pressure, psi,
X3: crude oil ASTM 10% point, °F,
X4: gasoline ASTM end point, °F,

Y: gasoline yield, as percentage of crude.

13



We fit the full model for the data as follows:
Y = —6.952 + 0.229X; + 0.553X, — 0.149.X3 + 0.155.X .
Root MSE

R? = 0.96, Root MSE =2.235, C.V. = — x 100% = 11.37%.

where Y is the Sample mean of Y;’s. We consider the reduced model as in Daniel and

Wood (1980, p. 247):

Y = 70.84 — 0.212X; + 0.159(X, — 332) (33)
R? = 0.95, Root MSE = 2.426,C.V. = 12.338%.

In the reduced model (33), there is no influential data.

We have computed some values in TABLE II to illustrate the various statistics in the

previous discussion.

We now summarize various notations used in the column heads of TABLE II.
Residual = Y; — IA/',-,
RSTUDENT = 20YI-ks
HAT DIAG H = hi;,
DHAT = D(;y = (RSTUDENT)? x (HAT DIAG H)/p,
Ci = hiiF(1, 32— 5-1; 0.95),
IF) = Dy /Ci,

where F(1, 26; 0.95) = 4.2252,n = 32 and p = 5.
For the reduced model Mj3; in (33), using (25), we have

32-5-1 y 150.4016 32-3-1
2 111.657 2

1531(29) =
= 3.51,
and using (31),

d 32—3—1.

_32—5—1{(5—3)+2A

> 5 E 1 F(p,32—5—1)+1}—

Letting A = 1.3, we get p* = [(5 — 3) + 2A]?/[(5 — 3) + 4A] = 2.94. For o = 0.05,
F(2.94, 26; 0.95) ~ 3.00 and we have d = 5.9. Thus, ﬁgl(zg) < d. We have checked that

14



ﬁgl(,-) < dforalli=1,...,32. Hence, the reduced model (33) is reasonable to accept as a
good model (not an inferior model). Note that the value of A can be chosen as in Gupta

and Huang (1988). The value of A is the amount of bias for a reduced model in (26).

In TABLE II, the value of D(zg) seems to detect the 29th data as an influential data
for the full model.

15



TABLE I, (a = 0.5)

DEP VAR IND VAR COOK’S IF

OBS X1 X2 D DHAT C  (DHAT/C) RESIDUAL
1 100.247 _ 100.285 0.000 0.00 0.07301 0.00 0.0356
2 99.347 99.373 0.015 0.01  0.07007 0.14 —0.5396
3 100.709  100.694 0.007 0.01  0.07574 0.13 0.3520
4 99.634 99.611 0.006 0.01  0.07049 0.14 —0.3374
5 99.396 99.338 0.012 0.01  0.07007 0.14 —0.4782
6 98.959 98.962 0.031 0.03  0.07007 0.43 ~0.7813
7 100.753  100.710 0.008 0.01 0.07574 0.13 0.3903
8 99.076 99.075 0.025 0.02  0.06986 0.29 —0.7045
9 99.715 99.723 0.004 0.00 0.07070 0.00 —0.2963
10 101.890  101.912 0.078 0.08 0.08812 0.91 1.0994
11 101.008  100.999 0.017 0.02  0.07805 0.26 0.5424
12 98.438 98.432 0.064 0.07 0.07112 0.98 ~1.1136
13 100.446  100.396 0.002 0.00 0.07364 0.00 0.1951
14 101.648  101.641 0.057 0.06 0.08476 0.71 0.9539
15 100.412  100.384 0.001 0.00 0.07364 0.00 0.1654
16 99.146 99.132 0.022 0.02  0.06986 0.29 —0.6548
17 99.977 99.960 0.001 0.00 0.07154 0.00 —0.1186
18 100.098  100.100 0.000 0.00 0.07217 0.00 —0.0475
19 99.338 99.283 0.014 0.01  0.07007 0.14 ~0.5166
20 101.100  101.144 0.020 0.02  0.07951 0.25 0.5828
21 99.228 99.225 0.019 0.02 0.06986 0.29 —0.6060
22 101.240  101.256 0.027 0.03  0.08056 0.37 0.6829
23 98.677 98.706 0.048 0.05 0.07028 0.71 —0.9722
24 100.407  100.417 0.001 0.00 0.07385 0.00 0.1487
25 100.940  100.936 0.014 0.01 0.07763 0.13 0.4969
26 100.016  100.001 0.000 0.00 0.07175 0.00 —0.0942
27 100.939  100.948 0.014 0.01 0.07763 0.13 0.4916
28 101.185  101.133 0.026 0.03  0.07930 0.38 0.6717
29 100.089  100.076 0.000 0.00 0.07196 0.00 —0.0479
30 90.000 70.200  536.901 6381.64  2.04471 3121.05 0.5000
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TABLE II, (o = 0.5)

OBS COOK’S D DHAT C IF = DHAT/C
1 0.024 0.020575 0.11325 0.18
2 0.019 0.019965 0.03051 0.65
3 0.017 0.013772 0.12626 0.11
4 0.016 0.012537 0.15322 0.08
5 0.038 0.026563 0.23942 0.11
6 0.096 0.080673 0.16522 0.49
7 0.002 0.001830 0.09871 0.02
8 0.008 0.005654 0.24339 0.02
9 0.005 0.003888 0.17131 0.02

10 0.044 0.043326 0.06144 0.71
11 0.000 0.000351 0.04183 0.01
12 0.001 0.000642 0.09432 0.01
13 0.083 0.070816 0.14832 0.48
14 0.000 0.000349 0.11764 0.00
15 0.001  0.000537 0.07615 0.01
16 0.025 0.019209 0.18322 0.10
17 0.010 0.008050 0.13547 0.06
18 0.031 0.029679  0.06913 0.43
19 0.040 0.039271  0.06448 0.61
20 0.029 0.027883 0.06144 0.45
21 0.020 0.016869 0.10547 0.16
22 0.023 0.018239 0.15280 0.12
23 0.080 0.059961 0.21314 0.28
24 0.045 0.041968 0.09060 0.46
25 0.035 0.029200 0.14223 0.21
26 0.002 0.001638 0.17714 0.01
27 0.024 0.019000 0.15922 0.12
28 0.033  0.029029 0.10936 0.27
29 0.056 0.060943 0.04927 1.24
30 0.000 0.000037 0.24492 0.00
31 0.000 0.000218  0.12922 0.00
32 0.068 0.047230 0.25742 0.18

Note the value of D(zg) in the above table indicates the 29th data as influential for the
full model.
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