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Abstract

We propose and solve an optimization problem arising in maximum likelihood estima-
tion of ordered distributions. In particular it generalizes a recent result due to Puri and
Smgh (1988). As an application of our results we obtain a “maximum likelihood” estimate

F, of a cumulative distribution function (c.d.f.) F, based on a sample of size n from F,
where F is known to satisfy Fi(z) < F(z) < Fx(z), V z, for two given c.d.f.’s F} and F.
It is also shown that F), is strongly consistent.
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1. Introduction

Frequently one comes across situations where statistical inferences under order re-
strictions are desirable. The reader may refer for such situations to Barlow et. al. (1972),
Robertson and Wright (1974), (1981), Lee and Wolfe (1976), Lee (1981), Dykstra (1982),
Feltz and Dykstra (1985), Schoenfeld (1986), Sampson and Whitaker (1987), Robertson
et. al. (1988), Puri and Singh (1988), among others. In most of the problems of statisti-
cal inference under order restrictions there is an underlying mathematical concept known
as ‘Isotonic Regression’ (éee Barlow et. al (1972)). Recently Puri and Singh (1988) have
obtained recursive formulas for isotonic regression which can be used without the need of
any algorithm. They use these formulas together with a corollary to Proposition 1.1 of

Barlow et. al. (1972) (see its page 51) to prove the following theorem.

Theorem 1.1. Let ¢ be a convex, finite real valued function defined on an interval I of
the real line. Let f1, B, ..., Bk be k real numbers; w; > 0,0 =1,2,...,k; W; = {) w;, ] =
=1

1,2,...,k and

Dy ={($1a$2,---7$k)3$iEI,ISiSk; ZJI wiz; < P, 1 <5 <k—1;
=1

k
T wizi = ﬂk} (1.1)
1=
assumed to be a nonempty set. Then subject to (z1,z2,...,7x) € D1, the expression
k
z ¢(z:)w; (1.2)
1=
18 minimized at a point (T1,T2,...,7r) € D1, where 7;’s are given by
71 = min [B;/Wi], (1.3)

1<i<k

, j=1 i .
T = jrgnz'lélk [(ﬁ, - rgl wrrr) / (egj wg)] ,7=2,3,...,k. (1.4)
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The above minimaizing solution 138 unique if ¢ is sirictly convez.

Puri and Singh (1988) use this theorem for finding the “maximum likelihood” estimate
(M.L.E.) of a distribution known to dominate stochastically a given distribution. In Section
2 we study a generalization of the optimization problem considered in Theorem 1.1 (see
Theorems 2.1 and 2.3) which is found useful for “maximum likelihood” estimation of
ordered distributions. As an illustration, in Section 3 we apply Theorem 2.1 for obtaining
a M.L.E. of a c.d.f. F, based on a sample of size n from F', where F' is apriori known to
satisfy Fy(z) < F(z) < Fy(z), V z, for two given c.d.f’s F; and F;. Also Theorem 2.1
in turns leads to Theorem 2.3 which may serve as a step towards obtaining the M.L.E.’s
of N > 3 ordered distributions based on N corresponding samples. We end with some

concluding remarks in Section 4.

2. An Optimization Problem.
Let ¢ be a convex finite real valued function defined on an interval I of the real line. For
k> 2, let v1,72,--+,7k—1,P1,052,..., Pk be real numbers with v; < 8;,7 =1,2,...,k - 1.

Let w; > 0,0 =1,2,...,k and

DZ{(.’Dl,SCQ,,$k)$1€I,1Sl_<_k,’YJS é wzszﬂJaISJSk_l’
=1

fl wiT; = ﬂk} (2.1)

=1

assumed to be a nonempty set. The problem we consider and solve in this paper is of
minimizing the sum (1.2) subject to (z1,z2,...,2x) € D.

We begin with the case where the interval I is closed and the function ¢ is strictly
convex. For this case, it can be easily seen that the set D is bounded and closed and
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since (1.2) is a finite valued convex (and hence continuous) function defined over the k-
dimensional cube I* containing the set D, a minimizing solution (a1, az,...,az) of (1.2),
subject to (z1,22,...,2k) € D, exists and belongs to D. In order to determine these «;’s

explicitly we need the following four lemmas.

Lemma 2.1. If for some 1,1 <: <k —1,

T
21 amwm > 7i7

m=

then

a; < aiqg.
Proof. Let § = mZ;]l OmW,m — Y and 0 < € < 6. Note that (a1,a2,...,ai—1,0; —
(e/wi), ait1 + (e/wit1), @it2,. .. ,ax) € D for sufficiently small e. Thus we have

B Hamun < | 'S $amwn + dlai - (c/w)u
+ $lasr + (c/wi)wiss + 3 Ham)om.
= (e + dlainwins < 9a = (e/w))wi + dlase + (c/wis)wies
= (wi/e)(#(a) — $la = (e/00) < (wina/e)($assa + (6/0141)) — Bass)). (22)

Now for any z € I, let

#_() = lim (¢(c) - 8(z — k)/h, (23)
#y(@) = Jim ((s+h) = 6(@))/h (2.4

Note that (2.3) and (2.4) are well defined since ¢ is a convex function. Thus from (2.2),
by letting € — 0, we obtain
¢_ (i) < ¢l (@iv). (2.5)
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We prove by contradiction that (2.5) implies @; < a;y1. Thus to the contrary, let a; >

a;t+1. Then the convexity of ¢ implies that

¢ (aig1) < oL (as), (2.6)

so that in view of (2.5), we have

¢_ (i) = ¢y (ait1), (2.7)

implying thereby that the function ¢ has a constant derivative in (@;4+1, @;). Consequently
¢ is linear in (ajt+1,a;) which is a contradiction to the strict convexity of ¢. Hence

a; < Q. 0
Lemma 2.2. If for some 1,1 <1<k — 1,m2i=]1 Wmam < i, then a; 2> a;q1.
Proof. Let § = 3; — mZi)=1 Wma, and 0 < € < §, then it is easy to see that

(a1, 00,...,0i_1,0; + (e/w;), @iv1 — (€/wit1), ¥it2,...,ak) € D,

for sufficiently small €.
Since (a1, @z, ... ,az) is a minimizing solution of (1.2) subject to (z1,z2,...,z) € D,

we have

B(as + (efwi))w; + ¢(aiys — (6/wig1))wit1r > dlai)wi + ¢(@it1) Wit

or equivalently

(wife)(p(ai + (e/ws)) — d(@i)) > (wit1/e)(F(air1) — daita — (e/wit1))).

Letting € — 0 yields

¢l (i) > ¢ (aiy1).
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The rest of the proof, being similar to that in Lemma 2.1, is omitted. O

Lemma 2.3. For 1< J<k-1,

oy < maxfy1 /Wi, v2/Wa,. .., v1 /Wi, Bit1 /Wil (2.8)

Proof. Let J,1 < J <k —1, be fixed. Suppose that

oy > maX[’Yl/Wl,’YQ/Wz,...,")’J/W]]. (29)

We assert that a; < a;41 V 1 <: < J, and prove it by induction. Since oy > v, /Wi,
therefore by Lemma 2.1, a; < as, so that the assertion holds for ¢ = 1. Suppose now that
the assertion is true for 1 < : < j, where j is some natural number not exceeding J — 1.

Then we have

j+1 41
Y OpWm 201 ¥ Wy = a1Wigr > vjg1.
m=1 m=1

Hence by Lemma 2.1, aj12 > aj4; and the assertion follows. Now

J+1 J+1
Birt1 > e21 apwe > Qi £21 we = a1Wyg1,

which implies a3 < B74+1/Wi41. This completes the proof of the Lemma. O

Lemma 2.4.

a1 = min[p1 /W1, max(y1/ W1, B2/ W2),
max(y1/W1,v2/Wa, B3 /Ws), ... ,max(y1 /Wi, v2/Wa, ..., ve—1/Wi—1, Be/Wi)].  (2.10)
Proof. By definition of D,a; < 8;/W; and the result that «; is less than or equal to

the right hand side of (2.10) now follows immediately by using Lemma 2.3. We prove
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by contradiction that a; is greater than or equal to the right hand side of (2.10). Thus
we suppose to the contrary that a; is strictly less than the right hand side of (2.10).
In this case we assert and prove by induction that a; > a;41,t = 1,2,...,k — 1. Since
ay < /Wi, therefore by Lemma 2.2, a; > a3. So the assertion holds for : = 1. Assume
that the assertion is true for all ¢ satisfying 1 < ¢ < J, where J is a natural number not
exceeding k—2. Now for 1 < 5 < J, we have a3 é}l wp > é}l agwe > v; and so ag > v;/W;.

Since we have assumed that

ay < max[71/Wla72/W2>' .- 77J/WJ,:8J+1/WJ+1]a

it follows that a3 < Bj4+1/Wi41 and hence

J+1 J+1
Y onWn <o ¥ wm=a3Wip < Bi4a-

m=1 m=1
By Lemma 2.2, we have aj+1 > ajyy2. This establishes our assertion, namely o; >
: . : J
a;t+1,1 < ¢ <k —1. Hence for every 5,1 < j < k—1, we have ey W; > ¥ amwm = 7;j
m=1

implying that a; > ;/W;. But we have assumed that

a1 < max[y1/Wi,v2/Wa,..., Ye—1/Wik—1, B/ Wk],

k k
therefore we have a3 < /Wy and consequently ¥ apwnm <01 ¥ wm = a;Wi < Br.
m=1 m=1
This contradicts that (a1, as,...,ar) € D. O
Below we state and prove the Proposition 2.1 which gives the minimizing solution

(a1, qq,...,ak) of (1.2), for ¢ strictly convex, subject to (z1,%2,...,2x) € D, when I is a

closed interval.

Proposition 2.1. Let ¢ be a strictly convez, finite real valued function defined on a closed
interval I of the real line. Then subject to (z1,z2,...,2k) € D, where D is defined by
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(2.1), the sum (1.2) is minimized at a unique point (aq,qs,...,ax) € D, where a;’s are

given by

oy = min[fy /W1, max(y1/Wh, B2/ W2 ), max(y1/ W1, 72/ Wa, B3/ Ws),
oo, max(y1 /Wi, v2/Wa, .., Ye—1/Wi—1, Bx /Wk)), (2.11)
. J J
Ajt1 = mln[(ﬂjﬂ - '§1 wiai) /’wj+1,max<(‘7j+1 - ,§1 wiai) [wj+1,

J Jjt2 J
Bi+2 — '21 w0 / Y w;i),...,max| | Yj+1 — .21 wio; ) fwita,
1= =

i=j5+1
J Jj+2
Vi+2 — X Wi /.Z) Wiy ey
=1 =341
J k—1 J k
(%-1 -3 wiai) / ¥ wig, (ﬂk - X wz‘ai) / 3 wz')],
=1 =341 =1 i=j+1
i=1,2,....k—2, (2.12)
k—1
oar = | Br — _21 wia; | [wg. (2.13)
1=

Proof. The proof of (2.11) has already been given in Lemma 2.4. Now suppose that for

some j,1 <j <k —1,a1,as,...,a; have been determined. Let m =k — j and

D' = {(y1,92, -, ym) : (a1, 02, ..., 05, 91,Y2,-- -, Ym) € D}, (2.14)

which can also be expressed as

: : :
DI:{(yl,yZa-"aym):yiEI,ISZSm;7£S ElyTw;'S:Bz{alszsm_l)
r=

m ' '
r§1 Yrw, = ﬂm}’ (215)
where

! a J w ' — Q.. . J W, W = -1 =1.2 2.16
72 7]-'-1 —_— 21 a'r ’I‘,,Bi /8]+1 - 21 ar Ty : — wj+z,z —_— s ,...,”l. ( . )
r= r=
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Let

W! = zi;ler,i:l,z,...,k—j. (2.17)

Since (ay, @g,...,a) € D, therefore (ajt1,0j42,...,ar) € D'.

Now observe that

k j m
Y d(ai)w; > B d(ai)w; + min Y o(yi)w; >
i=1 ¢( ) i=1 ¢( ) (91,929 ym)ED’ i=1 ¢(y )

k k
min > olx;)w; = 2 ola;)w;.

(z1,22,...,2x)ED i=1 ¢( ) i=1 ¢( )
Thus aj4q’s, ¢ =1,2,...,k — j satisfy

k m
) o)w; = min by i Jw;. 2.18
Z=J+1 ¢( z) (yliy27"':ym)eD' =1 ¢(y ) ( )

Now appealing to Lemma 2.4, we have
;1 =min[B) /Wy, max(v/Wi, B3/ W3), ... ,max(v /W1, 72/ W3, ...,
Y1/ W1, B/ W)
We obtain (2.12) from above by using (2.16). Finally the equation (2.13) follows from the
fact that él a;w; = Pk. O
The following is a generalized version of Proposition 2.1 for the case where ¢ need not

be ‘strictly’ convex.

Proposition 2.2. Let ¢ be a convezr function defined on a closed interval I of the real
line. Then subject to (x1,z2,...,zx) in D, the sum (1.2) is minimized at (a1, aq,...,ar),

where a;’s are given by (2.11) - (2.13).

Proof. Since D is a compact subset of R¥ and is contained in I¥, therefore we can find
a finite interval J C I, such that D is contained in J*. Let % be a bounded real valued

9



strictly convex function defined on J. Suppose that |[¢(z)| < M, Vz in J. For any ¢ > 0,

the function ¢ + €% is strictly convex on J and hence by the Theorem 2.1, we have

(Z1,$2I;I}-i,r:3k)ED z§1(¢ + 6?,[))(.’131‘)105 = zzk]l(qﬁ + epp)(ai )wi. (2.19)

(2.19) implies that for any (z1,z2,...,zx) € D,

k
2 ziwi 2

o

Hasui + 5 ($los) — (i)
k k k
= i§1 ¢(zi)w; > i§1 Hai)w; — 2Me i§1 w;.

This being true for any ¢ > 0, we have for any (z1,z2,...,z%) € D,
k k
z ¢(zi)wi > z ¢(ai)w;. O
= 1=
The following theorem generalizes Propositions 2.1 and 2.2 to the case where ¢ is
defined on an arbitrary interval I of the real line.

Theorem 2.1. Let ¢ be a convez finite real valued function defined on an interval I of the
real line. Then subject to (z1,za,...,zk) € D, where D is defined by (2.1) and assumed to
be nonempty, the sum (1.2) is minimized at a point (a1,as,...,ax) where a;’s are given

by (2.11). The point (a1, az,...,ar) 18 unique if ¢ is strictly convez.
Proof. Choose {I,}, an increasing sequence of closed intervals such that I = CEJOI I, and
n=
D; = {(ml,xz,...,wk) 1z; €1,,1<i<k;
J . k
v < .leiaf'i <B;;,1<3<k-1 _Elwiwi = Bk ¢,
= 1=
are all nonempty and increasing for n = 1,2,..., with D = ole Dy.
n=
By Proposition 2.2, the sum (1.2), subject to (z1,z2,...,zx) € D¥, is minimized at a

point (ay,aq,...,ar) given by (2.11). Since this point is independent of n, it follows that
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subject to (21, z2,...,2k) € D, the sum (1.2) is also minimized at the point (a1, as,...,ar)
given by (2.11). Finally, if ¢ is strictly convex, the uniqueness of the minimizing point

(a1, 2,...,ax) follows from the convexity of the set D. O

Remark. We show in the following how Theorem 1.1 can be easily obtained from Theorem
2.1.

Since D; given by (1.1) is nonempty, we can find a natural number Ny such that for
N > Ny,D = D(N) given by (2.1), with each v; = —N, is non-empty. If we take N
sufficiently large, the a;’s of Theorem 2.1 coincide with 7;’s of Theorem 1.1 and hence
the sum (1.2) subject to (z1,22,...,2x) € D(N), for N > N, is minimized at the
point (71,72,...,7k). Since Dy = NgNo D(N), it follows that the sum (1.2), subject to
(z1,22,...,2k) € D1, is again minimized at the point (71, 72,...,7k).

We obtain the following theorem as a corollary to Theorem 2.1.

Theorem 2.2. Let ¢ be a convez, finite real valued function defined on an interval I of
the real line. Let v1,v2,...,Yk—1,M, be real numbers with v; < M,1 < < k- Liw; >
J
0,:=1,2,...,k—=1;W; = % w;,j =1,2,...,k and
=1
J
D, = {(:cl,zvz,...,xk) czel,1 <t < kyy; £ 8 wizg < M, for
=1
k
1<57<k-1; % wiwizM}.
=1
Let Dy be nonempty. Then subject to (z1,z2,...,zk)eD2, the sum (1.2) s minimized at o

point (61,0,,...,0r)eDy, where 0;’s are given by

61 = max[y1/Wi,v2/Wa, ..., Ye—1/Wk-1, M/ W], (2.20)

J J Jjt2
9_7'+1 = max[('yj+1 -2 9,‘11),‘) /’wj+1, (’Yj+2 - % 05?1),') / ( ) w,-> oo
=1 =1 t=3+1
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i=1,2,....k—2, (2.21)

O = (M 5 w,-a,-) / W. (2.22)
=1

The above minimizing solution is unique if ¢ is strictly convez.

Proof. On taking 8; = M, =1,2,...,k in Theorem 2.1, we obtain a minimizing solution

(01,0,,...,6;) of (1.2) subject to (z1,z2,...,2k) € Da. Thus 6, is given by

61 =min[M /W1, max(y1/Wy, M/Wa), max(v1/W1,v2/Wa, M/ Ws),
(2.23)
R 7ma‘x(71/W1772/W27 s 77k—1/Wk—17M/Wk)]‘

It is easy to see that the terms inside the braces in (2.23) are monotonically decreasing.
Hence

6, = max[y, /Wi, v2/Wa, ..., Yk—1/Wi—1, M/ W],

which is same as (2.20). By using similar arguments we obtain (2.21). Expression (2.22)
follows from the equation é 0;w; = M. Finally the uniqueness of minimizing solution,
when ¢ is strictly convex, also follows from Theorem 2.1. U

In the following theorem we consider another optimization problem, the solution of

which has not been explicitly obtained. However Theorems 1.1, 2.1 and 2.2 have been used

to obtain the relations between components of the solution.

Theorem 2.3. Let ¢ be a strictly convez, finite real valued function defined on an interval
I of the non-negative half of the real line. Let w;; > 0,0 = 1,2,...,N,5 =1,2,...,k be
real numbers and the set D3 defined by

D3 = {(mll,mlz,...,wlk;mzl,xzz,...,wgk;...;le,:ch,...,a:Nk) :
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r T
xij € I;jgl’wijmij Z]E)lwi/j.’vilj, for 1<i<d' < N,r=1,2,...,k—1;

k
and ¥ wijz;; =0, for1<e< N}, (2.24)
Jj=1

be nonempty, where B > 0 i3 a given constant. Then the N component subvectors of the

unique point (Tyy,...,T1k;-- ;TN -« TNg) 0 Which the function
N k
L5 wijé(zi) (2.25)
=1 j=1
is minimized subjgect to (z11,...,%1k;...;TN1,---,2ZNk) € D3, are related in the following
way.

7 i k
z]; = max Lrgzasxk ((rgl ’U)2r.’172r> /r§1 wlr) , ,3/ (rgl wlr)] , (2.26)

i j—1 i
* * *
Ty; = max [ max (( 2:1 WorTs, — Tgl w1r$1r> /Tg w1r>,

j<i<k \ \r= f
-1 k ,
(ﬁ— Z)lwlra:;‘,,) / <§1w1T>],] =2,3,...,k—1, (2.27)
* k-1 *
2 = | A= T wiral, Jwik. (2.28)

For2<p<N-1,

* : * . *
Tpy = min [(wp—1,1$p—1,1)/wplamax ((wp+1,1$p+1,1)/wp17
2 * 2 *
rgl Wp—1,rTp_1 r / r§1 Wpr | }5---;M8X (wp+1,1$p+1,1)/'wp17
2 . 2 k—1 . k—1
S Wpt1,Tpp1p | /| D Wor )5 | S Wphr,etpp ) /| E wer ),
r=1 r=1 r=1 r=1

8/ (él wpr))] , (2.29)

* M j * J_l *
z,; = min rg)l Wp—1,rTp_1 p — r§1 WprTpy Jwpj;

i . -t j+1 s
max Z}l Wpt1,rLpp1,r — El Wpry, | [Wpj, 21 Wp—1,rTp_1 r
r= r= r=

13



j—1 J+1 J «
— Z} wpr:cp,, / r;}j Wpr | §;-..;max Tgl Wp4+1,rLpt1,r—
j—1 « k-1 N j—1 . k-1
El WprLpp [Wpjs s r§1 Wp+1,rTp41,r — EI WprZpr / Y Wpr |,

r=j

j—1 " k .
(,3 - §1 'wprmpr) / ( g,wpr))jlvj = 273)'-'7k_ 17 (230)

r=j

* k=1 *
zhe=(B— T wprTy, Jwpk, (2.31)

. : k
TN1 :m1n[1<11n<1i1 1(( T WN-1,rZN_1 r) (E ri)), (rgler)], (2.32)
/

. ) ' i=
a:*N]- = min| min 2 WN—1,rEN_ 1, — 2 WNrT N, 2 WNr
j<i<k \\r=1 re=j

k—1 " k .
B — leNr'TNr / Y wnr )|, =2,3,...,k—1, (2.33)
r= r=3
* k-1 *
e ={ 8- E wNreh, JwNE. (2.34)

Proof. We first assume that I is a finite closed interval. Here (2.25), being a continuous
real valued function defined on the compact set D3, attains its minimum at a point of Dj.

Moreover such a point is unique, as Dj is a convex set and ¢ is strictly convex. We denote

this point by (23,.. ., 2k 51, s Lok ;TN1y - - s T
Let 1 <p < N. Set

(P) — . * * * . * * N
D3 ={(zp1,Tp2,- -, Tpk) : ($11a$12,---,$1k7---awp—1,1a--- ' Tp1 k3

ok * . * *
.'Epl,... xpk,xp_‘_l’l,...,xp_*_l k,.-.,a:Nl,..-,xNk) €D3}

Then D(p ) is nonempty since (z7 ) € D(P ). Note that

ply--» pk

DY = {(:7311, yo1k) 1215 € L1 < j < ks .51 w115 2
]=

.,
I M=
—

w2;zy, 1 <7 <k —1;

k
and ¥ wi;z; —,3},

]._.
and for 2<p< N -1,

. r r
D(p) {(%1, s Tpk) 1 Tp; € [,1 <5 < k5 E wp—l,jx;;—l,j > E WpjTpj =

2 wp+1,]:1:p+1 Hp1<r<k-—1; and 2 WpiLpj = ,3},
J_
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and

N , r
Dg ) {(:ch,... s INE) zy; €E1,1 <5<k _leN—l,jx*N—l,j > WNFING,
]:

<.
DM
e

k
1<r<k-—1;and X ’wNj-’BNj=,3}-
J=1

We are given that (2.25), subject to (211,...,%1k;..-;ZN1,--.,ZNk) € D3, is mini-

mized at (z3;,...,274;...;%N1,--->Zh). Consequently
N &k - N &k
X ¥ wijd(z;) < BT wijd(wij),
=1 j=1 =1 =1
whenever (211,...,%1k;-..;ZN1,---,ZNk) € D3. In particular
DD wijd(z5;) < B Dwijd(ai;) + Dwpid(zp;)
i g i#p J J
for all (zp1,...,Zpk) € D:(,p). Thus
%ijqﬁ(x;j) < %}ijgé(ij),

k
for all (zp1,...,2pk) € Dgp) implying that % wp;é(zp;), subject to (zp1,...,zpk) € Dgp),
=1

is minimized at (:c;l, ey T, ). The result now follows on applying Theorems 2.2, 2.1 and
1.1. Finally for any interval I, not necessarily closed and finite, the result follows by using

similar arguments as in Theorem 2.1. U

3. Maximum Likelihood Estimation of a c.d.f. F' Subject to Fi(z) < F(z) < Fy(z).

We consider the problem of maximum likelihood estimation of a c.d.f. F' when it is
apriori known that Fi(z) < F(z) < F2(z), V z, where F} and F, are known c.d.f.’s. In
a random sample of size n from a population with c.d.f. F, let the sth ordered distinct

k
value v; occur n; times, 1 = 1,2,...,k, with ¥ n; = n. We assume that Fy(v;) > 0. The
i=1
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problem is to obtain a M.L.E. of F' subject to Fi(z) < F(z) < Fy(z), V z, based on
our observation vector (v;,n;,7 = 1,2,...,k). This is basically a nonparametric problem
where it is not clear how to define what could be realistically called a likelihood function.
This is because of the absence of a common o-finite measure dominating every measure
induced by F', as it varies subject only to Fi(z) < F(z) < Fy(z). Instead we follow
the method of maximum likelihood as suggested by Scholz (1980) which bypasses the
intermediate step of first defining the so called likelihood function. We refer the reader
to Scholz (1980) for the necessary definitions and details (see also his examples 3.1 and
3.4 for the nonparametric situations similar to ours). Alternatively we could follow the
intuitive argument as discussed in Puri and Singh (1988) and as also applied to our present
case. In either case, as it turns out, our problem is reduced essentially to considering only
those F’s which are of discrete type and have positive jumps only at the observation points

v1 < vy <...<vg. As a result, we are required to find those values of
pi =dF(v;) = F(v;) — F(vi—),i =1,2,...,k, (3.1)

which maximize
k
)™ (3.2)
i=1
subject to the conditions
J .
Fl(vj) < glnzpz < F2(v_‘i)7] = 1a2a""k' (33)

This reduces further to the problem of minimizing

k
2 ni(=logpi) (3.4)
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subject to the conditions

Fi(vj) < {) ing < Fa(v), 7 =1,2,...,k -1,
; (3.5)
2 = Fy(vi).
Applying Theorem 2.1, we see that the minimizing solution (p1, p2, - - ., Pr) of (3.4) subject
to (3.5) is given by
]31 =min [Fz(vl)/nl,max(Fl(vl)/nl,Fg(vg)/(nl + nz)), ceey

max (Fl(vl)/nl,Fl(vg)/(nl +n2),..., Fi(vk_1)/ '“5_“311 n;, (3.6)

Fy(ve)/ él nz)] ,

. i I
Bj+1 :manFz(le) -2 nipi) /nj+1,max<(F1(Uj+1) -2 niPi) [Tjt1,

<F2(v1+2) - 2 n,p,)/ _?32 n) .,ma,x((Fl(vj+1) - é niﬁi) /Tjt1, 51)
(Fl(vk 1) - 2 nzpz>/ 2 i (Fz(vk)— 5 n,pz)/l_JE n>ﬂ
J=12,

Pk = <F2('Uk) - 1:=§11 niﬁi) /1. (3.8)

Thus a maximum likelihood estimate of F, subject to Fi(z) < F(z) < Fy(z), V =z, is

given by
Fl(:v) r<v
Fn(x) = Z)ln]pJ U T < Vpy1,m=1,2... . k—1, (3.9)
j=
Fy(z) x > vg,

where p;’s are given by (3.6) and (3.7).
That Fy,(z) defined by (3.9) is a consistent estimator of F (z) satisfying Fi(z) <
F(z) < Fy(z), V z,is shown in the following theorem.
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Theorem 3.1. Let Fi(z) < F(z) < Fy(z), V2. Then F, defined by (3.9) 1s a consistent

estimator of F(z).

Proof. Let F, be the usual empirical distribution function based on the random sample

of size n from F'. Let

Cn,= sup |Fn(z) — F(z)|. (3.10)
We first establish that
|Fo(z) — Fp(z)] < Cn, V. (3.11)
(3.11) is trivially seen to be true for z < v; and = > v. Also for v; < z < v,, we have

Foz) — Fu(z) = % — napy = max [(n1 /n) — Fy(vy),
min ((n1/n) — Fi(v1), (n1/(n1 + n2))((n1 + n2)/n — Fa(v2))),- . .,

min((nl/n) = Fi(v1), (n1/(n1 4+ n2))((n1 + n2)/n — Fi(v2)),.. .,

(m75 ) (52 s = ores)) o fma = Bxn)) |

Using the assumption that Fi(z) < Fy(z), V z, we have for v; < z < vy,

Fo(z) — Fo(z) < max [(nl/n) — F(v1),(n1/(n + n2))((n1 + n2)/n — F(vz)),

(nl /kgll n,-) ((kg n,-/n) _ F(vk_l)) J(n1/n)(1 = F(w))|,

which implies that Fy,(z) — F’n(w) < Ch, for v; < < vy. Likewise, using an induction

argument, it is easily seen that

Fo(z) — Fp(z) < Cp, for v; <z < wigy,i=1,2,...,k— 1. (3.12)
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Now for v; < 7 < vy,
Fo(e) — Fo(o) = min (Fa(or) = (o /), max (Fo) = (s ),
(v + 7)) (Fa(02) = (i + ) ). max( Bioa) = (s ),
(n1/(n1 +n2))(F1(v2) — (n1 + na)/n), ..., (m /kg n,-) (Fl(vk_l) - <'“=i;‘ n/n)) ,
(ms )Ex(on) ~ 1) )|

Using the assumption that Fi(z) < F(z) and noting that F3(vi) < 1, we have for v; <

T < vy,

Fa(a) - Fy() < max [F(m) — (na/m), (na/(na + n2))(F(vz) — (s + na)/m),

L (m / "g n) (F(vk_l) _ ("g ni /n)) : 0] ,

which implies that Fn(m) — Fo(z) < Cy, for v; < 2 < vg. As before, using an induction

argument, we easily see that
ﬁ’n(w) — Fo(z) < Cp, forv; <z <wvit1,1=1,2,...,k— 1. (3.13)

Using (3.12) and (3.13), we obtain (3.11). Uniform consistency of F, now follows from

(8.11) by using Glivenko—Cantelli Theorem. a

4. Concluding Remarks

(a) In Theorem 1.1, the set Dy involves one-sided restrictions on the sums é}l Wik, J =
1,2,...,k—1. Theorem 2.1 (and also Theorem 2.2) generalize the result of Theorem 1.1 to
cover those cases where these sums may instead be subjected to two-sided restrictions (see
also the remark following Theorem 2.1). Thus our Theorems 2.1 and 2.2 are applicable

to the two-sided analogs of all those one-sided situations discussed in literature (see for
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instance Barlow, et. al. (1972)). The example of Section 3 is only one such application.
Needless to add that these theorems may also be applicable to optimization problems
arising in several other areas of Operation Research.

(b) In Theorem 2.3 one may attempt to solve the system of equations (2.26)-(2.34) by
using a suitable convergent iterative procedure, such that its solution converges to the
minimizing point (z3,...,Z ;.- ;TN1s---, T ) A satisfactory solution to this problem
will help in providing another algorithm for obtaining the M.L.E.’s of N > 3 ordered distri-
bution functions. It may be mentioned here that the M.L.E.’s of two ordered distributions
have been obtained by Brunk et. al. (1966). An algorithm for finding M.L.E.’s of survival
functions of two stochastically ordered random variables in the presence of censoring was
given by Dykstra (1982). Later Feltz and Dykstra (1985) gave an iterative algorithm, de-
pending on the solutions of pairwise problems, for finding the M.L.E.’s of survival functions
of N > 3 stochastically ordered random variables.

(¢) The study of limit distribution of £}, given by (3.9) will form a topic of further study

and will be reported elsewhere.

20



Acknowledgements

This work was carried out while Prem S. Puri was visiting the Indian Statistical
Institute, New Delhi, India, during 1986-88. He is grateful to the Institute and its staff for
providing a stimulating atmosphere during the period of his stay there. This research was
also supported in part by the U.S. National Science Foundation Grant No.: DMS-8504319

at Purdue University.

References

Ayer, M., Brunk, H.D., Ewing, G.M., Reid, W.T., and Silverman, E. (1955). An empirical
distribution function for sampling with incomplete information. Annals of Mathematical
Statistics, 26, 641-647.

Barlow, R.E., Bartholomew, D.J., Bremner, J.M., and Brunk, H.D. (1972). Statistical
Inference Under Order Restrictions, New York: John Wiley.

Brunk, H.D., Franck, W.F., Hanson, D.L., and Hogg, R.V. (1966). Maximum likelihood
estimation of two stochastically ordered random variables. Journal of the American Sta-
tistical Association, 61,'1067—1081.

Brunk, H.D (1956). On an inequality for convex functions. Proceedings of the American
Mathematical Society, T, 817-824.

Dykstra, R.L. (1982). Maximum likelihood estimation of the survival functions of stochas-

tically ordered random variables. Journal of the American Statistical Association, 77,
621-628.

Feltz, C.J., and Dykstra, R.L. (1985). Maximum likelihood estimation of the survival
functions of N stochastically ordered random variables, Journal of the American Statistical
Association, 80, 1012-1019.

Kruskal, J.B. (1964). Nonmetric multidimensional scaling. A numerical method. Psy-
chometrika, 29, 115-129.

Lee, C.C. (1981). The quadratic loss of isotonic regression under normality. The Annals
of Statistics, 9, 686-688.

Lee, Y.J., and Wolfe, D.A. (1976). A distribution free test for stochastic ordering. Journal
of the American Statistical Association, T1, 722-727.

21



Puri, P.S., and Singh, H. (1988). Recursive formulas for isotonic regression useful in
statistical inference under order restrictions. To appear in Journal of Statistical Planning

and Inference.

Robertson, T., and Wright, F.T. (1974). On the maximum likelihood estimation of stochas-
tically ordered random variates. Annals of Statistics, 2, 528-534.

Robertson, T., and Wright, F.T. (1981). Likelihood ratio tests for and against a stochastic
ordering between multinomial populations. Annals of Statistics, 9, 1248-1257.

Robertson, T., Wright, F.T., and Dykstra, R.L. (1988). Order restricted Statistical Infer-
ence, New York: John Wiley.

Sampson, A.R., and Whitaker, L.R. (1987). Estimation of multivariate distributions under
stochastic ordering. Bulletin of the Institute of Mathematical Statistics, 16, 108.

Schoenfeld, D.A. (1986). Confidence bounds for normal means under order restrictions
with applications to dose response curves, toxicology experiments and low dose extrapola-
tion. Journal of the American Statistical Association, 81, 186-195.

Scholz, F.W. (1980). Towards a unified definition of maximum likelihood. The Canadian
Journal of Statistics, 8, 193-203.

22



