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For each of them, a corresponding empirical Bayes decision rule is proposed. The asymp-
totic optimality properties and the convergence rates of the three empirical Bayes rules
are investigated. It is shown that for each of the three empirical Bayes rules, the rate of
convergence is at least of order O(exp(—cn +Inn)) for some positive constant ¢, where the
value of ¢ varies depending on the empirical Bayes rule used.
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1. Introduction

Let 71,...,7, denote n independent populations. For each 1 = 1,...,n, population
n; is characterized by a parameter 6;. Let 8 denote a standard or a control. The problem
of selecting populations with respect to a control has been extensively studied in the
literature. Dunnett [3] and Gupta and Sobel [10] have considered problems of selecting
a subset cc\>nta.ining all populations better than a control using some natural procedures.
Lehmann [12] and Spjgtvoll [20] have treated the problem using methods from the theory
of testing hypotheses. Randles and Hollander {16}, Gupta and Kim [6], Miescke [14] and
Gupta and Miescke [7] have derived optimal procedures via minimax or gamma-minimax
approaches. The reader is referred to Gupta and Panchapakesan [8, 9] for an overview of
this research area. In this paper, we study the problem of selecting good populations from

among n populations using the empirical Bayes approach.

For each ¢t =1,...,n, let X; denote a random observation arising from population =;
with probability density function f(z|6;). The observation X; may be thought of as the
value of a sufficient statistic for the parameter ; based on several iid observations taken
from 7;. Let 8o be a known constant. This 8y can be used as a standard level to evaluate
each of the n populations. Population = is said to be good if 8; > 6, and bad otherwise.

Our goal is to select all the good populations and exclude all the bad populations.

Let Q = {0 = (01,...,0.)|f(z|0;) is well-defined, ¢ = 1,...,n} be the parameter space
and let A = {a = (a1,...,axn)|a; =0,1,7 = 1,...,n} be the action space. When action g is
taken, it means that population =; is selected as a good population if a; = 1, and excluded

as a bad one if a; = 0. For each § € 1 and a € 4, the loss function L(4, g) is defined to be:

n

n
L(8,0) = ) _ai(Bo — 0:)I(60 — 6:) + Y (1 — as)(6: — 60)I(6; — 60) (1.1)
i=1 1=1
where I(z) = 1(0) if z > (<)O0.
It is assumed that for each ¢, the parameter 6; is a realization of a random variable
©;. It is also assumed that the n random variables ©;,7 = 1,...,n, are independently

distributed with a common but unknown prior distribution G. Thus, ©@ = (04,...,0,)
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n

has a joint prior distribution G(8) = [] G(8;) over the parameter space 2. Under the
1=1

preceding assumptions, Xji,..., X, are iid with the marginal probability density function

f(z) = [ f(=|6)dG(6).

For each ¢ = 1,...,n, let X; be the sample space of X;, and let X = X; x... x X,.
Let X = (X}y,...,Xy) and let z = (z1,...,Z,) be the observed value of X. A selection
rule d = (d1,...,dy,) is defined to be a mapping from X into [0,1]" such that d;(z) is the
probability of selecting 7; as a good population given X = z. Let D be the class of all
selection rules, and let r(G,d) denote the Bayes risk associated with each d € D. Then,

r(G) = énf r(G,d) is the minimum Bayes risk.
D

The Bayes risk associated with any rule d € D can be rewritten as

r(G,d) = Z:r,-(G, d;) (1.2)

where

ri(G,d;) = /r (00 — wi(z:)]di(z) H f(zj)dz +C (1.3)

i=1
where p;(z;) = E[0;|X; = z;] = [0f(z:|0)dG(6)/f(z;), the posterior mean of ©; given
Xi=z;,and C = f;jf(o — 60)dG(6).

Since the value C is independent of the selection rule d, from (1.3}, a Bayes rule, say
ds = (d1B,...,dnB) is clearly given by

dinle) = {§ Leie) 200 (1.4

0 otherwise,

n

and the minimum Bayes risk is: r(G) = z:lr,-(G, d;B).
i=
Since the prior distribution G is unknown, it is not possible to apply the Bayes rule
dp for the selection problem at hand. However, the selection problem under study can be
viewed as that in which we are dealing with a Bayes decision problem having n compo-
nents with a common unknown prior distribution. Thus, the empirical Bayes approach of
Robbins [17, 18] can be employed here. We use all the observations obtained from the n

populations to form a decision for each of the n—component problems.
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Let p;n(z:|z(f)) be an estimator of p;(z;) based on (z,...,2,) where z(i) =

(Z1,-++»Zi—1,Ti415--.,Zn). We then define a selection rule d,, = (din,...,dn,) as follows:

din(eilz(i)) = din(g) = {1 £imlEil() 2 bo, (15)

The associated Bayes risk of the selection rule d,, is:

T(G, én) = Eri(G, din) (1.6)

where
ri(G,din) = E;Ri(G,din) (1.7)
and
Bi(Gydin) = [ 180 - pi(edldin( X () (21) + C. (1.8)

In (1.7), the expectation E; is taken with respect to X(3) = (X1,...,Xi—1, Xi+1,..., Xn)-
Recall that r;(G,d;p) is the minimum Bayes risk for the i-th component problem. Thus,
ri(G,din) — ri(G,d;g) > 0 and therefore, r(G,d,) — r(G) > 0. For the empirical Bayes
selection rule d, to be useful, we always desire that the average nonnegative difference

(r(G,dn) — r(G))/n or the total nonnegative difference r(G,d,) — r(G) be small.

Definition 1.1

(a) A decision rule dy, is said to be weakly asymptotically optimal relative to the (un-

known) prior G if (r(G,ds) —r(G))/n — 0 as n — co.

(b) A decision rule d, is said to be strongly asymptotically optimal relative to the (un-
known) prior G if r(G,d,) — r(G) — 0 as n — oo.

Clearly, for a selection rule d,, the strong asymptotic optimality implies the weak
asymptotic optimality. In certain compound decision problems the weak asymptotic op-
timality of compound decision rules has been studied in the literature by many authors,
notably Vardeman [21, 22|, Gilliland and Hannan [4], and Gilliland, Hannan and Huang
[5], though the formulation of their compound decision problems are different from the
one we consider here. However, very surprisingly, it seems that the strong asymptotic

optimality has not been investigated so far.



In this paper, we consider the problem of selecting good Poisson populations. Accord-
ing to how much we know about the prior distribution G, three empirical Bayes methods
are used to incorporate information from different sources for making a decision for each of
the n components. They are: nonparametric empirical Bayes, parametric empirical Bayes
and hierarchical empirical Bayes. For each of them, a corresponding empirical Bayes se-
lection rule is proposed. The strong asymptotic optimality of the selection rules is also
established. It is shown that for each of the three empirical Bayes selection rules, the rate
of convergence is at least of order O(ezp(—cn + €n n)) for some positive constant ¢, where
the value of ¢ varies depending on the empirical Bayes rule used. This result indicates the
advantage of incorporating all the information from different sources for making a decision

for each of the n component problems.

2. Selecting Good Poisson Populations

It is assumed that for each ¢ = 1,...,n, the random observation X; arises from
a Poisson population with mean 6;. That is, f(:c,-|0,-) = e %9% /(z), z; = 0,1,2,....
Then, f(z:) = [, €7%0% /(z:!)dG(0) = a(z:)h(z:), where a(z;) = 1/z;! and h(z;) =
I €7%0%dG(0), and p;(z;) = h(zi+1)/h(z:) = p(z:). Let 6 > 0 be the known standard
level. The Bayes rule dg = (diB,...,dnp) for this problem is:

1 if p(z:) > 6o
d . — il ’
iB(2) { 0 otherwise.

Since the prior distribution G is unknown, it is not possible to apply the Bayes rule
dp here. Therefore, in the following, empirical Bayes rules are constructed according to

how much information we have about the prior distribution G.

2.1. A Nonparametric Empirical Bayes Rule

First, it is assumed that the prior distribution G is completely unknown. Thus, the
nonparametric empirical Bayes approach is employed. Note that the Bayes rule dp is
a monotone rule. That is, for each ¢ = 1,...,n,d;p(z) is nondecreasing in z; when all

the other variables are kept fixed. This follows from the increasing property of p;(z;)
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which can be verified by noting that f(z|6;) has the monotone likelihood ratio. Thus, it is

desirable that the considered empirical Bayes rules be monotone.

For each 1 = 1,...,n, let N;, =11_1§ij — 1. For each y =0,1,...,N;, + 1, let
J#s

finly) = — i T D Iy (X5), (2.1)
ok
hin(y) = fin(v)/a(v). (2.2)

Since it is possible that h;,(y) may be equal to 0, we define

Soin(y) = [hin(y + 1) + 5n]/[hin(y) + 67!.]1 (2'3)

where 6, > 0 is such that 6, = o(1).

By the forms of p;(z;) and ©;n(z;), it seems natural to use p;,(z;) as an estimator
of p;(z;) and one may obtain an empirical Bayes rule as follows: Select 7; as a good
population if p;,(z;) > 0o, and exclude m; as a bad one otherwise. However, this selection
rule is not monotone since p;,(y) may not possess the increasing property. Thus, we

N;n

consider a smoothed version of pin(y). Let {p},(¥)},2%

{oin (y)};v;’z, with random weights {Win(y)}y;'b, where W;,(y) = [hin(y) +6r]a(y+1). For
y > Nip, define 7, (y) = ¢}, (Nin). Therefore, o}, (y) is nondecreasinginy, y =0,1,2,....

be the isotonic regression of

We use ¢}, (z;) to estimate p;(z;) and propose an empirical Bayes rule d;, = (df,,...,d},)

as follows: Foreachi=1,...,n,

* N — * 1 if o}, (z:) = bo,
din(ailz@)) = din(g) = {§ T £in(zi) 200 (24)

The performance of the preceding nonparametric empirical Bayes procedure will be

discussed in Section 3.

2.2. A Parametric Empirical Bayes Rule

Here we assume that the prior distribution G is a member of gamma distribution

family with unknown shape and scale parameters k and 8, respectively. That is, G has a
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density function g(d|k, ), where
g(8|k,B) = p*eF~1e=P% T (k), 6 > 0.

Then, X1,...,X, are iid with marginal probability function f(z) = I'(z + k)B*/|T (k)(1 +
B)=tkzl], z = 0,1,2,.... Also, pi(z) = (z+ k)/(1 + B). A straight computation yields
p1 = E[Xi] = k/B, p2 = E[X2) = (k+1)k/B% + k/B. Thus, 8 = p1/(ps — u1 — p2) and
k = u3/(n2 — p1 — u3). Therefore, p;(z) = [z(p2 — p1 — p3) + £/ (B2 — 1)

n n
For each 1 = 1,...,n, let p1,(2) = ﬁ J_Z_:l X; and pan(?) = -ni—l ];1 XJ?. That is,
J#i J#i
K1 (?) and pan(t) are moment estimators of 4y and p2, respectively, based on X (7). Note

that it is possible that pan(s) — p1n(7) — 3, (s) < 0 though ps — p1 — p2 > 0. Now, for

eacht=1,...,nand z; =0,1,2,..., define

Z 2ni—1ni—?ni f,,,'v . * 3 .
e ={ pan O=iin@=prn OlF012 ) £ o (3) — pgn(6) — p2,(5) > 0 (2.5)

Pin Fﬁn(‘.)—#?n(‘)
T; otherwise.
We then propose an empirical Bayes rule @n = (Jln, ceey Jnn) as follows:
) S 3 1 if (,5 (:B) > 00
. . =d; — { tn\Lt) = ’ ]
din(2:]2(7)) in(2) 0 otherwise. (26)

2.3. A Hierarchical Empirical Bayes Rule

Now, it is assumed that the prior distribution G is a gamma distribution with a known
shape parameter k and an unknown scale parameter #. In this situation, the preceding
parametric empirical Bayes approach can be applied here. However, since our purpose is
to introduce the methods to incorporate data from different sources, a new method, called

as hierarchical empirical Bayes, is used in the following.

Since 3 is a scale parameter, we assume that § has an improper prior p(8) o %, B > 0.

Then the Bayes law yields the following posterior density function of 8

p(Blz1,- -y 2n) = B (L + B)T°T(B)/[T (nk)T (b — nk)],
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n
where b = nk + ) z;. The posterior mean of g is

1=1

n
_nk if ) z;>2,
Z z;—1 j=1
ﬂn = J=1 ’
n
0o if ) z; <1
i=1
Now, for each t = 1,...,n, define

n

(zi+k)/(1+Ba) if 3 z; 22,

Binlz:) = 7 (2.7)
0 if o z; <1
i=1
‘We then give an empirical Bayes rule d, = (di1p, ... ,dny) as follows:
5 . 5 1 if Bi(zi) > 00
din(z: =d; = in\3) = 70 2.8
(zilz(@)) = Tmfg) = {1 Pinlm) (28)

3. Asymptotic Optimality of the Proposed Empirical Bayes Rules

In this section, we investigate the asymptotic optimality of the proposed empirical

Bayes rules.

Let A(fo) = {z]p(z) > 6o} and B(f) = {z|p(z) < 6o}. Define

Mo min A(6p) if A(bo) # &, (3.1)
~ 1 oo otherwise, .

e {maxB(oo) if B(6o) # ¢, (3.2)

1 otherwise,

where ¢ denotes the empty set.

By the increasing property of ¢(z) in the variable z, m < M; alsom < M if A(fp) # ¢.
Furthermore, z < m iff p(z) < 6y and y > M iff p(y) > 6. In the following, we
consider only those priors G such that [~ 0dG(f) < oo and m < oo. Note that the
preceding requirements are always met if the prior distribution G is a member of gamma

distribution family. Let dn = (din,...,dnn) be any of the three proposed empirical Bayes
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rules and let (915 (Z1),...,%¥nn(Zn)) be the corresponding empirical Bayes estimators. By
the definitions of ©}, (z:), Pin(z:) and B;,(z:), win(z:) is increasing in z; when all the
other variables z;, 7 # 1, are kept fixed. Thus, for each i =1,...,n,
0 < ri(G,din) — ri(G, d;B)
m

= > [0o — 0(z:)|P{oin(z:) > b0} f(z:) + Y lo(z:) — G| P{pin(z:) < B0} f(=:)

z;=0 z; =M

< 2"‘: [60 — o(2:)|P{pin(m) = 60} f(z:) + Y lp(z:) — b0]P{win(M) < 80} f(:)
z;=0 zi=M

= blP{go.-,.(m) > 00} + bzP{‘Piu(M) < 00}, (33)

where 0 < b; = i—::o [0 — ©(2)]f(z) < 00,0 < by = iM [e(z) — 00]f(z) < co. The

finiteness of both b; and b, is guaranteed by the assumption that [~ dG(6) < co.

From (3.3), we obtain:
0 < r(G,d,) — r(G)

= ;[r;(G, din) — 1i(G, dip)] (3.4)

< zn:[hp{soin(m) > 00} + ba P{pin(M) < 60}].

t=1

Therefore, it suffices to consider the asymptotic behavior of P{pin(m) > 6o}
and P{pin(M) < 6o}.

3.1 Asymptotic Optimality of d},

We first present some useful results.
y
Foreachi=1,...,nand y=0,1,...,Nis, let ¥;,,(y) = Y 0in(z)Win(z), U5, (v) =
z=0

y y
Y i ()Win(z) and Hin(y)= Y Win(z) where Wi,(z), z = 0,1,..., Nip, are the ran-
=0 z=0

dom weights defined in Section 3. From Barlow, et al. [1],

Ui (y) £ Vin(y) forally =0,1,..., N;,. (3.5)
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From Puri and Singh [15], the isotonic regression estimators ¢, (z), z =0,1,..., N,
can be rewritten as:
\I’iﬂ(y) - \I’En - 1)
min
where ¥}, (—1) = H;n(—1) = 0. Thus, from (3.5) and (3.6),

[\I’in(y) — ‘I’in(z - 1)
in(y) - Hin(z - 1)

ol (z) = , 2=0,1,...,Nin, (3.6)

i (z) > min ] , 2=0,1,...,Nip, (3.7)

<y<Nin

where ¥;,(—1) =0.
The following Lemma is taken from Liang [13].

Lemma 3.1. Let {an} be a sequence of real numbers and let {b,,} be a sequence of positive

numbers such that b,, <1 and b,, is nonincreasing in m. Then, for each positive constant

c,
n n
su Ambm| 2 (>)c = su am!| 2 (>)ec.
nz‘I,,,gl"‘"' (>) nzli:‘:‘l'" (>)

a(z)
M,M +1,...}. Then, Q(y) is a decreasmg function of y. Hence max Q(y) R(M) =
¥

f ()22 16, — o(M)] < 0.

a(M)

Lemma 3.2. Define a function Q(y) = 6o Z f(z)ezt) 2 f(z+1) on the set {yly =
=M

Proof: Q(y+1)-Q(y) = fly+ 1)%’-8:_—3%[00 —p(y+1)] < O0since y+1 > M and thus

o(y +1) > (M) > 8. Thus, Q(y) is a decreasing function of y which leads to the result

of this lemma. O

Theorem 3.3. P{p},(M) < 6o} < O(exp(—m1n))
where 7; = min(2(Q(M) min(1,6;5')/8)?, In[F(M)]~!) > 0, and F(.) is the marginal
distribution of X;’s.

Proof: P{p},(M) < 6o}
= P{p},(M) < 85, N;p < M} + P{p;,(M) < 6o, Nin > M}. (3.8)

Now,

P{p}n(M) < o, Nin < M} < [F(M)"~* = O(exp(-nln[F(M)]))).  (3.9)
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Also, from (2.1)-(2.3), (3.7), Lemma 3.2, and by the definitions of ;5 (y) and H;,(y),

straightforward computation yields the following:

E = {p},(M) < 8o, Nin > M}

C{¥in(y) — ¥in(M -1) < ﬂo[H;n(y) Hin(M — 1)} for some y, M <y < N}
C U { Z Azn(z'i‘ 1) 00 E Am.( )a(z(+)1) < (00 - 1)5 Z a(:c + 1)

y>M\z=M

+ Q(M)}
= El. (310)
where A;p(z) = f,-,,(.a:) — f(z). Since a(z) > 0for all z=0,1,..., and f a(z) < oo and

6, = o(1), then, for sufficiently large n, (6o — 1)é, Z a(z+1)+ Q(M) < Q(M)/2 < 0 for
all y > M. Note that a(z + 1)/a(z) = (z + 1)1, whlch is positive, bounded above by 1,

and decreasing in z for £ =0,1,2,.... By the preceding facts and Lemma 3.1, we obtain:

E, C U { ZV: Ap(z+1)] > —@ or zy: Ain(z )a(a:(-:)l) Q4(;M)}
y>M \|z=M z= 0
c Y { i Ain(z +1) >—@o Z Ain(z)| > ( )}
y2M \iz=M =M
- {zgpo |Fin(y) — F(y)] > —Q(M) min(1,65!) /8} (3.11)

where Fin(y) is the empirical distribution based on X (z).
From (3.10) and (3.11), we obtain
P{pi.(M) < 80, Nin > M}
< Plsup|Fils) - F(5)| > -Q(M) min(1,05")/3} (.12)
< dexp{-2n(Q(M) min(1, 05)/9)")
where the last inequality follows from Lemma 2.1 of Schuster [19].

Now, let 7; = min(2(Q(M) min(1,6;')/8)?, In[F(M)]~!). Clearly r; > 0. Combining
(3.8), (3.9) and (3.12) gives the result of this theorem. _ (.
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Theorem 3.4. P{p},(m) > 6o} < O(exp(—72n))
where 72 = [R*(m) min(1,6;!)]?/8 > 0 and R*(m) is defined below.

Proof: From (2.1)-(2.3) and by the definition of ¢}, (m),

{ilm) 2 00}
C{pin(z) = 6o for some 0 < z < m} (3.13)

C{a(z)Ain(z + 1) - boa(z + 1) Ain(z) > R(z) — a(z)a(z + 1)6n[1 — b5 for some 0 < z < m},

where R(z) = —a(z)f(z + 1) + boa(z + 1) f(z) = a(z + 1)f(z)[—p(z) + 80] > O since
6o — p(z) > 6o — p(m) > 0, by the definition of m and the fact that 0 < z < m. Thus,
R*(m) = o 212’" R(z) > 0 and therefore, for sufficiently large n, R(z) — a(z)a(z +1)6,[1 -
o] > R*(m)/2 since é, = o(1). Therefore, from (3.13) and by Theorem 1 of Hoeffding

[11],

P{pin(m) 2 6o}

<) _[P{Ain(z +1) > R*(m)/(4a(2))} + P{Ain(z) < —R*(m)/(4b0a(z + 1))}]

z=0

<Y leexp{~2n[R*(m)/(4a(z))]*} + cexp{—2n[R" (m)/(4f0a(z + 1))|*}]

z=0

=0 (exp(—12n)). O

Based on the preceding discussions, we have the following result.

Theorem 3.5. Assume that the prior distribution G is such that [~ 6dG(f) < oo and
m < co. Then, for the empirical Bayes rule d;,, 0 < r(G, d},) — r(G) < O(exp(—7n + Inn))

where 7 = min(r,72) > 0.

Proof: By (3.4), Theorem 3.3 and Theorem 3.4, we have

0 < #(G,d2) - (G) < O(nexp(~rn))

= O(exp(—rn + Inn)). O



3.2. Asymptotic Optimality of ¢:1n

We let M;(t) and Mz(t) denote the moment generating functions of X; and X3,

respectively. For each real value a, define
my(a) = iItlf e~ M (t)
ma(a) = iItlf e % M,(t) |
where the infimum is taken with respect to real values of .

Lemma 3.6. For any positive constant c,
0<mi{pi+¢)<1,0<mi(pi—c)<1 fori=1,2,

where p; = E[X;] and pp = E[X}).

Proof: For the fixed real value a, consider the function
S1(t) = e~ M(t) = E[etX1~2)],
We have
51(2) = E[(X1 - a)e**2),
512() = E[(X1 - a)?e'*a2)],
where Sl(j ) (t) denotes the j—th derivative of S)(t) with respect to t.

Since Sl(z) (t) > O for all ¢, S;(t) is a convex function. Also, Sl(l)(O) = E[X;-4a] <
(=,>)0 iff p; < (=,>)a. Thus, as u; < a, Sl(l)(O) < 0, which implies that S;(t) is
strictly decreasing in a neighborhood of point zero. Also, S1(0) = 1. Therefore, m;(a) < 1
if 41 < a. Similarly, we can also obtain the following result: m;(a) < 1 if u; > a.

Now, by the definition, m;(a) > 0. These results yields that 0 < my(¢; +¢) < 1 and

0 < m;(pu1 — ¢) < 1 for any positive constant c.

The results that 0 < ma(p2+¢) < 1and 0 < ma(u2 —c¢) < 1 for any positive constant

¢ follow from similar arguments. O

Lemma 3.7. For each ¢ = 1,...,n, let p1,(f) and p2n(s) be the moment estimators of y;

and pg, respectively, which are defined in Section 2. Then, for any positive constant ¢,
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(@) P{p1n(d) — p1 < —c} < [ma(p1 - €)*?,

(b) P{u1n(d) — g1 > ¢} < [ma(p1 + )",

() P{uzn(i) — 2 < —} < [ma(pa — c)]""? and
(@) P{uznli) — p2 > ¢} < [ma(pz + ¢)J*1.

Proof: This lemma is a direct application of Chernoff [2]. The proof can be completed by
noting the fact that 0 < E[X;] < oo and 0 < E[X?] < co. O

Let u = pz — py — p2. Thus, u > 0, see Section 2. Define A = max(ms(us — £)

my(ur + §), mi(p + 55;), mi(2p1)). By Lemma 36,0 < A< 1.

Lemma 3.8. P{psn (i) — p1n(s) — #2,(¢) <0} < O(exp(—ain))
~lnA i A>0,
oo if A=0.

Proof: P{u2n(s) — p1n(i) — a2, (i) < 0}

where a; = {

= P{[u2n (i) — p1a() — 30 ()] — (02 — 1 — 3] < —p}
<P {uzn(i) —pz < —%} + P {um(i) —p1 2 ﬁ}

-3
. B
+P{uda() -t 2 £}

By Lemma 3.7,
P {#m(i) —H2z < —g'} < [mz (#2 - g)]n—l )
P {#m(i) -y > %} < [ml (#1 + g—)]n—l , and
P {uta() - 43 2 £}
=P {u?n(i) —pi > g, p1n(i) < 2#1} +P {uf,,(i) —pui> L;-, pin(3) > 2#1}
<P {ul,.(i) “m> ﬁ} + P{pa(d) — 1 2 1) (3.14)

< [ml (m + 5%)]"—1 + [ma (2p1)]* .

Combining the preceding results, the lemma follows. O
Theorem 3.9. P{$in(M) < 8o} < O(exp(—azn)) for some positive constant as.
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Proof: P{pin(M) < 00} = P{pin(M) < 80, p2x(t) — p1n(?) — 12, (1) < 0}
+P{pin(M) < o, n2n(i) — p1n(f) - l‘%n(i) > 0}, (3.15)

where
P{@in(M) < b0, p2n(i) — p1a(f) — 43, (i) < 0}

(3.16)
< O(exp(—ajin)) by Lemma 3.8.

Now, let g(M) = M(pu2 — p1 — p2) + u? — Oo(u2 — p2). By definition of M, ¢(M) > 0.
Thus,
P{pin(M) < 80, p2n(s) — p1n(d) — “?n(i) > 0}
<SP{(M — 8o)p2n (i) — Mp1n (i) — (M — 1 — bo)u, (i) < 0}
=P{(M — 00) (2n(5) — p2) — M(p1n (i) — p1) — (M — 1 - 00) (11, (3) — 1]) < —g(M)}

<P {(M — 80)(12n (5) — p2) < —"—(-gi)} +P {M(pln(i) — ) > @} (3.17)
+P{0r-1-0)(utat) - ) > 230},
By Lemma 3.7,

P{M(um(i) - ) > %Q} < [ (ﬂ + qéﬁ))] —1- (3.18)

ma (12 — 7220 )]" it M- 60 >0,

P{(M—ﬂo)(uzn(i) — p2) < —%M)} < (L (#2 e ))] 1 ifﬁ—ﬁo:g,

[TH2 (pg + ?(%%A)T))]n_ ifM—6,<0,
(3.19)

and analogous to (3.14),

{(M —1—60)(p3n(3) — £) > ‘1(24) }

n—1
[ml (I‘l + G(_Mi%)%)T)] + [mi(2m)]""! M —-1-6 >0, (3.20)
<<0 ifM—-1-6,=0,

[ (1 + 5 )] if M—1— 6 <0.

Combining (3.15)-(3.20), and by Lemma 3.6, it follows that there exists a positive
constant, say oz, such that P{@in(M) < 8o} < O(exp(—azn)). O

15



Theorem 3.10. P{@in(m) > 0o} < O(exp(—aszn)) for some positive constant ag.

Proof: The proof is analogous to that of Theorem 3.9. We omit the details here. [l
The following theorem is a direct result of (3.4) and Theorems 3.9 and 3.10.

Theorem 3.11. Let (En be the empirical Bayes rule defined in Section 2. Assume that the

prior distribution G is a member of the gamma distribution family. Then,
0 < r(G,dn) — r(G) < O(exp(—an + Inn)),

where a = min(az, az) > 0.

3.3. Asymptotic Optimality of ‘—!n-

Theorem 3.12. Let En be the empirical Bayes rule defined in Section 2. Assume that the

prior distribution G is a member of gamma distribution family I'(k, 3), where k is a known

positive constant. Then,
0 < 7(G,dn) — (@) < O(exp(—vn + Inn))

for some positive constant +.

Note that the statistical model considered here is simpler than that of Section 3.2.
Thus, the proof for Theorem 3.12 is analogous to and simpler than that for Theorem 3.11.
We omit the details of the proof.

4. Small Sample Performance: Simulation Study

A Monte Carlo study was designed to investigate the performance of the three empir-
ical Bayes procedures. We let the prior distribution G to be a gamma distribution with

k =1and § = 1. With this specified prior distribution, f(z) = 27*~! and p(z) = =1,

z=0,1,2,.... Also, the minimum Bayes risk for each of the n component decision prob-

lems is r;(G, d;B) = e~% —4-% where 0y > 0 is the known standard. Therefore, the total
n
minimum Bayes risk 7(G) = Y r;(G,d;g) = n[e~% — 4=%],

=1

16



Let dn = (din,-..,dnn) be any of the three proposed empirical Bayes procedures.
Since r(G,dn) —7(G) = Y [ri(G\ din) — 73(G, di5)] = nlr1(G, d1n) — 71 (G, d15)], in the fol-
lowing, we have simulate'cﬁhe difference r1 (G, d1n)—r1(G, d18) by R1(G,d1n)—11(G, d1 ),
which is the difference between the conditional Bayes risk of d;, conditional on X(1) and
the minimum Bayes risk. We have then used n[R;(G,d1n) — 1(G,d18)] as an estimator

of the total difference r(G,d,) — r(G).
The simulation scheme used in this paper is described as follows:

(1) For a fixed n, generate independent random values X' 15-..,Xn according to the prob-

ability function f(z).

(2) Based on the values Xj,...,X,, construct the empirical Bayes procedure d;,, and
compute the conditional difference D(d1,) = R:i(G,d1n) — r1(G,d1B). It should be
noted that for the nonparametric empirical Bayes procedure dy, the sequence {6,}2,

is chosen such that 6, = n—%.

(3) The process was repeated 1000 times. The average of the differences based on the
1000 repetitions, which is denoted by D(d,,), is used as an estimator of the difference
r1(G,d1n) — r1(G,d1). Then nD(d;,) is used as an estimator of the total difference
(G, dn) — r(G).

Tables 1-3 list some simulation results on the performance of the three empirical
Bayes procedure c_i;,t:i,, and zn, respectively, for the case where §p = 1.5. The notation
SE(D(d1s)) is used to denote the estimated standard errors of the corresponding estimate

D(d1a).

The simulation results indicate that for the empirical Bayes procedure En,nﬁ(Em)
tends to zero very fast and that n—ﬁ(al,,) = 0 for all n > 100. Also, for the empirical
Bayes procedure @n,n_ﬁ(cfln) roughly increases in n for n < 40, then decreases in n and
nD(di,) = 0 for n > 280. However, the behavior of the nonparametric empirical Bayes
procedure nD(d},) was not the same as we might expect. Though D(d3,) roughly de-
creases in n, its convergence speed is a little slow so that nD(d?, ) seems to be increasing

in n.

17



In general, d, performs better than the other two since n_D.(El,;) < nﬁ(iln) <
nD(d},) for all n listed in the tables. This result is reasonable since we have the most
information regarding the prior distribution G when the hierarchical empirical Bayes pro-
cedure Zi,, is applied and we have no information regarding the prior distribution G when

the empirical Bayes procedure d;, is employed.

18



Table 1. Performance of d;, as described in Section 4.

10 0.02419 0.00109 0.24190 0.98130
20 0.01877 0.00088 0.37541 1.96260
30  0.02493 0.00111 0.74800 2.94390
40  0.02787 0.00119 1.11474 3.92521
50  0.02680 0.00116 1.33987 4.90651
60  0.02553 0.00110 1.53189 5.88781
70  0.02603 0.00106 1.82214 6.86911
80  0.02508 0.00102 2.00718 7.85041
90  0.02407 0.00096 2.16587 8.83171
100 0.02404 0.00101 2.40478 9.81301
120 0.02306 0.00093 2.76767  11.77562
140 0.02149 0.00092 3.00801 13.73822
160 0.01961 0.00082 3.13834  15.70083
180 0.01897 0.00080 3.41499 17.66343
200 0.01810 0.00076 3.61943  19.62603
220 0.01738 0.00072 3.82250  21.58864
240 0.01726 0.00072 4.14188  23.55124
260 0.01634 0.00070 4.24938 25.51384
280 0.01589 0.00067 4.44938  27.47644
300 0.01530 0.00066 4.59140  29.43905
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Table 2. Performance of g:iu as described in Section 4.

n  D(di,) SE(D(di,)) nD(din) r(G)
10 0.01803  0.00118 0.18030  0.98130
20 0.01609  0.00108 0.32187  1.96260
30 0.01305  0.00096 0.390154  2.94390
40 0.01167  0.00091 0.46678  3.92521
50 0.00925  0.00099 0.46245  4.90651
60  0.00581  0.00062 0.34874  5.88781
70  0.00440  0.00050 0.30784  6.86911
80 0.00318 0.00041 0.25453 7.85041
90  0.00236  0.00036 0.21270  8.83171
100 0.00174  0.00030 0.17378  9.81301
120 0.00109  0.00024 0.13124  11.77562
140  0.00078  0.00020 0.10876  13.73822
160  0.00061 0.00017 0.09750  15.70083
180 0.00041  0.00014 0.07453  17.66343
200 0.00032  0.00013 0.06406  19.62603
220 0.00013  0.00006 0.02750  21.58864
240 0.00006  0.00004 0.01500  23.55124
260 0.00003  0.00003 0.00813  25.51384
280 0. 0. 0. 27.47644
300 0. 0. 0. 29.43905
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Table 3. Performance of dy, as described in Section 4.

n  D(din) SE(D(din)) nD({d1n) r(G)

10 0.00666 0.00044 0.06656  0.98130
20  0.00266 0.00029 0.05313  1.96260
30  0.00134 0.00020 0.04031  2.94390
40  0.00072 0.00015 0.02875  3.92521
50  0.00059 0.00013 0.02060  4.90651
60  0.00019 0.00007 0.01125 5.88781
70 0. 0. 0. 6.86911
80 0. 0. 0. 7.85041
90  0.00003 0.00003 0.00281 8.83171
100 O. 0. 0. 9.81301
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