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ABSTRACT

This paper deals with the problem of selecting the best population from among k(> 2)
populations which can be described by location-scale parametric models. New selection
procedures are proposed for selecting the unique best in terms of the largest location pa-
rameter. The procedures include preliminary tests which allow the experimenter to have
an option to not select if the statistical evidence is not significant. Two probabilities, the
probability to make a selection and the probability of a correct selection, are controlled by
these selection procedures. Applications to the normal mean models are considered. Com-
parisons between the proposed selection procedures and certain earlier existing procedures
are also made. Finally, a two-stage procedure for the normal means problem is considered.
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1. INTRODUCTION

The problem of selecting the best population from among k(> 2) populations has
been studied extensively. Many selection procedures have been derived for different selec-
tion goals by several authors. Among them, Bechhofer (1954) introduced the indifference
zone approach for selecting the normal population with the largest mean. In his approach,
the determination of the sample size depends entirely on the indifference zone assumption.
Also, the probability of a correct selection depends on the unknown parameters and is anal-
ogous to the power of a test. However, in this formulation, a probability that is analogous
to the probability of type-I error of a test was not taken into consideration. Bechhofer’s
procedure forces the experimenter to make a selection, and often that procedure is not used
in practical applications because of the lack of a statistical test for the homogeneity of the
parameters as stated in Simon (1977). It should be pointed out that in another approach
called the subset selection this drawback, namely, the assumption of indifference zone, is
not there. This approach due to Gupta (1956, 1965) as well as Bechhofer’s approach are

both discussed in detail in the monograph by Gupta and Panchapakesan (1979).

Based on the preceding reasoning, Bishop and Pirie (1979) introduced a selection
procedure in which a test of homogeneity was conducted. The procedure allows the ex-
perimenter to have the option not to make a selection if the statistical evidence is not
significant. Later, Chen (1985) proposed a modified selection procedure for the problem of
selecting the best normal population. He considered a preliminary test based on the sam-
pled spacing between the largest and the second largest order statistics. If the statistical

" evidence of the preliminary test is not significant, the experimenter decides not to make
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a selection. Otherwise, he or she selects the population yielding the largest sample mean
value as the best population. The sample size is determined to control both the prob-
ability of type-I error for the preliminary test and the probability of a correct selection.
Analogous to Chen (1985), Chen and Mithongtae (1986) proposed selection procedures for
two-parameter exponential distribution models. However, both of their procedures cannot
be applied to a case where the common scale parameter is unknown. Later, Leu and Liang
(1990) proposed selection procedures which improve the results of Chen and Mithongtae

(1986) and discussed the case where Chen and Mithongtae’s procedures cannot be applied.

In this paper, we generalize the problem proposed by Chen (1985) to location-scale
parametric models. Selection procedures based on one-sample are derived according to
whether the common scale parameter is known or unknown. Exact sample sizes are de-
termined to control both the probability of type-I error and the probability of a correct
selection. Applications to the normal model cases are considered. Comparisons between
the proposed selection procedures and certain earlier existing procedures are also made.

Finally, a two-stage procedure for the normal means problem is considered.

2. FORMULATION OF THE PROBLEM

Let my,...,7% denote k(> 2) independent location-scale parametric models which

have absolutely continuous cumulative distribution functions (cdf) G(252),...,G(&=2%),
respectively, where ¢ > 0, —00 < 0; < 00, t = 1,...,k and —oo < z < oco. Let § =
(61,...,0%) and let 0j1] £ ... < Ox) denote the ordered values of 8,,...,0. It is assumed
that the exact pairing between the ordered parameters and the unordered parameters is

unknown. The population associated with the largest location parameter 0|4 is called the
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best population. Assume that the experimenter is interested in the selection of the best

population. Let
Q= {(Q,0)|ﬂ = (01,---,01;), —o00 < 0; < 00, 0 > 0}

be the parameter space. We partition the parameter space into the following three sub-

spaces:

O1k) —

Oy
the preference zone: Q(PZ) = {(8,0) € QI——G[E—L] > 6, 6§ >0},

the nonselection zone: Q(NZ) = {(8,0) € Q0j—y) = 1)}
the indifference zone: (IZ) = Q - Q(PZ) — Q(N Z),
where 6 is a known positive constant. Note that our (7 Z) is different from the indifference
zone of Bechhofer (1954).
Denote the event of a correct selection by C'S and the event of a selection by S.
The goal is to develop a selection procedure R to select a single best population with a
minimum sample size from each of the k populations such that the following probability

requirements are satisfied:
Pg,0)(S|R) < afor all (8,0) € Q(NZ) (2.1)

and

P,5)(CS|R) > P* for all (8,0) € Q(PZ) (2.2)

where a € (0,1) and P* € (1/k,1) are preassigned probability levels.
The selection procedure R depends on whether the common scale parameter o is

known or unknown.



3. SELECTION PROCEDURE WITH KNOWN SCALE PARAMETER

Let X;;, § =1,...,n be n independent observations from population =;, where m; ~
G(&=%), i = 1,...,k, respectively. Let ¥; = Y (Xi1,...,Xin) be an appropriate statistic
for ;. We assume that Y; has the cdf Fn(ﬁ"a—e"). Also let Y}3) < ... < Y} denote the order

statistics of Y7,...,Yx. When ¢ is known, we propose a selection procedure as follows:

Ry: Select the population yielding Yz as the best population if Y[z — Y[x_q >
A(n, a)o; otherwise, do not make a selection, where n and A(n, a) are chosen to satisfy the
probability requirements (2.1) and (2.2).

For the given rule R;, we need to investigate the supremum of P ,)(S|R1) for
(8,0) € (NZ) and the infimum of Py ,)(CS|R;) for (8,0) € N(PZ). We need to make
two assumptions here:

(A) The probability density function (pdf) f. of Fy is log-concave.
(B) For each § > 0 and any positive integer m, T F(y + 6)dFy,(y) is strictly increasing
—o0

in n, and tends to 1 as n — oo.

These two assumptions are appropriate for many applications. First, we consider a lemma
derived by Kim (1986).

Lemma 3.1. Assume that log f,(y) is concave. Then for any fixed ¢ > 0, P o){Y[x —

Y[x—1) > ¢} is non-increasing in 0|;) and hence
Plo,o) {Yik) = Yik—1) > ¢} < Pigo oy {[Yiw) = Yie-1)| > ¢}

for all (9,0) € 0, where 8° = (63,...,0),80) = —o0, ¢ = 1,...,k — 2,60 = 0y for
t =k —1,k, and Y{; is the statistic associated with parameter 0;, : = 1,...,k.
Y —0

In the sequel, we let Z; = 0l {=1,...,k and let H,(t) be the cdf of Z;.—+ Zo.
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Then

Ho(t) = / " Fly+8)dFa(y). (3.1)

-0
We note that H,(t) is a symmetric distribution function and hence H,(—t) =1 — H,(¢).
By using Lemma 3.1, we have the following theorem:
Theorem 8.2. sup Pg,0)(S|R1) = 2Hn(—A(n, a)). (3.2)
Q(N Z)
Proof: By Assumption (A) and Lemma 3.1, we have
P(9,0)(S|R1) = Pg,0){¥x) — Yik—1) > A(n, &)}
< Pigo o)UY () = Y(k-1)| > A(n, @)o}-

Hence

sup P o) (S|R1) = P{|Zx — Zx_1| > A(n, )}
Q(NZ)

= 2Hp(—A(n, ). O

In order to satisfy the probability requirement (2.1), we may let 2H,(—A(n,a)) = c.
That is,

A(n,a) = —H; Y (a/2). (3.3)

Remark 3.1. A(n,a) > 0, since Hy, is symmetric.
Lemma 3.3. The A(n,a) defined by (3.3) has the properties: A(n,c) is decreasing in n
and A(n,a) — 0 as n — oo, for each fixed o, 0 < a < 1.
Proof: For nj > ng, if A(n1,a) > A(n2,a), then by Assumption (B) we have
a/2 = Hy, (—A(n1,0)) =1 — Hy, (A(n1, )
<1—Hyp, (t) <1— Hp,(t) <1— Hy,(A(n2,))
- H, (—A(n2,a)) = a/2, for A(nl,d) >t > A(nz, a).
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This is a contradiction and hence A(n1, @) < A(ng, a).
If lim A(n,a) = ¢ > 0, then A(n,a) > ¢ for all n, since A(n,a) is decreasing in n for
n—oo
each fixed . Thus, by the definition of A(n,a), 1 — § = Hp(A(n,a)) > Hy(c).
By Assumption (B), as ¢ > 0,Hn(¢) — 1 as n — oo. Therefore, for n sufficiently

large, Hp(c) > 1 — § > Hp(A(n, o)), which is a contradiction. Hence, we have A(n,a) —
0 as n — oo. O
We next evaluate the infimum of P(g,)(CS|R:1) over (8,0) € Q(PZ).

Theorem 3.4. The infimum of P)(CS|R;) over Q(PZ) occurs at the configuration

0y =...=0k—1) = Ox) — 60 and

. *° k—
ot Par)(CSIR) = /_ EENy+ 6= Aln, @) dF (o) (3.4)

Proof:

P(3,0)(CS|R1) = Po,0){¥{k] — Yik—1] > A(n, @)o, Yiy = Yy}
-
= Poo){Z < 2+ —A(n,0), =1,...,.k—1}

> P,0){Z; < Zk +6 —A(n,e), j=1,...,k—1}. (3.5)
The equality in (3.5) holds when 0}3) = ... = O[3 _1} = O[] — 60. Hence

Qirll’fz) Po,0) (CS|Ry) = P(Q’a){Zj <Zk+6—An,0), j=1,...,k-1}

_ /_oo F*=1(y + § — A(n, a))dFa (y). | O

Remark 3.2.
(1) Since A(n,a) — 0 as n — oo for each 0 < a < 1, hence, by Assumption (B), we have,
for each fixed 6§ > 0, ffooo FE-1l{y+6 — A(n,a))dF,(y)— 1 as n = co.
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(2) In order to satisfy the probability requirement (2.2), we may let the right hand side
of (3.4) equal P*. In practice, n is chosen to be the smallest integer such that (2.1)

and (2.2) are satisfied.

4. SELECTION PROCEDURE WITH UNKNOWN SCALE PARAMETER

When the scale parameter ¢ is unknown, it is assumed that ¥; = Y (X;1, ..., Xin)
is a complete sufficient statistic for the parameter 8; for each fixed 0 > 0. Let T; =
T(X:1,---,Xin) be a nonnegative function of Xj1,...,Xin, such that T(X;; —a,..., X;n —
a) = T(Xi,...,Xin) and T(cXq,...,¢X,) = ¢T(X1,...,X,) for any ¢ > 0. Also, let
S = S(T1,...,Tx) be a nonnegative function of T,...,Tx such that S(cTy,...,cTk) =
¢S(T1,...,Tx) for any ¢ > 0. Since Y; is a complete sufficient statistic for §; and the
distribution of T; is independent of 6;, hence T; is independent of Y;. Therefore, S is
independent of (Yi,...,Y%). Also, by the preceding assumption, the distribution of W =
S/o is independent of the parameters 64,...,0; and 0. Hence, we propose a selection

procedure R; as follows:

Rj: Select the population yielding Y| as the best population if Y[z — Yjr_y} >
S\(n, a)S; otherwise, do not make a selection, where n and X(n, a) are chosen to satisfy the
probability requirements (2.1) and (2.2).

First, we evaluate the supremum of Py ,)(S|R2) over (8,0) € Q(NZ). In the follow-

ing, let G(w) denote the cdf of W = S/o.

Theorem 4.1.

- sup Py ,)(S|Rz) _2/ / (Y — A(n, 0)w)dF, (v)dG(w). - . (4.1).
Q(N2Z) B



Proof: i
P(g,0)(S|R2) = P(g,0) {Yix = Yik-1) > A(n, @) S}

= E{P(,){Y[t] = Yis—1] > A(n, )oW|W}}

- /0 Py (Vi - Yie_1) > A(n, a)ow}dG(w).

By Theorem 3.2, we have

ns(t}:,p )P(_ 8,0){Yk] — Yik—1] > A(n, a)ow} = 2H, (X (n, a)w).

Hence

sup Pig.0)(S|R2) = / 2H, (— i (n, a)w)dG(w)
Q(NZ)

_2/ / (v = A(n, @) w)dFy (y)dC(w). 0

For each 0 < a < 1, let :\(n, a) be the solution of the equation

/0 " Ha(=X(n, 0)w)dG(w) = a/2. | (4.2)

Then the probability requirement (2.1) is satisfied.
Remark 4.1. S\(n, a) is nonnegative.
Lemma 4.2. The X(n,a) defined by (4.2) has the properties: A(n,a) is decreasing in n
and A(n,a) — 0 as n — oo.
Proof: If n; > ny and :\(nl, a) > :\(ng,a), then

o2 _/ Ha, (~3(n1, @)w)dG(w) = 1 — /OOHM (A (n1, @) w)dC(w)

<1 —/ Hp, (M2, )w)dG(w) = / Hy, (—A(n2, ¢)w)dG(w) = a/2,
which is a contradiction. Hence A(n, ) is decreasing in n for each fixed a, 0 <a<l

Moreover, if lim :\(n, a) =¢ > 0, then
n—oo

1—af2 = /0 " Ho(A(n, )w)dG(w) > /0 " Ho(0)dG(w). -



However, as ¢ > 0, by Assumption (B fo ¢)dG(w) — 1 as n — oo, which leads to a

contradiction. Hence, :\(n, a) — 0 as n — oo. O
Now we evaluate the infimum of Py ,)(CS|R;) over (4,0) € Q(PZ).

Theorem 4.3. The infimum of P4 0)(CS|R2) over (PZ) occurs at the configuration

Opy=...= O[k—1) = O[x) — 60 and

inf Plg)(CS|R) = / / FE(y +6 — X(n, 0)w)dFa (y)dC(w).  (4.3)
a(pz)’ @ o J o

Proof:

P(_e.,a')(CSIR2) = P(ﬂ_,a){Y[k] - Y[k_.1] > :\(n, a)S, Y(k) = Y[k]}

O] — 0151 <
= P.o){Zj < Zi + [’”—am AW, f=1,...,k—1)
>P{Z; < Zx+6 - A(n, &)W, j=1,...,k—1} (4.4)

- /0°° /_°° FF¥=1(y + 6 — X(n, a)w)dF, (v)dG(w).

The equality in (4.4) holds when ;) = ... = fj;_q = Ok — bo. 0
Remark 4.2.
(1) Forfixedw > 0and 0 < & < 1, we have A(n,@)w — 0 as n — co. Now by Assumption

(B), we have
o0 o0 .
/ / FY-ly+6— A(n, a)w)dF, (y)dG(w) — 1 as n — oo.
0 —oo

(2) In order to satisfy the probability requirement (2.2), we may choose the smallest n

_ such that
/ / FEY(y + 6 — A(n, 0)w)dFa (y)dG(w) >-P*. - (45)
0 —00 .
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5. NORMAL MODEL CASE

In this section, it is assumed that the populations 7y, ... 7 have normal distributions
with means 4, ...,0%, respectively, and a common variance o2. Let X;;, 7 =1,...,n, be
independent samples from m;, 1 = 1,...,k and ¥; = X; = -,1; Zn:l Xij, 1 =1,...,k. Then

j=

Y; ~ N(0, ) and Fy,(z) = ®(/nz) where ® is the cdf of the standard normal. One can
easily check that Assumptions (A) and (B) are satisfied. Also, we have Hy(t) = ®(+/Z¢).
We discuss both cases when the scale parameter ¢ is known or unknown.
(a) o known case:

It follows from (3.3) that

A(n,a) = \/gza/z (5.1)

where 2,/ denotes the upper « /2 quantile of the standard normal distribution. Thus, the
selection procedure is:

R;: Select the population yielding Y[z as the best population if Yk — Y1) >
\/g 25/20; otherwise, do not make a selection.

This is the same procedure as the one proposed by Chen (1985).

From equation (3.4), we have

n?}gfz) P9,5)(CS|R1) = / F 1y + v/nb - \/Eza/z)dé(y).

For given k, P* and a, let d be the solution to the equation

/oo =1y + d)dd(y) = P*. (5.2)
Then the sample size required to satisfy the probability requirements (2.1) and (2.2) is
given by
< (d +,\{S§za/2)2‘ >,
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where < z > is the smallest integer not less than z. The solutions of d-values in equation
(5.2) can be found in Bechhofer (1954), Gupta (1963) and Gupta, Nagel and Panchapake-
san (1973).

(b) o unknown case:

n k
Let T? = X;:—Y;)2and S2 = 3 T?/v, where v = k(n—1). Then vS?%/0? = vW?2
1 : J y )

]=1 1=1

follows a x2-distribution with v degrees of freedom. We denote the distribution of the
nonnegative random variable W by G.

For a € (0,1), we determine X(n, @) by solving the equation

/0°° Hn(—A(n, 0)w)dG(w) = /2.

However, we can solve an easy equation in this case. Because
m -~ ~
/ Ho (~X(n, 0)w)dG(w) = P{Z < —X(n, )W}
0

where Z ~ N (O, —,2;) and vW? ~ x2 are independent, thus

/ooo Hn(—:\(n,a)w)dG(w) = P{\/gé = _\/g:\(n, o)

where \/%'v%' ~ t,, the t-distribution with degrees of freedom v. Hence S\(n, a) =
\/—%_ ty,a/2, Where t, o2 is the upper a/2 quantile of the t, distribution.

Furthermore, from (4.5), n is the smallest integer such that

/oo /°° Qk—l(y + \/;-us — ﬁtv,a/zw)dé(y)dG(w) > P*.

Remark: Although this result is the same as that of Chen (1985), the concept is different.
Chen’s method should specify the ratio 6*/o in advance. However, we need not make this

assumption in our approach..
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6. A TWO-STAGE PROCEDURE WHEN SCALE PARAMETER IS UNKNOWN

If we partition the parameter space {1 into three parts as follows.
(PZ) = {(8,0) € V) — Ojx—1) > 6*, 6* > 0}
ﬁ(NZ) = {(8,0) € ﬂ|0[k_1] = 0[k]}
and

QI2)=0-Q(PZ)-Q(NZ).

If o were known, we can take § = §* /o, then the result is the same as that of Section
3. When ¢ is unknown, a single-stage procedure does not exist for this problem. In the

following, we consider the normal case only. Analogous to that of Bechhofer, Dunnett and

Sobel (1954), a two-stage selection procedure Rg is proposed as follows:

(i) Take an initial sample of size no from each of the k populations, say X;1,..., Xin,, 1 =

1,...,k.
no k ng
Let Yi(no) = -nlo- 3> Xijand S = Y Y (Xi; — Yi(no))?/vo, vo = k(no — 1), and
=1 i=15=1
Wo = So/O‘.

(ii) Define N = max{ng, < %‘%‘i >}, where h > \/Etvo,a/z is determined by

/ooo /_oo % (y + (h — V2t g a/2)w)d®(y)dGo(w), (6.1)

where Go(w) is the cdf of Wo.

(iii) If necessary, take N — ng additional observations from each of the k populations and

compute

N

Yi(N) =2 Xij, i=1,...,k.
j=1

2=

(iv) The selection rule Rj is defined by:

13



Rj: Select the population yielding Y[} (V) as the best population if Y(x) (N)=Y[g—_q)(N)
> 7)‘—&-50; otherwise do not make a selection; here A is chosen to satisfy the probability
requirement (2.1).

For the procedure R3 defined above, we have the following result:

Theorem 6.1.
A
sup Py o) (S|Rs) = P{|T| > —=}, (6.2)
(N Z) @) V2
where T follows a Student’s t-distribution with vo degrees of freedom.
Proof: Let A, = {N = n}, then 4,, = {WZ< 2 h2 . } and
n—1)6* né*
Anz{(—hza)z—' WO 2o 2}lfn>n0.
Thus,
A
P 1 (S|R3) = Pro. o\ {Yix|(N) — Yig—1](N) > —=5,
0,0)(S1R3) = P(g,0){¥{x) (V) = Vig—1)(IV) T o}
Y (N Yie—u(V
Z / Py (VN ”‘10( ) _ -y ;1( s Aw}dGo(w)
Y, Yi-n(V
< Z / Plg,o){[VN L= (’"( ) \/NL“}Q| > Aw}dGo(w).
n=ngqg
Therefore, we have
sup Pg,0) S|R3 Z/ 29 —_)dGO( )
Q(NZ) n=ng
—-/ 29( L)dG( )
0 \/_ °
= P{|T| > —= U
|T| \/—

In order to satisfy the probability requirement (2.1), we set P{|T| > %} = . Then
A= \/Etvo,a/2-
Now, we evaluate the infimum of Py »)(CS|R3) over (8,0} € Q(PZ).
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Theorem 6.2. The infimum of Py, )(CS|R3) over (U(PZ) occurs at the configuration

0py=-..=0k_1) =0 — 6" and

it Pun(©@SIR) 2 [ [ @k (b= VEpu)de()dGow). (6

Q(PZ)
Proof:
P, 0)(CS|Rs) = Prg, ){¥()(N) < Y(s)(N) — —\/%So, j=1,...,k—1}
= P, 0){%j < Zx + \/Yv‘(a[,: —O) _awo, =1, k- 1)
> Plg, oy{%; < Zi+ ‘/JZ‘S* CWo, j=1,....k—1} (6.4)
> Po, o){Z; < Zk+ (h— \)Wo, §=1,..., hSO
= [T [ i+ (b - Nu)ds(p)do(w) (6.5)
0 —00
The equality in (6.4) holds when 8}y) = ... = 0[x_1] = Oj5;—6*. The X in (6.5) is v/2ts,, /2.
O
In order to satisfy the probability requirement (2.2), let d be the solution of
0 foo
/o /_ 85y + du)d(u)dGo(w) = P, (6.6)

Then h = V/2ty,, /2 + d.
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