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ABSTRACT

We consider heteroscedastic linear models in which the variance of a response is an
exponential or a power function of its mean. Such models have earlier been considered
in Bickel (1978), Carroll and Ruppert (1982) etc. Classical as well as Bayes optimal
experimental design is considered. We specifically address the problem of “compromise
designs” where the experimenter is simultaneously interested in two estimation problems
and wants to find a design that has an efficiency of at least —1-_}_—5 in each problem. For
specific models we work out the smallest € for which such a design exists. This is done
for classical as well as Bayes problems. The effect of the variance function on the value
of the smallest € is examined. We also address the problem of Bayes sensitivity (to the
prior) by varying the prior in a suitable family. We give a complete description of the
two dimensional set of pairs of Bayes risks as the prior changes in the specified family.
Sensitivity is measured in terms of the Lebesgue measure of this two dimensional set. We
then address the problem of deriving a design that minimizes this Lebesgue measure among

the designs which have an efficiency of at least ﬁs- in each estimation problem.



1. Introduction. One of the most widely used methodologies of contemporary statistics is
linear regression. One commonly assumes that a n—dimensional vector Y has mean X 0 and
variance 02 where X is the n X p matrix of design constants, § is the p~dimensional vector
of regression coefficients and 62 > 0 is the common unknown variance. This is the standard
homoscedastic model. In practice, however, one commonly encounters the situation where
the variance of a response depends on the corresponding values of the design variables.
For example, if one had a simple linear regression with E(y;|z;) = 6o + 0;z;, then one
often encounters the situation where Var(y|z;) is a function of z;, say w(z;). An even
more complex scenario, not dealt with extensively in the literature, is the case when the
variance of a response is a function of its mean, or in general when it is a function V (z;, §)
of both the design variable and the regression coefficients. Such models are of importance

in multiple linear regression also. These are known as the heteroscedastic linear models.

Heteroscedastic linear models and the problem of finding efficient estimates in such
models were considered in Box and Hill (1974), Bickel (1978), Jobson and Fuller (1980),
Carroll and Ruppert (1982) etc. The models considered in these articles assume o2, the
variance of y;, to be functions of the form (1 + |r;|)* or |;|* (Box and Hill), e*" (Bickel),
1+ Ar? (Jobson and Fuller) etc. where 7; is the mean of y;. These models are typically
called Power or Exponential models. Carroll and Ruppert (1982) demonstrate efficient

estimates of the regression vector § in some of these models.

The emphasis in this article is on Bayesian estimation and design of experiments in
heteroscedastic linear models. The classical case would often be regarded as a limiting
Bayes case and the corresponding results will be presented. We will consider the case of
a single prior as well as the case when the prior can be specified only upto a family. This
latter problem constitutes a part of what has come to be known as robustness in Bayesian
inference with respect to the prior. Before we describe 4the projects undertaken in this
article and outline the subsequent sections, we would like to point out that even though
classical optimal designs have been studied in extremely great detail, in comparison the
area of Bayes designs remains broadly unexplored. Part of the reason is the apparent

difficulty in using convexity arguments; even when convexity arguments can be used, the



optimization becomes difficult because of the introduction of a prior. For this and reasons
of simplicity, much of the results here are presented for the case of simple lineé.r regression.
It is possible to prove some parallel results for, for example, polynomial regression but in
many cases closed form Bayesian results are not feasible and we have not attempted them.
For general results on Bayes and robust Bayes designs, see Pilz (1979,1981), Chaloner
(1984), DasGupta and Studden (1988) etc. For general references, see Cheng (1987), Hoel
(1958), Karlin and Studden (1966), Kiefer and Studden (1976), Elfving (1952), Fedorov
(1972), Kiefer (1976), Pukelsheim and Titterington (1983) etc.

In section 2, we first consider the heteroscedastic model where E(Y) = X¢ and the
variance-covariance matrix of Y is a diagonal matrix X(8). § is assumed to have a prior
distribution G(§). Normality is not assumed for either Y or §. Best linear Bayes estimation
of § and the corresponding Bayes optimal designs are considered and it is pointed out that
restricting to linear estimates in a general nonnormal model is formally equivalent to using
the overall Bayes estimate in a normal model. This connection is actually quite well known

but provides a motivation for some of the latter results.

Next in the same section we specialize to the canonical simple linear regression problem
where E(y|z) = 0o+ 01z; it is assumed that Var(y|z) = w(z) is of the form 1+c¢|z|*, ¢ > 0,
and A > 2; the standard homoscedastic case corresponds to ¢ = 0 and the results for
this case can be obtained by letting ¢ — 0. The cases 0 < z < 1,and —1 <z <1 are
considered. The case A < 2 in general gives rise to different qualitative features and will not
be considered in this article. Note that the present variance function resembles the power

Az or eM2l are also

models described before. Exponential variance functions of the form e
quite natural but have not been considered for reasons of space and compactness. We let
0 = (60,601)" have a N(u,C) distribution where C is diagonal. The case of a nondiagonal
C is in fact possible to handle but gives rise to many more cases and generates more
complexity than generality. Bayes designs for these priors are derived for both 8y and 6;;
the solution in the classical case can be obtained as a limiting Bayes solution by formally

using C~! = 0 (the null matrix). A surprising finding is that if 0 < z < 1, then the Bayes

optimal designs for the slope #; are supported on 0 and 1 for sufficiently small A, and on



0 and a suitable interior point (depending on A) otherwise. However, the interior point

starts moving back towards 1 for sufficiently large A and eventually converges to 1 again.

A common feature of optimal design theory (classical as well as Bayes) is that the
derived optimal designs are extremely problem-specific in addition to being model-specific.
For instance, if a classical homoscedastic linear regression for 0 < z < 1 is considered, the
optimal design for the intercept 0y is supported on 0 and that for the slope §; puts equal
mass at 0 and 1. The optimal design for the slope results in an 100% increase in risk over
the minimum value if used to estimate the intercept. The optimal design for the intercept
in fact results in infinite risk if used for estimating the slope. Frequently, however, the
experimenter is not interested in one specific problem but is probably interested in two
or more problems. Towards this end, we let v;, # = 0,1, denote the minimum Bayes
risks obtainable for estimating 0;, ¢ = 0,1 respectively, by using the corresponding Bayes
optimal designs. For any other arbitrary design ¢, let v;(€) denote the Bayes risks in the
two problems by using the design £. Efficiency of £ in problem i is defined as ;‘—U('g—) We
consider designs that maximize the minimum efficiency in the two problems. Formally,
one can define I'c(C) = {&:v;(€) < (1 + €)v;, ¢ = 0,1}. For small e > 0, T'.(C) will
usually be empty. Of natural interest is the value of the smallest & > 0 such that T';(C)
is nonempty. We have a number of results on this smallest € and how it depends on
the variance function w(X). Note that similar “compromise designs” are of interest in
classical design theory also. Indeed, if one considers a canonical homoscedastic polynomial
regression model E(y;) = 0o + 01z; + 0222 +... + 0,2F, one can ask what is the smallest

€ such that

Te={¢vi(¢) <(1+¢€)vsy, 1=0,1,...,p}

is nonempty. We in fact do touch on this problem as well. The indication seems to be
that for this smallest €, the first p inequalities v;(§) < (1 + €)v; are equalities and the
last inequality remains a strict inequality. These results are presented in section 3 for
0 < z <1 and in section 4 for —1 < z < 1. Notice that the importance of performing
well on each of a few decision problems instead of collapsing into a single sum of risks has

been emphasized by various authors in other contexts: see Rao (1976,1977), Efron and
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Morris (1971,1972), Dey and Berger (1983), Stein (1981), etc. Also see Lee (1988) for some

related work on constrained designs.

The question of robust Bayes designs and many priors is taken up in section 5. Some
of the results we present in this section are of interest beyond the domain of designs. We
consider the case when ¥ ~ N(X¢,X) (X does not depend on #, but may depend on
X), and @ has a prior N{g,C), C1 < C < C3, and p belongs to some (convex) set S.
This family of priors was first considered in Leamer (1978), and Polasek (1984); also see
DasGupta and Studden (1988) for a variety of results. Suppose interest lies in estimating
any two linear combinations £;'6, £,'. The Bayes risk in each problem depends on the
exact choice of the prior covariance matrix C; an experimenter interested simultaneously
in both linear combinations would then want to know the two dimensional set of pairs of
Bayes risks as the prior N(u,C) changes. We characterize this set completely and derive
an exact expression for its area (i.e., the Lebesgue measure). The robustness problem is
to minimize sensitivity at a small cost in Bayes optimality with respect to a fixed prior.
In the spirit of the results in the earlier sections, we then go back to a heteroscedastic
simple linear regression problem and derive the design &, that minimizes the area of the
two—dimensional set of Bayes risks in the class of designs I'.(Co) where Cp is a fixed
matrix, C; < Cp < Cs. This is done for £; = (1,0)' and £, = (0,1)’, i.e., for estimating
the intercept and the slope. The problem of model specificness of optimal designs was
mentioned before in this section. We show, somewhat surprisingly, that the design & is
not unique and one can then choose an appropriate £y keeping model robustness in mind.
Some alternative possible formulations of the robustness problem are also briefly discussed.
Section 6 contains some concluding remarks. We hope that our results on “compromise
designs” and Bayes sensitivity in heteroscedastic models will be useful for further research

in this obviously important area of application.

2. Bayes and classical optimal designs in heteroscedastic models. In this section we first

- consider the problem of finding optimal designs in general heteroscedastic linear models
when attention is restricted to only linear estimates. Some of the results in this section

‘should be considered known but they motivate other results in the later sections. Through-
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out we assume squared error loss.
Notation: Z ~ (i, X) will mean E(Z) = p and the variance-covariance matrix of Z is X.

Theorem 2.1. Let Yrnx1 ~ (X9, %(9)) and let §px1 ~ (¢,C). Let B = E(X(4)) (under the
prior; we assume B exists). For estimating Lf, where L is a k X p matrix, the best linear
estimate Ao(Y — Xu) + p has Ao = LCX'(B + XCX')~! and the corresponding Bayes
risk equals tr L(X'B-1X + C~1)~1L".

Proof: By straightforward calculations, the Bayes risk of any linear estimate AY under

the prior (g,C) equals
r(A,p,C) =tr APA' —2tr AQ +tr LCL/, (2.1)

where P = B+ XCX', and @ = XCL'. This is minimized by 4o = Q'P~1 = LCX'(B +
XCX")~1. Hence the corresponding Bayes risk equals

r(Ao,4,C) = tr LCL' — tr LCX'(B + XCX')~'XCL. (2.2)

Using the identity (B + XCX')™! = B~! — B! X(X'B7'X + C~!)~'X'B~! (see, for
example, Rao (1973), page 33), one has

r(4o,4,C) =tr LCL' —tr LCX'B™'XCL'+tr LCX'B7'X(X'B™'X + Cc~1)"!

X'B-'xcr

=tr LCL' —tr LCX'B™'XCL'+tr LC(X'B7'X +C ' —Cc ) (X'B'X+Cc~})!
X'B-'xcr

=tr LCL' —tr L(X'B7'X +Cc~ )~ 'Xx'B~'XxCL’

=tr LCL'—tr L(X'B™'X +Cc Y)Y (X'B~1X + o1 c~Her

=tr L(X'B~'X +Cc~ 1)L (2.3)

In fact, the estimate in Theorem 2.1 is the best Bayes estimate of § of the form AoY + A1 p.

Notice the formal equivalence of restricting to linear estimates and assuming that ¥ ~

N(X0,B) and § ~ N(u,C). Y ~ N(X0,B) and 0 is normally distributed with a
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covariance matrix of C, then the posterior covariance matrix of § is (X’B~1X + C—1)—1!
and hence the Bayes risk for estimating Lg is tr L(X'B~1X+C~1)-1L/. Thus if restriction
to linear estimates is considered undesirable, one can alternatively take the viewpoint of

adopting a normal model with a normal prior.

Suppose now yi,...,Y, are independent observations with Var(y;) = e*%i'0 where

 X;'§ is the mean of y;. If one, for example, assumes that 0 has a N(0,I) prior, then the

matrix B can be easily seen to be

B = diag(by,...,bs)

) A2 Y.IY.
where b; = €2 Xi' X

. In particular, for polynomial regression of degree p on the interval
[0,1], b; = e (1+z2+zf+...+ zfp). Optimal design theory for such a matrix B is
simplified due to the fact that it is possible to prove that the set of designs supported on
0 and at most p other points forms a complete class. Indeed, a general theorem in this

direction is the following.

Theorem 2.3. Let E(y;|z;) = 0o+ 01z;+...+0,z%, where 0 < z; < 1, and let Var(y;|z;) =
e?B(vilz:) | et 0 = (60,0;,...,0,) have a spherically symmetric prior G. Then the set
D of designs with support on 0 and at most p other points forms a complete class in the
sense that given any design ¢;, there exists a design &2 in D such that M(&;) > M(&)
where for any design, M denotes X'B~1X.

Thus for quadratic regression, this result reduces the problem of deriving an optimal
design to a four parameter minimization. As opposed to the exponential model e*E(¥:),
if one considers the power model (E(y;))? for variance, then for a simple linear regression

model and a N(0Q, I) prior, B works out to
B = diag(1 + 23,...,1+ z2).

In view of the remark following (2.3), restricting to linear estimates in Theorem 2.1 is
equivalent to having ¥ ~ N(X9,B) and § ~ N(u,C). A more general variance function
to consider is w(z) = 1+ cz?, ¢ > 0, A > 2. This will imply

B= diag(1 + ¢z},...,1+ cz)).
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These are the variance functions we now consider. For the following analysis we will

assume y,-mgepN(Ho +0,z;, 1+ c:vf‘), 0<z;<1,and § = (6p,0:) ~ N(,C) where

C—l

— = <r0 :) ) for ro, r2 > 0 (the matrix with r¢ or r, equal to zero is not invertible
2

0
but formally the classical optimal designs can be found by substituting the null matrix for

C~1). We have the following Theorem.

Theorem 2.3. Let E(y;) = 0o+ 012z;, 0 < z; < 1 and let Var(y;) = 1+ecz?, A > 2. Assume

. C’__l _ To 0
g has a N(y,C) prior where “— = < 0 T2>' Then

(a) The optimal Bayes design for estimating 8 is supported on z = 0.
'(b) The optimal design for estimating 6, is given as follows:

(i) fe(A—2)<2o0re(A—2) >2and ¢ < %’\_—_2)121, then the design is supported
on 0 and 1 with mass p = {Ltrelv 1+c°("1+°_1) at 1if %= < 1—rZ, on only

L
1if l-T—c > 1—7'(2) and ¢(A — 2) < 2_%1, and on only X; = (cln(Jl(-)i\-_:oz)j)x "

2(1+
T >1-13 andc(A—2)>—%l.

ii) If ¢ > i(ﬂzl which implies ¢(A—2) > 2), then the design is supported on only X;
(A-2)

(defined above) if A(1 —ro) <2 and on 0 and X, = (%/\’\_;21)%)? if A(1 —ro) > 2,

with mass p = /\2(1\—:0) at Xo.

Proof: The proof of part (a) is trivial. Part (b) follows on using the usual equivalence

theorem arguments. In each case one has to check (for 0 < z < 1) the inequality ((co +

c —_—

ro)z —c1)? < (1+cz*)-Q, where Q = (—c1, co+ro) (2(1) L czl ), and cg,c; are
c

the values of E ;(IX—) and F G’(XX_) as given by the designs in the statements of the theorem.

Remark: For a nondiagonal prior covariance matrix C, the optimal design for 8; cannot

. in general be written down in a closed form.

Discussion of Theorem 2.3. Notice that the design for 6 is in general supported on 0. If
however, C is not diagonal, this may not be the case in general. The optimal design for
estimating #; can be one of three different kinds: it ma,y’ be supported on 0 and 1, or on 0
and another interior point, or it may even be a one—point design. Notice also that whatever

be ¢, if A gets very large then the design will be supported on 0 and another interior point



Xo. However, surprisingly, as A — oo, Xg converges back to 1 as can be easily seen by
checking that log Xo converges to zero. Note that this interior point is independent of
the prior. Consider now the classical case with a large A. Since the classical case can be
thought of as the case with ro = ry3 = 0, for large enough A the support of the Bayes design
coincides with that of the classical design as long as ro < 1. If the constant ¢ in the weight.
function = 1, and if one considers the classical case ro = 0, then it follows from Theorem

2.3 that the optimal design for 6, is supported on 0 and 1 with mass p = 2 — /2 at 1 if

1
A < 4+24/2, and is supported on 0 and ﬂ'\?_—l-zl * with mass 2=2 at zero. This interior
(A—2) 23—2

point goes down to approximately .92866 at A = 16.4245 and then starts moving back to
1.

3. Maximin efficient designs: 0 < z < 1. In this section, we derive the value of the smallest
& for which T'.(C) is nonempty and also give geometric descriptions of the set I'.(C) in
terms of the moments c¢g, ¢y, etc. (each design corresponds to a moment sequence). For
ease of representation and understanding, we will present most of the analysis for the
classical case while keeping in mind that the analysis is similar for the Bayes case although
the algebra is of necessity more complicated. We first need the following notations and a

theorem.

Given A > 2, denote r = ,\_11 and p = ﬁ Note p = oo if A = 2. Also let v; =
iréf v;(€), where v;(£) denotes the risk for estimating §; using the design ¢. v; thus simply
represents the risk obtained by using the corresponding optimal design. For the purpose
of the following analysis we will assume that we have a simple linear regression with the
independent variable varying in [0,1] and a variance function w(z) = 1+ecz*, A > 2, ¢ > 0.

Also, for the classical case, I'.(C') will be denoted as simply T..
Theorem 3.1. Let rog = ro = 0. Then

(i) Vo = 1



vi = (VIte+1)? if,\gz\/ljc (\/1+°+1)

c

=ck. 4% . (A-1)2%. (A—2)32
if,\>2\/1+c (\/l+c+1).
C (4

Proof: Recall the definitions ¢; = F %}2)’ ¢ =0,1,2 where E(-) denotes expectation with

respect to the relevant design (measure).

Part (i) follows from the fact that vo = % when the design is a one point design
1

at zero (that this is the optimal design for 6o follows from Theorem 2.2). To prove part
(ii), conclude using part (b) in Theorem 2.3 that the optimal design for 8; is supported
on 0 and 1 with mass ¥ 1+c("c1+°_1) at 1if A < 24/14¢ (\/111 + 1) and otherwise it is

L
supported on 0 and (%(/\'\_;21))2-) * with mass Eﬁ at zero. The second assertion in part

(ii) of the current theorem now follows on algebra by using the fact that v; = PV
1

where in ¢; expectation is taken with respect to the designs described above.

Theorem 3.2. For any A > 2, if I'. is nonempty for some € > 0, then I'. also contains a

two point design supported at O and some other point in the interval [0,1].
Proof: The proof uses a standard complete class argument by arguing that if

Xi

M(f) =M= (CO cl) where 7 :Em,

C1 C2

then there is a two point design £* supported on 0 and some other point in the interval [0,1]

such that M(¢) < M(£*) in the sense of nonnegativeness. The condition A > 2 is required

to assert that (1 X _f;x) form a T—system. Since v;(¢*) < v;(€), 1 =0,1,

1
' TFeXr? T4eXr® 1+
the theorem follows.

In view of the above theorem, it is enough to consider designs supported on 0 and zg
(where 0 < 25 < 1) with mass p at £o. Here p and z( are kept arbitrary. For such designs,
there is a convenient representation of ¢, in terms of ¢g and ¢;. This is the assertion of

the following theorem.
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1—

Theorem 3.3. For A > 2, ¢2 = (;"c),c-‘—— for all two point designs supported on 0 and

some other z in [0,1].

Proof: For A =2, r equals 1 and the above representation is trivial (in fact it is valid for

all designs). For A > 2, note that

4
co=1—-p+
0 p 1+ czé ’
e = PZo
! 1+ c:v())‘ ’
2
DTy
and co = . 3.1
2T 14 cx)) (8-1)
Solving the first two equations for p and z, one obtains
<1 - Co) T
o =
cC1
¢}t 4+ (1 — ¢o)1tr
and p = —1 al o) (3.2)

(1 — Co)r

Substituting (3.2) into ¢z in (3.1) one gets the required result.

We now go onto deriving the value of the smallest € such that the set of designs I'; is

1
1+€o

not empty. Note that if £¢ is the smallest such value then is the maximin efficiency

and the corresponding design is a maximin efficient design.

Towards this end, recall that in view of Theorem 3.2 it is enough to consider designs
supported on 0 and some other point in the interval [0,1]. Also recall that for such designs
¢z is completely determined from ¢p and ¢;. Finally note that a pair (co,c1) arises from a
valid design (for the variance function 1+ ¢z ) ifanonlyif 1= <c0 <1, ¢; > ——Q , and
c; < ccl,_% (-l;cc-ﬂ-)l*- (the designs for which ¢; = l—c‘l are those supported on {0,1} and

_1 L
the designs for which ¢; = cé A (1—_6"0-) * are the one point designs; that for every other
1

1
design the third inequality ¢; < cé—* (1—_6“'9-) * holds follows from the Cauchy—Schwartz

inequality). We will call

L
1 1— 11—
M= {(co,cl): <eo<1, 61> —2 ¢y <epd ( CO) } (3.3)

1+¢ c c

the moment space of the problem.
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Notice that M can also be written as

1 1-¢o A (1-c\T7 |
Mz{(co,61):1+cS60S1, c1 > - ,61S66+v< > } (3.4)

c

Now for a two point design £ described above,

-1
' vy Co_; 1
(¢) = _ cve >
61(6)‘ v;(€) (cocz — c%) e 1re
C2_1 .
<~ m < (1 + s)v,-, 1=0,1. (3.5)

Using Theorem (3.3) and part (i) of Theorem 3.1, the first inequality in (3.5) reduces to
(1—co)ei™ —(1+¢€)(1 —eo)ei Teo+ (1 +¢€)e"ed < 0. (3.6)
Similarly the second inequality in (3.5) reduces to
c"eo — (1 + €)vico(l — co) ey ™" + (1 + €)vicTe? < 0. - (3.7)
Motivated by these, we will define

So = {(co,¢1): (3.6) holds},
S1 = {(co,¢1): (3.7) holds}. (3.8)

Notice that elements of Sy or S; need not be within the moment space M but T, is

nonempty for a specific € > 0 if and only if So N S; N M is nonempty for this € > 0..

We now claim that if €¢ is the smallest € with the property that So N SN M # ¢,
then there exists a point in dSp N 3S; N M where 0S; denotes the boundary of S; (in fact

we will prove a stronger assertion).

Lemma 3.4. For € > 0, let A., B. be closed sets and let C be another fixed closed set.
Suppose A, N C, B, N C are (closed) convex sets with nonempty interiors for each £ > 0
but AN BoNC = ¢. Let g9 = inf{e > 0: A, N BN C # ¢}. Then A, N B, N C =
0A., NdB,, NC.

Proof: First note that o > 0 and also that A.,NBe,NC = (84.,UA? )N(8B,UB2 )NC

where D° denotes the interior of D.
Ao NBey NC = (84c, N @B, N C) U (84, N B2 NC)

1]

U (A2, N8B, NC)U (A2 N B nC).

€0
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By definition of €0, we have that A2 N B2 NC = ¢. Now observe that B, NC is a closed
convex set with a nonempty interior and is therefore regular, i.e., (B, N C)° = B, NC.
Suppose now Ago N B, N C # ¢. Then EIa:z-:Ago which is also in B, N C. Therefore, there
is a sphere S(z,r) C Ago; also by the property that m = B., N C, we have that
there is yeS(z,r) such that ye(Be, N C)°. Thus we now have ye(Be, N C)° = B N C°
and this y is also in AJ  implying yeA2 N B N C° which is a contradiction to the fact
that A2 N B2 NC = ¢. Hence A2 N B, N C = ¢, implying A2 N8B., N C = ¢ since
0B, C Be,. Similarly, 4., N B N C = ¢. This proves the lemma.

In view of the above lemma, if €¢ is the smallest € such that SoN S; N M is nonempty,
then we can find a point {co,¢1) in the common boundary of Sy as well as S; which is also

in the moment space M. For this point (co,c1), we then must have

2 _ 1
co B U1
1
= c}_’ = ECTCO(I — CO)_r. (3.9)

(Set both inequalities in (3.5) as equalities, divide, and then use Theorem 3.3).
Substituting (3.9) into (3.6) (with an equality in (3.6)), one gets

1 2r -t %{'—:(1 )_121- (3 10)
=co—cCcl TV c —c —-r. .
1+ 0 1 0 0

Note that for this point ¢o # 1 (in fact it is also > 7-=). Also since this point (co,c1) is

in the moment space M, we must have, by (3.9) and (3.4),

1, e (1=
ac Co(l - CO) > c ’ (3'11)
r(l—r
1 l1—1r 1 _ 14+r
and ;—):c’co(l —c¢o) " <y ( cc°> : (3.12)
On algebra, (3.11) and (3.12) reduce to
147
,vl ,v12r
<e¢ L . 3.13
cto = 0= E (8:13)



We have thus in effect proved that if &g is the smallest € for which SoNS; N M is nonempty,
then there exists a ¢o satisfying (3.13) such that (3.10) holds. Conversely, if there is a ¢
satisfying (3.13) such that (3.10) holds for some given €, then SoN.S; N M is nonempty (in
fact 0So N @Sy N M is nonempty) for that €. Therefore the smallest o can be found by
maximizing the right side of (3.10), i.e.,

2r —iir I e
e S ) EE (3.14)

f(CO) =¢o— T

for ¢o satisfying (3.13). At this stage it is convenient to reparametrize to z = l—iOC—o and

p= ﬁ = ﬁ'—: We then have to maximize

h(z) = — = , (3.15)

f

2r

in the interval *+ < 2z < E-Lc——

To maximize h in the above interval, we take the derivative of log h; algebra gives that

the numerator in (log k)’ is proportional to

P
N() =c- (31) — 2Pl — (p—1)2P, (3.16)

c
and the denominator in (log k)’ is positive for z in the above interval. Clearly now, N(2) is
decreasing in z so that if N(z) <0 at z = 2 then it is < 0 for all 2z in the above interval,
implying that log h and hence h is decreasing and is therefore maximized at z = 2. It is
easy to check that N(z) <0at z= 2L iffp > v—‘v%_tf)- Otherwise, there is a unique zero of

N(z) in the above interval and this is the unique maxima of log h and hence of h. Clearly,

then, if p < 21(149) then the unique maxima of & is at the root of

vl+c ?

pP 4 (p—1)2F =c- (1;_1)” . (3.17)

We thus have the following theorem:

Theorem 3.5. Let €9 = inf{e > 0: T # ¢}. Then

: —l4e e A v1 (14-¢)
(1) 60 — 1)1-—1 lfp_ A—2 Z ‘l)1+C

14



. —h . 1 '
() 0= 1580 5 = 2 < LD,
where 2z is the unique root of (3.17).

Using the formulas for v; derived in Theorem 3.1 it is actually possible to get a better

idea of which values of the pair (A,¢) imply p > lel_gl We omit these details.

It is interesting, however, that part (ii) of Theorem 3.5 can be much improved. In fact,
once one finds the unique root zo of (3.17), it is possible to write down very convenient
expressions for the maximin efficiency €o, the values of the moments c¢o,¢;, and the two
point design these ¢, ¢1 correspond to. In effect, thus, it is possible to exactly write down

what the two point maximin efficient design is. This is the assertion of the next theorem.

Theorem 3.6. Let p = ﬁ

(i) Suppose p > v(lte) Then

I

1+¢ U1 1 1+¢
€0 = €Co=—"", €1 = Xo=1, and po =
0 '!)1——1, 0] 1)1+C’ 1 ’U1+C, 0] ’ Do ’l)1+c’

where X and po denote the two point maximin efficient design.

(i) Suppose p < v—‘v(ll_}_—'*—'c—c)- Then

I
(p-—].)Zo, 0 1-|-Zo,

1 =

p—1 20 2 ! 2

¢cp=c¢2z - — , Xo=|— , and
1+20 \vg c2p

p (Czo>p_1
Po=—\|—
V1 V1

where 2o is the root of (3.17).

€0 =

1 _
1+€0 -

part (ii). To get the expression for cg, simply use the fact that zg = 7%-. For ¢1, use

(3.9). For Xy, use (3.2), and for pp use po = 1 —co+ = (which is an implication of (3.1)).

Proof of part (ii): To get &q, just use h(zo) and then use that zo solves (3.17) for

Discussion: Of course, given A and ¢, it will be easy to see using Theorem 3.1 whether case
(i) or (ii) applies in Theorem 3.6. Then Theorem 3.6 provides a very convenient vehicle for

finding the maximin efficiency and the required design. The case A = 2 is of some special
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interest because this corresponds to regression on an ellipse. On the other hand, the case
A — oo is of interest as the other limiting case. We briefly describe the nature of various

things such as the maximin design, the maximin efficiency, etc. in these two cases.
Theorem 3.7.

(i) Let w(z) = 1+ cz?, ¢ > 0. Then (the) maximin efficient design is supported on 0 and
1 with mass pg = T\/% at 1 and the maximin efficiency equals ﬁ\/l%':_zl), which

is monotone decreasing in ¢ with a maximum possible value of %.

(ii) Let w(z) = 1 +cz*, ¢ > 0. As A — oo, for every ¢ (the) maximin efficient design
converges to a design supported on 0 and 1 with mass % and i respectively. Also, the

maximin efficiency converges to % for every ec.

Proof: Part (i) is a direct consequence of part (i) of Theorem 3.6. To prove part (ii), note
that p — 1 as A — co. Also, using part (ii) of Theorem 3.1 and the definition of p, it is

easy to check that given any ¢, for large A,

=1 (p+1)5F

—1 P

v =cF BT E (3.18)
(p—1)"

Note that (3.18) converges to 4 as p — 1. Thus, given any ¢, for large A, case (ii) in

Theorem 3.6 applies. Use now the fact that zo solves (3.17), or equivalently,

pzy +(p—1)z5 = (p—1)p-1
opab™! +dd = (p+1)7H, (3.19)

where ap, = (p — 1) 20.

It is easy to show that {a,} is a bounded sequence (and is bounded away from zero)
and therefore has a convergent subsequence. From (3.19) it now follows immediately that

every convergent subsequence of a, converges to 3. Hence, lim1 {(p— 1)z} = 3.
p—i

Now from part (ii) of Theorem 3.6, we have that X, converges to 1 as p — 1, the mass
(at 1) po converges to ;11- as p— 1and gg — % as p — 1 and hence the maximin efficiency

" converges to %. This proves the theorem.
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Discussion. It is interesting to note that as A — 2 or oo, the maximin efficient design and
the maximin efficiency behave similarly. Indeed, for ¢ — 0, the designs in parts (i) and (ii)

of the above theorem are exactly the same and so are the maximin efficiencies.

4. Maximin efficient designs: —1 < X <1.

The case when the independent variable X belongs to the interval [-1,1] is technically
very similar to the case when 0 < X < 1 and indeed in some respects is considerably
easier. We will first give a simple example to illustrate the theory of maximin efficient
designs when X is in [-1,1]. This example will also provide the basis for another example

in section 4.

Theorem 4.1. Consider the simple linear regression model with a variance function w(z) =

1+ecz?, ¢>0, -1 < z < 1. Suppose § has a N(g,C) prior where C; = ( , )
2
Then

(i) The optimal Bayes design for estimating o is supported on 0.

(i) The optimal Bayes design for estimating 6, is supported on z = +1 with mass % at
each point.

(ii}) vo = i

: _ 1
(IV) v = I—_l_ﬁ::j:T

Proof: First note that for every design, c3 = ETX) = 1—":0- The moment space M can

then be described as

M={(co,c1):1ic§co§1, —\/co(l—c_co)-gclg\/ci(lc*—co)—} (4.1)

)
(cotro) (22 +rp)—c2
the design in (i). This also gives (iii) immediately. The Bayes design for 8; minimizes

The Bayes design for estimating 0y then minimizes which is plainly

o )(cgo“ ==t and is thus the design in (ii); (iv) then follows immediately.
o+T1o P 2 )—cy

Remark: Notice that the constants ro,r2,c have no effect on the Bayes designs. This is

really because C was chosen as diagonal. Also note that the Bayes designs in (i) and (ii)
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are also the classical optimal designs in these problems.

Theorem 4.2. Let g = inf{e > 0:T.(C) # ¢}. Then ¢ = Tt

Proof: Define again
Si = {(co,¢1):v:(€) < (1 + €)vi, 1=0,1}. (4.2)

Using Theorem 4.1 now,

So = {(60,61):

—“l_cc +re < 1+¢
(co+ro) (452 +ra) —ef ~ 1470’

which, on straightforward but rather lengthy algebra, reduces to

2
1+ erg + i=tro
So = {(co,cl): (co — 1t+e + ec?

2

< (e(l +ro+ers) + c"2>2 } (4.3)

- 2(1+¢)

Notice that So is thus just an ellipsoid with axes parallel to the coordinate axes and

symmetric along the ¢;—axis.

Similarly,

co+ro (L+e)(1+¢)
S = , . < ’
1 {(co c1) (Co T To) (1—ccQ + 1.2) _ cill - 14+ (1 + c)rz

which reduces to

B - 1+e(l+e)+ec(l+e)ra—(1+e)1+e)ro\?
Sl_{(c°’cl)'<c°_ 201+ ¢)(1 1 o) ) + ec?
1+e(l+c)+ec(l+e)ra+(1+e)(1+e)ro)”
<< 2(1+¢)(1+c) ) }

(4.4)

Note that this is another ellipsoid with axes parallel to the coordinate axes and again

symmetric along the ¢;—axis.

By using routine calculus, it is very easy to prove that the center of the first ellipsoid

(4.3) moves left and the radius along the co~axis increases as € increases and the center
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of the second ellipsoid (4.4) moves right and the radius along the co—axis increases as e
increases. Clearly, therefore, the smallest € for which Sy and S; will intersect is such that
the left boundary point of Sy on the co—axis merges with the right boundary point of S,

ie.,
T+ers+ 2552 g(1+ro + ery) +ory
2 - 2(1 +¢)
_1+e(l+e)tec(l+e)rz — (1+¢€)(1+c)ro
B 2(1+¢€)(1+¢)
N 1+e(l+c)+ec(l+c)ra+(1+e)(1+¢)ro
2(1+¢€)(1+¢) ’

which gives
c

(1+e¢)(1+erg+10)°

This proves the theorem.
Corollary 4.3. Consider the set up of Theorem 4.1. The maximin efficient design has

_ 14era+ro+e(l+cr)
14+erg+ro+e(2+cra+ro)’

Co

and ¢; = 0 (this point is in the moment space M); also, the maximin efficiency equals

1 (1+4¢)(1+erz + o)
1+ ¢o 1+cr2+ro+c(2+crz+7'o)'

Proof: Evaluating the values of ¢o and ¢; amounts to finding the point where Sy and S

1

. and

first touch. This is immediate from Theorem 4.2. The maximin efficiency equals

thus is immediate again.

Discussion: Clearly the maximin efficient design is not unique because the given values of
co and c; in corollary 4.3 can be attained by many measures on the set [-1,1]. In particular,
there is a symmetric 3 point design with support on 0,+1 that is maximin efficient. An
attractive possibility is to choose among these measures by using model robustness as a

criterion. We do not go into the details of this here.

Also, for any given C, the maximin efficiency is greater if prior information is more

-1 —1
precise. That is, if C; < C,, then G > S andit follows that €g is smaller under C;
n n

19



than under C;. Thus if prior information is very precise, then it is easier to get designs

which are near optimum for both 6y and 6, simultaneously.

Using essentially the same argument as above, the value of the smallest & for which
I'c(C) is nonempty can be worked out for other variance functions. We have a theorem

below for the case w(z) = 1+ ¢|z|*, ¢ >0, A > 2.

Theorem 4.4. Consider the simple linear regression model with a variance function w(z) =

1+c¢lz|*, ¢ >0, ~1 < z < 1. Suppose § has a N(g,C) prior where c; = ( )
Then

1
1+1'0 °

(i) The optimal Bayes design for estimating 6o is supported on 0; also v =

(ii) If ¢(A — 2) < 2, the optimal Bayes design for estimating 6; is supported on +1 with

mass .5 at each point and v; = ; if ¢(A —2) > 2, the optimal Bayes design

1+4c
1+(14¢)r2
for estimating 6; is supported on +zo with mass .5 at each point where

“= ()

and vy = A/ (4% . c—%()\ — 2)1—% + Am).

(ili) If eo = inf{e > 0:T(C) # ¢}, then

1
€= —— — 1
0 vo(Co + 7o) ’

where ¢p is the largest root of the equation

1—2
(L—co)¥ey
co = % { 22/ +rep —71o (4.5)

Proof: We will only give a short sketch of the proof of (iii). Using a symmetry and convexity
argument, it follows that if I'.(C') is nonempty for some ¢, then there exists a symmetric

design in T'.(C). We can therefore restrict attention to designs having ¢; = F w_f'{x—) =0.

The moment space M now can be written as

>o| >

<CO<1, 622 y €2 X

1 1—Co <(1—CO)
1+c¢~ ~ c ¢

M= {(co,cz): ey * } . (4.6)
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Thus I'.(C) is nonempty iff for some point (co,c2)eM,

1
< (1 : 4.7
cotro ( +€)"’0’ ( )
and < (1+ €)vy. 4.8
c2 + 12 < Ju1 (4.8)

Using the argument of Theorem 3.5, one can then show that ¢ satisfies

1
vo(Co +10)’

2 1-2
_ cvg+v; —¢ w1 [ (1 —co)¥ey 2
where ¢p =sup < coicp > ————, ¢0 < — = +re) —ro
cvo + vy Vo cx

14+e9=

(essentially, one uses equalities in (4.7) and (4.8), solves for cz in terms of co, and then

uses (4.8) to write 1+ &o = ;J;.(COITO) Then one forces the constraint that the point must

belong to the moment space M).

2 1-4
Using now the fact that %:; ((IL");CD— + 7.'2) — ro is a concave function of ¢ if
CA

A > 2, one gets that ¢p is in fact the largest root of (4.5).

Using the result of Theorem 4.4, we have numerically calculated the value of &9 and

the maximin efficiency 7 _:so for some values of ¢ and A. The entries are the values of the

maximin efficiencies. We take ro = ro = .1.

Table of maximin efficiency
2 3 4 5 10

7752 .8092 .8374 .8625 .9327
7059 .7699 .8227 .8604 .9326
.6610 .7631 .8294 .8673 .9336
.6575 .7820 .8389 .8720 .9337

I SR B

For any ¢, the maximin efficiency seems to increase with A, while for given 1}, it seems to
first decrease and then increase as ¢ increases. Of course, more computation is required

before a general statement can be made with more confidence.

As stated before, the problem of finding maximin efficient designs is of interest in

polynomial regression too. For the classical homoscedastic model E(y|z) = 6o + 01z +
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...+ 0,27 with Var(y|z) = 1, the value of &¢ (i.e., the smallest €) equals 0, 1, .715, and
1.072 respectively for p = 1,2,3,4 when —1 < z < 1. This &g is thus the smallest € for
which the set of designs I'c = {&:v;(§) < (1 + €)v;, 0 <7 < p} is nonempty. Interestingly,
we found that for each p = 2, 3,4, one actually has v;(&) = (1+€&¢)v; for 0 <7< p—1and
vp(€o) < (1 + €o)vp, where & is the maximin efficient design. It may be of some interest

to see whether this holds for general p and also to see the behavior of ¢ as p increases.

5. Robust Bayes designs. In this section, we address the problem of minimizing sensitivity
with respect to the prior at a small cost in Bayes optimality for a fixed prior. We will do
this analytically only in the case of a simple linear regression with variance function 1+ z2.
We will consider a family of normal priors N (g, C) for § = (6o, 01)’ where y belongs to any
arbitrary set in R% and C; < C < C, for fixed C; and C3. The cases C > C; and C < C,
are included in this. As discussed in section 1, we will give a complete description of the
set of vectors of Bayes risks for estimating 6o, 8; as the prior changes in the above manner.
Sensitivity to the prior will be measured in terms of the area of the above set, say S, (other
sensitivity measures such as the Euclidean diameter are possible. In fact, the diameter
always works out to tr(X'X + C; 1)~ — tr(X'X + C7')~! and may be easier to handle
because of some known monotonicity and convexity results for this functional of X’X. See
DasGupta and Studden (1988)). In the spirit of the results of the previous section, we will
fix one prior mo = N(p0,Co) and minimize sensitivity at a small cost in Bayes optimality
with respect to mo by minimizing the area of the set S (this area is a functional of the design
€) subject to the restriction that the design £ is in I'.(Co) where ¢ is such that I';(Co) is
not empty. We start with a few general results on description of the set S. Recall that if
the prior covariance matrix is C then the posterior covariance matrix is (X'X + C—1)~!
which varies in the range (X'X +C;)~! < (X’X+C~1)~! < (X’X+C;!)~! (and every
p.d. matrix in this range is a possible posterior covariance matrix). For the purpose of
describing the set of vectors of Bayes risks, we can therefore simply address the problem
of describing the set of vectors of diagonal elements of ¥ when ¥ varies in a fixed range
3 < ¥ < XYj. Also by reparametrizing to ¥ — 21—'{—22, we can without loss of generality
assume that ¥ lies in the range —Y; < ¥ < ¥; where ¥; is a p.d. matrix. Note that this
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reparametrization would not change the area of the set of diagonal elements.

Theorem 5.1, Let & = (2 Z) be any symmetric matrix in the range —X; = — (‘Z b> <

c
Y <% = Z g , where ¥; is a fixed symmetric p.d. matrix. Then the set S of all

(A, ) when —%; < ¥ < Xy is the set of all (A, u) in the rectangle [—a, a] X [—¢, c] satisfying
V(e +N)(c+ u)+1/(a— A)(c — 1) > 2|b|. Geometrically, it is the rectangle [—a, a|x[—c,c]

with its left upper and right lower corners chopped off by the ellipse (5.4).

Proof: Notice that

S = {(/\,u):——agz\ga, —c<u<e,
(p+b)? < (@a+A)(c+u), (p—b)2< (@ — A) (¢ — u) for some p}

= {(A,u):—agz\Sa, —c < u < ¢, for some p

ax (b= vV{e=Nle—#), ~b- Vet Nietn))

<p

Smin(b—l— Vi(a—X)(c — u), \/(a,—i—)\)(c-l—u)—b) } (5.1)

Therefore the set S can simply be described as

S:{(A,u):—agz\ga, —e<p<e, b+ a—X)(c—p)>-b—(a+N(c+p),

—b+\/(a+A)(c+u)Zb—\/(a—f\)(c—u)}

={(m)i-a<r<a, —c<u<e, Vet N+ +vVa-Ne—p) > 206/} (5.2)

Now v/{a + Nie + 1) + V(e - Ve =) > 20b|

& V(a2 — A2)(c? — u2) > 2b% — (ac+ Ap)
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(square both sides of the given inequality and regroup terms).

Now {(/\,u)s[-—a, a] X [—¢,¢]: /(a2 — A2)(c2 — u2) > 2b% — (ac + A/J,)}
= {(A,p,)z-:[—a, a] X [—¢,c]: /(a2 — A2)(c2 — p2) > 2b% — (ac + Ap), ac+ Ap < 2b2}
U{(\m)el—a,a] x [~e,¢]: /(a2 — N2)(e — uB) > 2% — (ac + Aw), ac+ Au > 207}

(5.3)
Now, if ac + Ap < 202, then
V/(a? — A2)(c? — u2) > 2% — (ac + )
aa’p? + A2c? + 2xpu(ac — 2b%) < 4b%(ac — %), (5.4)

which is an ellipse (say E) contained in the rectangle [—a,a] x [—¢,c].

On the other hand, if ac + Ay > 2b%, then the inequality /(a2 — A2)(cZ — pu?) >

262 — (ac + Au) automatically holds. Therefore, by using (5.3) and (5.4),

S = {(/\,//,)s[—a, a] X [—e,c]: (A, n)eE, ac+ Au < 2b2}

U {(A, w)e[—a,a] x [—e,¢]:ac + Au > 2b%}. (5.5)

Geometrically, the set S is the rectangle [—a, a] X [—e¢, ¢] with its left upper and right lower
corners chopped off by the boundaries of the ellipse E. This can be seen by considering
the cases 2b% — ac > 0 and 2b% — ac < O separately and by examining the orientation of
the ellipse E and the hyperbola Ap = 2b% — ac. The ellipse E and the set S are plotted
in figure 1. It turns out that while the pairs (a,¢) and (—a, —c) are always in the set S,
the pairs (a,—c) and (—a,c) are not unless b = 0, (i.e., £ is a diagonal matrix) in which
casé (and only in that case) S is the full rectangle [—a,a] X [—¢,c]. Indeed, for p = —e,
the maximum possible value of A is a — %, and for u = ¢, the minimum possible value

of Ais —a + #. These are precisely the points at which the ellipse E touches the lines

p=—-cand u=c.

The following theorem is useful in describing how the set of any two diagonal elements
of ¥ can be obtained from the above theorem if ¥ is a p X p symmetric p.d. matrix in the

range ¥; < X < ¥o, where X1, Y are also p.d. and X5 > X;.
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Theorem 5.2. Let ¥; = f% w1 <X¥= 21,1 4 < ¥o = 13 %“2 ). Then
- %y  Gpp Y Opp Uz bpp

A < Y11 < B, and given any ¥1; such that A < ¥;; < B, there exist v and oy, such that

¥ < (ilrl 01"1 ) < Xo.
P

~

Remark: This theorem will imply that in order to get a characterization of the set of the
first (p — 1) diagonal elements of X, one only need consider the constraint A < ¥, < B.
By a repeated application of this theorem it in fact follows that all projections of the set

of all p diagonal elements of ¥ are just the sets one would obtain by considering the lower |
dimensional inequalities on the corresponding block of Y. In particular, to get the set of
any two diagonal elements of ¥, one can simply restrict attention to the corresponding
2 X 2 block in ¥, and then use Theorem 5.1. Indeed, it also follows from this theorem

that in order to get the set of all vectors (£;X¢1,£5%X2,) where £;,4, are two independent
2!
2
the entire range LY L' < LY L' < L¥3L' and then get the set of vectors (£;X41,£,54,)

vectors, one can extend to a full rank matrix L, use the fact that LY L’ varies in

by using the fact that these are just the first two diagonal elements of LY. L'.

Proof of Theorem 5.2: That A < ¥;; < B is well known. To prove the second part we will

prove that if A < ¥;; < B, then there exist ¥ and o,y such that ¥; < (2;1’1 01”1 > < Xo.
L PP
The assertion in the theorem will then follow by a closure argument.

So given A < ¥1; < B, we need to prove that there exist ¥ and opp, such that

(0pp — @pp) > ( —w1)'(Z11 — A)_l("! — u1)

and (byp — 0pp) > (v — u2)'(B — 11) ™' (¥ — wa2), (5.6)
or equivalently, there exist u and opp, such that
app + (4 —w1) (Z11 — A) 7w — w1) < opp < bpp — (¥ — w2) (B — B11) 7 (v — u2).
Therefore it is enough to prove that there exists u such that

app + (¥ = w1)' (B11 — A) (@ —w1) Sbpp — (¥~ ) (B-Z1) My —u2), - (5.7)
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(8- w) (B —A) 7 g —wa) + (4~ w2) (B~ S11) (¥ — uz) < bpp —app;  (5.8)

this is because if (5.7) holds for some u, we can then take Opp to be any number in the

interval (5.7).

That (5.8) holds for some v is easily seen by noting that the minimum value of (u —
w) (B = A) 7Ny~ w) + (¥ — %) (B - D) 7z — u2) is (uz —ur)' (B — 4) " (uz — w1)

(whatever be ¥11) and this is < bpp — app since X; < Xg. This proves the theorem.
We now go back to Theorem 5.1 and get an expression for the area of the set S.

Theorem 5.3. The area of S equals 4ac - g(Z—Z) where

g(2) = 2(1 — 2) + V/2(1 — ) (g —sin~ (1 — 22)) ,0<z< 1.

Here sin™!() is defined such that sin~1(-1) = —~Z and sin™!(1) = 5

Proof: The area of the whole rectangle is 4ac. Because of symmetry, we need to subtract
from 4ac twice the area of the right lower corner of the rectangle chopped off by the ellipse

(5.4). The required integration is a routine exercise and is omitted.

We will now work out analytically the design minimizing the area of S among the set
of designs that belong to I'.(C). We will do this in the case of a simple linear regression
with variance function w(z) =1+ z?, —1 < z < 1. This should be considered more
as an artifact rather than anything else. Some comments on the case 1 + ¢z2? are made

afterwards.

Theorem 5.4. Let E(y|z) = 6 + 61z, —1 < z < 1, and Var(y|z) = 1 + z2. Suppose

§ ~ N(g,C) where y is in some set T in R? and K;I < CT_I < K.I for some K; > K;.
Tro 0
0 Tro
the area of the set of (vectors of) Bayes risks subject to the restriction that it belongs to

I‘E(Co) has

. -1
Let Cy be a fixed prior covariance matrix and let %_ = ) . The design minimizing

1—e€rg
Co = , C1 = 0
1+
unless ¢ > ﬁ, in which case the unconstrained minima ¢g = %, c1 = 0 belongs to

T'.(Co).
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Proof: Note that the posterior covariance matrix A varies in the range
1 -1 1 -1
Av=—(M+ K D)7 SA< —(M+Ki)™" = Az, where

M= <c° “ >
C1 1—60

In the notation of Theorems 5.1 and 5.3, then, the area of the set of Bayes risks equals

2
4ac - g(%),

Ay — A
where (Z b) — =2 5 1. (5.9)
_ 1
Now, Az > Ay = o= [(M+ K I)™' — (M + K1)
- K
- % (M + K D)~ (M + KpI)~!
K, — K
= 2_271—.1_(1\42 + (K2 + K1)M + K1 KoI)™ L. (5.10)

We can and will ignore the multii)licative factor Ezifnﬁl as it will have no effect on the

design problem.

Let (Z ‘g) = M? + (K; + K2)M + K K2I. Therefore,

a=ch+c2+ (K1 + Ka)eo + K1 Ko,
B = (K1 + Kz +1)cy,
6=(1—co)®+ci+ (Ki+ K2)(1—co) + K1 Ko.
Thus the area of the set of Bayes risks is proportional to (because we have ignored the

K—K)

factor o™

o (ﬂj)
(06 —2)2 I\ as
1 B2
=— h (E) ) (5.11)

where h(z) = (Tg_(%))—z.

Let us first indicate how the proof will go and then actually prove the theorem. We

will prove that for any given ¢, a6 is decreasing in ¢o-and k() is an increasing function of
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z. Since B involves only ¢; but not ¢g, this will prove that the area in (5.11) is increasing
in ¢ for given ¢;. It was described in Theorem 4.2 that the set I'.(Co) is aﬁ intersection
of two circles (circles because ¢ = 1 here). Since the area is increasing in ¢ for any given
¢1, it then will follow that the minimizing pair (o, ¢1) must be on the left boundary of the
first circle Sp. This makes the design problem a one dimensional minimization problem.
A simple differentiation argument then gives that the minimizing pair is in fact on the ¢g—
axis, i.e., has ¢; = 0. The required point then is just the left boundary point of Sy along

the co—axis, which is what the theorem asserts. We will now prove that aé is decreasing

in ¢o for fixed ¢; and h(z) is increasing in z.

Note that aé = f(co) - f(1 — co),
where f(Co) = C(ZJ + (Kl + Kz)Co + c% + K1 K,.
We will therefore need to show that given ¢,

f'(e0) F(1 = co) < fleo)f'(1 — eo)

€ (2co + (K1 + K3))((1 — €0)® + (K1 + K2)(1 — ¢o) + ¢2 + K1 K,)
< (e + (K1 + Ka2)eo +c2 + K1K3)(2(1 — ¢o) + K1 + K?)
& 4c5 — 6c? +2(1~ Ky — Ky — K? — K? + 2¢2]eo

+ K1+ Ky + K2+ K2 —2¢2<0. (5.12)

The cubic in (5.12) can be factorized as (2¢o — 1)(2¢2 — 2¢o — Ky — Ky — K? — K%+ 2c2).

. 1+ /o
Thus its roots are %, —425, where

o1 =1+2(K;1 + Kz + K? + K2 — 2¢%).

Now given ¢;, ¢o satisfies % < ¢ £ 1, and ¢? < ¢o(1 — ¢o). Thus for fixed ¢y, % <
co < bz@ » Where 02 = 1 —4¢}. In order to prove (5.12) it is then sufficient to prove that
the root -132@ is outside of the interval to which ¢o belongs which is clearly true since

01 > 02. This proves that for fixed ¢1, a6 is decreasing in co.
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The fact that h(z) is increasing in z follows quite easily on observing that

h(z) = —— + ‘/E)_g_-(f—sin—l(l—zz))

1—2=2 (]_—z 2

and each of 72, (f_%{ and T — sin~'(1 — 22) is a nonnegative increasing function for

0 < 2z < 1. This now proves the theorem.

The area of the set S was proved above to be increasing in ¢¢ for fixed ¢;. This implies
that the global minima of the area is on the line ¢g = % This reduces the dimension of
the problem again to one and one can then show that the global minima is attained at the
point ¢o = %, ¢; = 0 (notice this corresponds to the design assigning mass .5 at each of
+1). However, for the variance function w(z) = 1+ ¢z?, it is not in general true that the
area is increasing in ¢o for any given c;. It is also not necessarily the case that the global
minima of the area is at the point ¢ = ﬂ:, ¢1 = 0. The global minima still occurs at this
point if ¢ < 1, but moves into a point (cq,0) for ¢ > ﬁc- if ¢ > 1. Using ro = r, = .1 and
K; =.1, K2 = .5 (in Theorem 5.4), we also numerically found the point (co,¢;1) in T'.(C)
at which the area of S is minimized. In each case we found that this point is simply that
point in T'c(C) that is closest to the point of global minima of the area. As an example,
if ¢ = 5, then the smallest ¢ equals .52 if ro = r; = .1. If one now takes an € > &g, say
e = .6, then for points (co,¢1) in T¢(C), co varies in the range .5875 < ¢y < .6667. The
global minima of the area is attained at co = .8213, ¢; = 0. The minimum of the area in
I'.(C) is attained at ¢o = .6667, ¢; = 0, which is the point in T, (C) closest to the point

of the global minima.

6. Conclusions. The results in this article pertain to the question of simultaneous opti-
mization of the design when interest lies in more than one specific problem and one wants
to work with a vector loss instead of collapsing the different problems into a single prob-
lem by taking a sum of the coordinate wise losses. The analysis seems to indicate that
for general polynomial regression it may be hard to derive the maximin efficient designs
for heteroscedastic models. A prior can further complicate the situation. Bayesian results
have been emphasized in this article while keeping in mind that their frequentist analogs

are often easier to derive. We have also addressed the issue of sensitivity of the-designs to
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the uncertainty in the prior. We consider these important from a practical viewpoint and

hope that compromise designs will be emphasized in other contexts as well.
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of Lemma 3.4 and to Mr. F.C. Chang for help with the numerical work.

References

Bickel, P.J. (1978). Using residuals robustly I: tests for heteroscedasticity, nonlinearity.
Ann. Stat. 6, 266-291.

Box, G.E.P. and Hill, W.J. (1974). Correcting inhomogeneity of variance with power

transformation weighting. Technometrics 16, 385-389.

R.J. Carroll and David Ruppert (1982). Robust estimation in heteroscedastic linear mod-
els. Ann. Stat. 10, 429-441.

Chaloner, Kathryn (1984). Optimal Bayesian experimental design for linear models. Ann.

Stat. 12, 283-300.

Cheng, C.S. (1987). An optimization problem with applications to optimal design theory.
Ann. Stat. 15, 712-723.

DasGupta, A. and Studden, W.J. (1988). Robust Bayesian analysis and optimal experi-
mental designs in normal linear models with many parameters — II. Technical report,

Department of Statistics, Purdue University (submitted for publication).

Dey, D.K. and Berger, J. (1983). Combining coordinates in simultaneous estimation of

normal means. J. Stat. Planning and Inference 8, 143-160.

Efron, B. and Morris, C. (1971). Limiting the risk of Bayes and empirical Bayes estimators
— Part I: The Bayes case. J. Amer. Stat. Assoc. 66, 807-815.

Efron, B. and Morris, C. (1972). Limiting the risk of Bayes and empirical Bayes estimators
— Part II: The empirical Bayes case. J. Amer. Stat. Assoc. 67, 130-139.

Elfving, G. (1952). Optimum allocation in linear regression theory. Ann. Math. Stat. 23,

30



255-262.

Fedorov, V.V. (1972). Theory of optimal experiments. Trans. and ed. W.J. Studden and
E.M. Klimko. Academic Press, New York.

Hoel, P.G. (1958). Efficiency problems in polynomial estimation. Ann. Math. Stat. 29,
1134-1145. |

Jobson, J.D. and Fuller, W.A. (1980). Least squares estimation when the covariance matrix

and parameter vector are functionally related. J. Amer. Stat. Assoc. 75, 176-181.

Karlin, S. and Studden, W.J. (1966). Optimal experimental designs. Ann. Math. Stat.
37, 783-815.

Kiefer, J. (1974). General equivalence theory for optimum designs. Ann. Stat. 2, 849-879.

Kiefer, J. and Studden, W.J. (1976). Optimal designs for large degree polynomial regres-
sion. Ann. Stat. 4, 1113-1123.

Leamer, E.E. (1978). Specification searches. Wiley, New York.

Lee, C-M.S. (1988). Constrained optimal designs, Jour. Stat. Planning and Inf. 18,
377—389.

Pilz, J. (1979). Das bayes she Schitzproblem im linearen Regressionmodell. Freiberger
Forschungshefte 117, 21-55.

Pilz, J. (1981). Robust Bayes and minimax~Bayes estimation and design in linear regres-

sion. Math. Operations forsch. Stat., Ser. Statistics 12, 163-177.

Polasek, W. (1984). Multivariate regression systems: estimation and sensitivity analysis
of two-dimensional data. Robustness of Bayesian Analyses, J. Kadane (Ed.), North—
Holland, Amsterdam.

Pukelsheim, F. and Titterington, D.M. (1983). General differential and Lagrangian theory
for optimal experimental designs. Ann. Stat. 11, 1060-1068.

Rao, C.R. (1976). Estimation of parametes in a linear model. Ann. Stat. 4, 1023-1037.

31



Rao, C.R. (1977). Simultaneous estimation of parameters — a compound decision problem.
Stat. Dec. Theory and Related Topics II, S.S. Gupta and D.S. Moore (Eds.), Academic
Press, New York.

Stein, C. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Stat.

9, 1135-1151.

32



_05 -

-1.0

0.5

1.0

Figure 1: plot of the set S, a=c=1,

b=,

85





