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Abstract

An Adaptive Importance Sampling (AIS) scheme is introduced to compute integrals
of the form Ep = [(6)f(0)d8/ [ f()dd as a mechanical, yet flexible, way of dealing
with the selection of parameters of the importance function. AIS starts with a rough
estimate for the parameters A of the importance function g5 € G, and runs importance
sampling in an iterative way to continually update A using only linear accumulation.
Consistency of AIS is established. The efficiency of the algorithm is studied in two

examples and found to be substantially superior to ordinary importance sampling.
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1 Introduction

1.1 Monte Carlo Importance Sampling

A variety of statistical (and other) problems reduce to calculation of integrals of the form

2o _ L2(0)(0)d8
J7(6)d0

where § € RP, () is a measurable function, and f(8)/ [ f(6)d0 is a density function.

(1)

For instance, in Bayesian analysis F¢ could be any posterior quantity such as a posterior
moment, probability of a set, predictive distribution, or marginal density; here f(6) would
be the product of the likelihood function L(f|z) and prior ¢(9). If ¢ = (¢1,...,9¢) € R,
(1) is to be defined as the componentwise expectation of .

In many practical situations, the integrals in equation (1) are analytically intractable and
require numerical integration. When 6 is high dimensional (say > 5) the preferred method
of numerical integration is Monte Carlo Integration with Importance Sampling (briefly, Im-
portance Sampling, from here on). General discussions of Importance Sampling are given in
Hammersley and Handscomb (1964), Davis and Rabinowitz (1975), and Rubinstein (1985).
Kloek and van Dijk (1978) considered Importance Sampling in the context of statistics and
econometric problems. Modifications and variance reduction techniques have been studied
in van Dijk (1983, 1984, 1987), van Dijk and Kloek (1980, 1983), van Dijk et al (1985),
Bauwens and Richard (1985), Geweke (1986, 1988), Stewart (1979, 1983, 1984). Important
related studies are presented in Naylor and Smith (1982, 1983, 1988), Smith et al (1985),
Tierney and Kadane (1986).

Importance Sampling proceeds by choosing a probability density function g, called the
importance function, defining w(f) = f(0)/¢(9), and replacing the equation (1) by
J p(0)w(8)g(6)db

Jw(6)g(0)do

E,pow
ng ? (2)

Ep =



where the subscript ¢ in F,; indicates that the expectation is taken with respect to the density

g. Then, draw i.i.d. random samples 6y, ...,0, from g(#), and approximate (2) by

- X3 p(0:)w(b:)
B, _ _ “i=1
E L 2?:1 w(al)

(3)

The superscript B in EB¢ is used to denote (Basic) Importance Sampling (BIS), to distin-
guish it from Adaptive Importance Sampling (AIS) that will be discussed later.
Under mild conditions, £B¢ converges to Ep with probability one, and is approximately

normally distributed with mean Ey and variance % /n, where

7 = gy [0 - B 0)a(0)s (4)
= GV enlen) - ABe)Con,(pu,0)
+(Ep)*Varg(w)); (5)

the subscript g in Vary, Cov, indicates that variances and covariances are taken with respect

2 and n,

to the density g. The performance of Importance Sampling clearly depends on o
and o? depends on the importance function g. Thus, the goal is to choose a g which yields

small 2.

1.2 Desirable Properties of the Importance Function

There is no easy prescription for choosing a good importance function even though it is
the key issue in Importance Sampling. Here are some typically desirable properties of an
importance function. First, it should have convenient Monte Carlo properties, i.e., it should
be easy to generate random drawings from. For example, common choices are multivariate
normal and student ¢ densities, from which random variate generation is straightforward.
Second, the tails of g should not be sharper than the tails of f. Otherwise, E’Bcp may have
a large variance or even fail to converge; an example is given in Berger (1985), section 4.9.

Third, g should mimic f well. The importance function that minimizes the variance o?/n
of EB ¢ is proportional to

lp(8) — El£(0); (6)
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see Rubinstein (1981). Since determination of E¢ is the original problem, howéver, it is not
practical to use this as the importance function. Also, one typically desires to estimate Ey
for several ys at the same time, using a single importance function for efficiency. It is often
reasonable to choose g proportional to f, instead of (6). Indeed, in statistical problems ¢
is often fairly flat over the region where f is concentrated (at least when the sample size is
moderate or large), so that a density proportional to f is nearly optimal. But even finding a
density function g that is similar to f and from which random variates can be easily generated
is often difficult. Thus, there is a trade off between convenient Monte Carlo properties and
mimicry of f.

A convenient way to choose an importance function g is to first choose a parametric
family of density functions, G = {gx; A € A}, which satisfy the first and second desirable
properties above. Then, select the parameters A of g to match some features of f to achieve
the third property above. For instance, if A consists of the mean and covariance matrix of g,
then these could be chosen to match the estimated mean and covariance matrix of f, with

some modifications, if necessary.

1.3 Adaptive Importance Sampling

The idea of Adaptive Importance Sampling (AIS) was given in Kloek and van Dijk (1978),
van Dijk (1984). Naylor and Smith (1988) used iterative ideas in Gaussian quadrature, and
suggested the same for Importance Sampling. Here, AIS is developed as a mechanical, yet
flexible, way of dealing with the selection of the parameters A of the importance function
9 € G ={gx; X € A}. It starts with a rough guess for A, and runs Importance Sampling in an
iterative way to continually update A. At each stage AIS estimates Ep and A by pooling the
estimates obtained from BIS, using i.i.d. random drawings generated from the importance
function of the current stage, and estimates obtained from AIS in the previous stage. The
process stops when the desired accuracy is reached. Discussion and comparison with other

adaptive schemes will be given in section 2.4.



1.4 Preview of Results

In section 2.1, the AIS algorithm is given. Section 2.2 discusses reasonable stopping rules
to use for AIS. The additional computations needed by AIS are discussed in section 2.3,
and argued to typically be minimal. In section 2.4, further discussion of AIS, together with
comparison with Kloek and van Dijk’s adaptive scheme will be given. Illustrative examples
and numerical comparisons are given in section 2.5. Consistency and approximate normality
of estimates of AIS are established in section 3, using martingale limit theorems. Conclusions

and comments are given in section 4.

2 Adaptive Importance Sampling

Let G = {gx;A € A} be a parametric family of density functions which have convenient
Monte Carlo properties and have tails no sharper than f. Assume that A = (Ay,...,\,)
and that it would be desirable to choose A equal to E{ = [£(8)f(0)d6/ [ f(0)d9, where
£(0) = (&(8),...,&m(9)), in making g) a good approximation to f. For instance, choosing
£1(0) = 6 would mean that it would be desirable to have )\; equal to the mean of f. Of
course, E¢ will itself typically be unknown (indeed, frequently some of the £;(8), 1 <i < m,
will be the target ©(6)), in which case the natural thing to do is to choose A to be an estimate

of E¢.

2.1 Algorithm

Assume that ¢ = (¢1,...,0.)"
Stage 0: Choose a stopping rule (see section 2.2) and an initial estimate A(9) of E¢. Let ¢(©
be gr(0)- (Often A is chosen by likelihood methods.)

Stage 1: Draw n; i.i.d. random drawings 0&1) yeoo ,05}1) from ¢(©. Let

w®(8) = £(6)/9(6) (7)



and define a functional

NOB) = 35 (69) wh (60). | ®

=1
Compute NU(¢), i =1,...,m, NW(p;), i = 1,...,£ and N®)(1). Also, one might need
to compute some statistics needed for a stopping rule; this will be discussed in the next

section. Check a desired stopping rule to see if AIS should end. If so, go to “Conclusion”.

If not, then set A equal to

A — (N (&) N(”(ﬁm))'_ (9)

N@O(1) 7 NO(D)

Let ¢ = gy(1) and go to the next stage.

Stage k. Draw ny i.i.d. random drawings 0§k), ... ,OT(L’Z) from g1 = grk-1)- Let

w®(9) = £(6)/¢*1(0) (10)

and define a functional

N® Zh (g(k)) (k) (gz(k)) - (11)
Compute N®)(&), i =1,...,m,and N} (p;), i = 1,...,4, and N®)(1). Also, compute any
necessary statistics for use in the stopping rule. If the stopping rule is not satisfied, then set

A equal to

,\(k):< = N9 (&) Ef=1N(j)(§m))’ (12)

i NG TE NO(1)
and go to the next stage with ¢g(¥) = (k)

Conclusion. When the stopping rule yields “stop AIS” (at the kth stage, for instance),

estimate Fy by

(k) L__ L=t AP
E ( Zk 4 (J)( ) - .11"::11 (J)(]') ) . (13)

Note that the AIS estimates of E{ and Fy are obtained by linear accumulation of the

NG)(.). This linear accumulation of statistics from previous stages has several advantages.



First, it is cheap; see section 2.3 for details. Second, the sample sizes in the stages can be
small or moderate, while still accumulating to give high accuracy overall. The advantage of
small or moderate sample sizes in the stages is, of course, quicker adaptation of g, to f. Note
that even a completely adaptive scheme, with each 0,§j ) defining a new stage, is possible.

It should be mentioned that, often, there will be a need to convert A*¥) to a convenient
form for utilization at the next stage. For example, when ) is to be matched to an estimate of
the covariance matrix, ¥, of f, it is often necessary to change A\(*) to the form TWT®' where
T™® is a lower triangular matrix, to efficiently generate random variates from ¢(¥) = IA(E)-

Such considerations may argue for keeping the number of stages moderate.

2.2 Stopping Rules for AIS

First, consider the case of scalar . Under mild conditions, E®¢ converges to Ep and
AE) to \* = E¢ with probability one ( as n®) = $%_n; — oo0), and E® is approximately
9=1"'%J

normally distributed with mean E¢ and variance 0?/n'¥), where o is given by equations (4)
and (5) with g = gx.. This will be established in section 3.

Consider first the simple stopping rule: stop after a fixed number of stages with fixed
sample sizes. Then, % can be estimated by

1 A . o 2
520 = W(v&r(’“)(gow) — 2(EW )™ (ow, w) + (E(k)go) var(k)(w)) , (19

where

k

oH = ZN(j)(l)/n(k) (15)
7=1

vir®(pw) = 3°ONO () /n® - (B0p)? (5’ (16)
j=1

cov® (pw,w) = zk:N(j) (gow(j)) /n®) — E® (w(k))2 (17)
i=1

var®(w) = zk:N(j) (w(j)> /n®) — (w(k))2. (18)
=1



Note that the new sums in (16), (17), and (18) can be linearly accumulated between stages
exactly as in the BIS algorithm.

Now, suppose one wants to guarantee that

|E®p - By
oAl Aod A5 PV P
P( Bel  ~° " (19)

Then, from approximate normality, it follows that n(¥) should be chosen such that

2

SIET < ((n)) (20)

where ¢(n) is the (1 — n/2)th quantile of the standard normal distribution. A method for

deciding when to stop AIS immediately suggests itself. Replace o2 and E¢ in (20) by 52
and E(k)go, respectively, and stop AIS when

A~ 2(k) 2
z <(—=) . (21)
n(k)lE(k)golz C(T])
When ¢ = (p1,...,9:)" is a vector, one could calculate %) for each w; and stop when

(21) is simultaneously satisfied for all components. This can be expensive, however, if £ is
large. A rough surrogate for the stopping rule in such a situation is to replace &%) /| E®) |2

in (21) by var®(w)/ (Tv‘(k))2. This yields the rule: stop if

) e (22)
mm@#g

Note that var® (w)/ (w(’“))z is the term of (14) which, when scaled by (E(")cp)2, does not

involve (.

2.3 The Additional Calculations In AIS

Suppose that ¢ is a vector of the form (i1, ...,¢¢)" and that n random variates are drawn
in BIS. Then BIS requires roughly n computations of ¢1(9),...,¢.(8), f(8),9(), and 2in

additions and multiplications.



In addition to the computations needed in BIS, AIS requires extra computations in
updating the parameters. In stage 1 of the algorithm in section 2.1, the computation of
NO(E), i = 1,...,m, requires the extra n; computations of £(6), i = 1,...,m, and
mny multiplications and additions. Equation (9) requires an extra 2m additions and m
multiplications(divisions). Thus, if AIS stops at the kth stage and n(*) = n, then the total
extra work of AIS is roughly n computations of £;(6), i = 1,...,m, plus m(n+2k) additions
and m(n + k) multiplications, and possibly k conversions as mentioned at the end of section
2.1.

The additions and multiplications are typically cheap compared to the other computa-
tions, such as generation of random variates and computation of f(6), () and ¢\¥)(g).
Note that the computations of the §;() are typically cheap because the ¢;(8) are often linear
or polynomial functions. Finally, when (say) h of the ¢; are equal to A; (as is often the
case when the A;s are moments), then the computations related to Ay,..., s are not extra

anyImmore.

2.4 Discussion and Comparison with Other Adaptive Schemes
2.4.1 Kloek and van Dijk’s Adaptive Scheme

Kloek and van Dijk’s adaptive scheme (K-D’s) is the same as AIS, except that it doesn’t
pool the estimates at the current stage with the estimates from the previous stages. In-
deed, at the kth stage it estimates Ep by N)()/N®) (1) (while AIS estimates E¢ by
E_ N W)/ ¥t N @)(1)). Since estimates at each stage of K-D’s scheme are weighted aver-
ages of the form (3), involving only i.i.d. random drawings, it is easy to establish convergence.
Also, only random drawings from the current, supposedly most accurate, importance func-
tion are used at each stage. But because there is no accumulation of random drawings, the
sample sizes in the stages must be large to have good accuracy, as van Dijk (1984) pointed
out.

A reasonable way to running K-D’s scheme would be to have only a few stages with



greatly increasing sample sizes in the stages, so that the final (most accurate) stage receives
most of the observations. There are, however, two inefficiencies in choosing greatly increasing
sample sizes. The first is that one can overshoot the desired accuracy by having a too-large
final stage. The second disadvantage of this mode of operation is that it typically requires
an interaction with the statistician, to choose the sample size needed at the next stage. In
contrast, AIS, operating with stages of fixed moderate sample size, can operate on automatic.
Numerical example of K-D’s scheme and AIS, with gradually increasing sample sizes in the

stages, are given in section 2.5.

2.4.2 Naylor and Smith’s Adaptive Scheme

Naylor and Smith’s adaptive scheme (N-S) is similar to K-D’s, but it updates not only the
parameters of the importance function but also the form of the importance function; see
Naylor and Smith (1988). Again, however, this typically requires interaction with the statis-
tician to choose a new importance function and sample size for the next stage. If feasible,
this is highly desirable, but there may be many situations in which complete automation is
required.

Even within Naylor and Smith’s scheme, there is a possible role for AIS: one can have a
small number of stages of N-S, in each stage of which one uses AIS to estimate the information
needed to update the importance function for the next N-S stage. Again, it is because AIS

can be automated that such is possible.

2.5 Examples and Numerical Comparisons
2.5.1 Example 1

In order to be able to easily compare several Importance Sampling methods, we start by

considering a simple two dimensional situation. Suppose f(6) is

7(6) = 25(6) + 75£:(0), (23)

10



where 0 € R? and f,, f, are the density functions corresponding to the
0.0 1.0 0.8 2.1 1.0 0.0
N ( , ) and N ( , )
0.0 0.8 1.0 2.1 0.0 1.0
distributions, respectively. Assume that one desires to find the mean y, variance ¥, and the
probability P = P(8 < (2.0,5.0)"). Thus, let ¢ be the vector

(P1,---,06) = (01,02,0%,0105,03,I(0 < (2.0,5.0)"))', where 6;,0, are the 1st and 2nd ele-

ments of 8, respectively. Defining

Y3 P4
ot = (p1,02), M= ( ) (24)
Y1 Ps
clearly
p=Eel, B=Eel - (Eo') (B'), P=Egps. (25)

As shown in Fig. 1, f is skewed in the direction of (0,0)'. Since the skewness is not
severe, use of a standard unimodal symmetric importance function may be reasonable. We
chose a multivariate ¢ form with 1 degree of freedom for the importance function because of
its thick tails and simplicity in random variate generation (see section 1.2). Thus, the class

of importance functions we consider is
G = {gaan(8) o< M7V2(1 4 (0 = MYATH-2(0 — AT)32 At e % AT isp.d},  (26)

where

ds A
A= (A1, Ag) and At = (; ;) . (27)
4 5

(As usual, define A = (Aq,...,As5)).

It is natural to let AT, the location parameter for gyt ,tt, be an estimate of the mean, p, of
f. (We could of course calculate the mean of f in closed form here, but we are investigating
the algorithm.) Thus, in the algorithm, choose ¢1(8) = (£1(8),é2(0))’ = 6. And in Oh (1989),
it is argued that, if one has an estimate % of the covariance matrix for a density f, then

a good choice of A in gyt 1t is (for two dimensions) ATt = (.65)3. Since the covariance

11



matrix of f can be estimated in the algorithm by approximating E(06' — (E¢)(EETY), the

suggested choice for the remaining ¢;(6) in the algorithm is

3 0 4 0 14
1(0) = (z EG; EEG;) = (.65)<00’— (Ee) (E¢T) ) (28)

Note that ¢ = ' and ¢t = (.65) (go” - (Ecpf) (Egof),>, so that there will be no extra
calculations in updating .

As a final preliminary to apply the AIS algorithm, we need to choose sample sizes in
each stage and a stopping rule. The sample sizes that will be used are 200 in the first stage
and 100 in all subsequent stages. The stopping rule used is that specified by (22), with

n = .05, = .01; thus we will stop when
var®(w)/ {n<’°) (w(k>)2} < 2.60308 x 1075. (29)

In our comparisons, we will also apply BIS in this framework. Of course, in BIS, A is not
updated.

At stage 0 of the AIS algorithm, we need preliminary A1(®, and AM(©, Tt is common to
initiate Importance Sampling with likelihood estimates (here the mode, 6, and minus inverse
Hessian, i ~1 of f) to approximate the mean u and covariance matrix ¥ of f. Thus, we

shall set A'® = § and At1(®) = (—.65)/"; here these turn out to be

2.0 1.30 1.26
AHO) — A0 = ’ (30)
2.0 1.26 1.30
defining the stage 1 importance function ¢(®.

At stage 1, we drew ny = 200 random variates from ¢(® and from these random variates

computed
200
NO@1) = Y w® (0) =188.0 (31)
=1
200
N (wf) = NO (y) =3 g0yp® (a§1>) = (329.8,341.5)' (32)
i~1
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200 841.1 .
N (Soﬁ) _ Za§1)01(1)'w(1) (01(1)) _ 656.7 (33)
i-1 656.7 851.8
200
NO(ge) = S w® (60) 1 (6 < (2.0,5.0)') = 106.0. (34)
=1
To check the stopping rule (22), we also needed to calculate
5r) O mph2l — — = )
vir(w)/ {nO@)} = n(l){ n® ( n(® ) }/( n®@ )
= 4.16. (35)
Since varM(w)/{nM(@1)?} > 2.60308 x 10~°, we did not stop, and hence calculated
329.8 341.5\'
AT <-— —) = (1.75,1.82)’
188.0° 188.0 ( ) (36)
841.1 656.7
A = 0.65{( 188.0 188.0 ) . )‘1(1)/\1(1)'} — (0'91 0'10) ' (37)
8567 8518 0.10 0.91

These defined the stage 2 importance function g(t) = Gt AHQ) -

AIS continued in this example to the 320th stage, at which point f, P (the estimates
of u, X, P, respectively) were obtained from E(320)g0, using the relations in (25). The results
are given in the Table 1; fiy, fi; are estimates of the 1st and 2nd elements of fi, respectively,
and 62,614,652 are estimates of the 1st diagonal, off diagonal, and 2nd diagonal elements
of ¥, respectively. The values in the column “True Values’ are the exact values of u, ¥,
and P, which can be determined analytically in this example. And var(f,), var(js), and
var(P(6 < (2.,5.)')) are the estimates of var(fy), var(fz), and var(P(8 < (2.,5.))) of
the form 62F) /n®) where 62(F) is given in (14). Unfortunately, var(6%), var(é1z), and
var(62) cannot be calculated from (14), since ¢7,02, and o1, are not representable as E¢
for some ¢(0). However, from Cramer (1946, Sec. 28.4), analogous formulas can be derived
for var(62),var(62), and var(é12), and were used in this section.

To judge the effect of the updating of A, Table 1 also lists the corresponding results for
BIS (i.e., when BIS was run until the stopping rule (22) was satisfied). AIS achieved the

specified accuracy (29) after many fewer iterations than BIS and was substantially faster.

13



Table 1: Comparison of BIS and AIS

BIS AIS True Values
n 57,600 33,000
fia 1.5934 1.5837 1.5750
iz 1.5986 1.5953 1.5750
var(fy)/p2 5.8135 x 1075 | 5.1728 x 10~5
var(fia)/ p2 5.7792 x 1073 | 5.0939 x 10-5
52 1.8396 1.8007 1.8269
512 1.0252 1.0094 1.0269
&2 1.8379 1.8138 1.8269
var(62)/(62)2 1.5315 x 10=* | 1.1729 x 10—*
var(812)/(612)? 1.1587 x 10~2 | 3.8156 x 10~*
var(62)/(62)? 1.5470 x 10~ | 1.1470 x 10~*
P8 <(2,5.)) 0.5830 0.5834 5919
var(P(6 < (2.,5.)))/(P(0 < (2.,5.))? | 2.6591 x 1075 | 4.0216 x 10~5
var® (w)/{n® (w*)?2} 2.6029 x 1075 | 2.5957 x 10~3
time (sec) 295.0 169.3
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Note that the mode and minus inverse Hessian (the starting values of A for AIS and the
permanent values of A for BIS) are quite different from the actual mean and covariance
matrix.

Next, AIS and K-D’s adaptive scheme are compared for a fixed number of stages and
a fixed sample size in each stage. Note that in K-D’s scheme the estimates are not pooled
across stages. In both schemes we chose 7 stages, with sample sizes in the stages of 500,
1000, 1500, 2500, 3500, 4500, and 6500, respectively; thus the total sample size is 20000 and
the sample sizes in the stages are gradually increasing. The results are given in Table 2.
Since we forced both schemes to take 20,000 samples, the times of computation are quite
similar. Note however, that AIS yields answers with variances that are about 1/3 those of
K-D’s scheme.

Observe, from Table 1 and Table 2, that var® (w)/{n®(@®*)?} is about 1/2 of
var(fi)/ ()2, ¢ = 1,2. On the other hand, var® (w)/{n® (@®)?} differs from var(5?)/(62)2,
i = 1,2, and véar(612)/(612)* by factors ranging from 4 to 14. Thus, use of the stopping rule
(22) with var® (w)/{n® (w*))?} seems to be a reasonable surrogate for (20) in estimation
of means, but less so for estimation of variances.

It is of interest to see how the var® (w)/{n®)(@®)?2}, k =1,...,7, behave as a function

of k. Table 3 gives var®(w)/{n® (@*))?} for each stage. Clearly, it is decreasing much
faster in AIS than in K-D’s scheme.

2.5.2 Example 2

As a more realistic example, we consider an example from Fong (1987), which analyzed
a complete block design of Stenstrom (given in SAS (1985), p. 487) using a hierarchical

Bayesian model. Data y was assumed to follow the model
Yijk = Mij + €ijk, i=1,...,I,j=1,...,J,k=1,...,Kj, (38)

where I =3, J =4, K = K, = K3 =2, K, =1, and eijki'fin'N(O,Tz), for unknown 72.
Suppose pi; = p+a;+B;, ¢ has N(33.5,9.0) for the prior density, and the prior distributions

15



Table 2: Comparison of K-D’s scheme and AIS

K-D’s AIS True Values
fia 1.6081 1.5947 1.5750
I 1.6154 1.6034 1.5750
var(fa)/ p2 2.4549 x 10~* | 8.3722 x 10~*
var(fia)/ p2 2.4590 x 10~* | 8.2812 x 10~*
52 1.7785 1.7762 1.8269
&1 0.9775 0.9905 1.0269
52 1.7467 1.7967 1.8269
var(62)/(63)? 5.9480 x 10~* | 1.9964 x 10—+
var(612)/(812)? 1.8978 x 10~2 | 6.5488 x 10~*
var(82)/(62)? 6.2941 x 10~* | 1.9446 x 10~
P8 <(2.,5.)) 0.5764 0.5811 5919
var®[P(6 < (2.,5))]/(P(0 < (2.,5.)))? | 2.0793 x 10~ | 6.7478 x 10~°
var® (w) /{n® (w*))?} 1.2905 x 10~* | 4.3350 x 10~5
time (sec) 94.0 97.1

16




Table 3: var®(w)/{n®(w®)?}

stage | sample size K-D’s AIS
1 500 2.6450 x 10~3 | 2.6450 x 10~3
2 1000 8.9219 x 10~* | 6.9655 x 10~*
3 1500 5.9062 x 10~ | 3.2073 x 10~
4 2500 3.5022 x 10~* | 1.6739 x 10~
5 3500 2.4863 x 10~* | 1.0008 x 10~
6 4500 1.8711 x 10~* | 6.5152 x 10—
7 6500 1.2905 x 10~* | 4.3350 x 10~°

of o; and B;, given 72, 7'5, and 7%, are

i1.d

a;i "RYN(O,72), B KT N(0,7R);

the second stage prior density of (72,75,7%) is

W(TaZaTﬁ2)7'2)

Determining the probabilities P(f; is

w(ralr*)m(rglr)m ()

1

4PN+

(39)

(40)

(41)

the largest| y) is of great interest in ranking and

selection. In Fong (1987), it is shown that calculation of these probabilities reduces to

determining the posterior expectations of

. ¢; — Us .
¢j(72,ra2,7'ﬁ2) :EﬁE‘t’J sl;[j@ ( J\/‘Z ) ,] = 1,...,.], (42)
where
ﬁ ~ N(U*’V*)7¢j NN(uJ'vV;') (43)
o= g - [1+ (24900577 (5. 33.5) (44)
Ve o= [I((z2+9.00) + )] (45)
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K.
EiI:l E:j]_lzk—_{ly’ijk/(’rz + II{JTﬁz) : (46)

g. = Ir?

B
o= (jélTZ/Kj1+ITg> )
u = y.j.-m%<y.j.—ﬂ) (45)
v o Ky (49)

2/ K; + ITﬁ2’

Y.;. is a constant obtained from data y, and ® is the standard normal cdf.

To compute the posterior expectations, first transform 72,72, 7'[,2 to

0, = logTz, 0, = logTZ, 0s = 1097';, (50)

since this transformation often makes the posterior density function less skewed and changes
the ranges of the variables to (—o0,00). Let 8 = (61,0,,05)" and ;(0) = ¢;(e?, e, e%), 5 =

1,...,J. The transformed posterior density can be shown to be
P(Oly) o e (NetH=DB/2(ch 4 Nyl )=(I-1)/2

J [ e -1/2 1 -1/2
7 6s (A 6 03 —)
< 5 (K,-+ ¢ ) (%) + moor

1[5 Ni51 J (7, — j2)?
% exp[—2 (e”l + efr + Nyeb2 Ij:l e [K; + Ie%
I(g..— 33.5)2A(e%, e%) ] ef2+0s

(

1+ (ef2 +9.01)A(ef%, e%)] (efr + e%2)(ef + efs)’

(51)

where
PTG p—— (52)
’ i=1ef1/K; 4 Iefs ’
S1, 53 are constants obtained from y, Ny = E}-LIKJ-, and §.. is given in (46).

As in the previous example, a multivariate ¢ form with 7 degrees of freedom is chosen for

the importance function, so

G = {gat +1(0) o [ATT|1/2 1+ 10— atyatt-10 — 2t SAte R3AMispd}.  (53)
Tt 7

18



Again, estimated moments, /i and 3, of the posterior yield values At = /i and Aft = (.8609)3:
for the parameters of the importance function (.8609 being the adjustment factor recom-
mended in Oh (1989), for multivariate ¢ density function with 7 degrees of freedom in three
dimensional problems). Thus, £1(0) = 6 and ¢1(0) = .8609(00' — E¢TEEY) will be used in
the AIS algorithm.

A sample size of 200 was selected for each stage, and the stopping rule (21) with = .05

and € = .2 was chosen for each element of ¢; thus sampling stopped when
U&T(E(k)(pj)

(Etg;)?
Note that var(E®y) is of the form 8%*)/n®), where 62(*) is given in (14) with ¢ = ;-

<1.04123 x 1072, for j =1,...,4. (54)

Finally, the importance function at stage 0 was chosen to have Af©® = § (the posterior mode)
and AM®) = (—.8609)1~1(—I~* being minus the inverse Hessian); these were determined
using maximum likelihood methods.

With the stopping rule mentioned above, AIS stopped after 53 stages (n = 10600), 9 times
earlier than BIS which stopped after 470 stages (n = 94000). However, var(£yp;)/(Ep:)?,i =
1,2,3, in BIS were about 1/3 of those in AIS because large var(Ewps)/(Fp4)? controlled the
stopping rule. Thus, to compare both schemes it would be more reasonable to run BIS with
160 stages (n = 32000) and AIS with 53 stages so that most variances are roughly the same.
The results are given in Table 4.

There is no regular relationships between var® (w)/{n®(w*)2} and var E;/(E:)?, 1 =
1,...,4, in this example. And because the var®(w)/{n®(@*)2} are for the most part
smaller than the varE;/(Ep;)?, use of the stopping rule (22) would have caused the scheme
to stop much earlier, resulting in less accuracy of the Egoi,i =1,...,4.

It is of interest to compare the mode and minus inverse Hessian (which are not only the
parameter values used in BIS, but are also the estimates that would result from a likelihood
approach to the problem) with AIS estimates of the mean and covariance matrix. Tables 5

and 6 show that there are substantial differences between the mode and mean, and between

minus the inverse Hessian and the variance of 8.
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Table 4: Comparison of BIS and AIS in Example 2

BIS ATS
n 32,000 10,600
time (sec) 1033.0 361.0
h (1.354, 1.619, 1.667) | (1.445, 2.021, 1.759)
5 129 121
195, 1.844 021, 2.438
126, .144, .938 -.015, .038, 1.375
Eoq .0400 .0376
Eo, 0411 .0419
Eos 9176 9177
Eo, .0037 .0028
var(Ee1)/(Ee)®> | 1.1640 x 1073 6.8301 x 10—*
var(Epy)[(Eeg)? | 4.7175 x 10 7.0058 x 10~
var(Eps)/(Eps)? | 3.8291 x 1076 3.5244 x 10~°
var(Fps)[(Eed? | 4.5000 x 1072 1.0365 x 10~2
var® (w)/{n® (@*)2} | 2.2558 x 1075 1.4106 x 103

Table 5: Mode and mean of posterior

e

ol

1.355 | 1.619 | 1.667

1.445 | 2.021 | 1.759
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Table 6: Minus inverse Hessian and covariance matrix of posterior

G,5) |(1,1)1(1,2)[(1,3)[(2,2) | (2,3) | (3,3)
ZI7Y 129 | 195 | 126 | 1.844 | .144 | .938

A

X 121 ] 021 | -.015 | 2.438 | .038 | 1.375

3 Convergence

For E(®¢ to be a meaningful estimate of E, it should be consistent. Also, to measure the
accuracy of E(k)¢ it is helpful to have an asymptotic distribution for E(k)go. In BIS, since
all the random variates used to compute EB @ are i.i.d., the asymptotic theory for EB @ is
trivial. But in AIS, the importance function at stage k& depends on previous random variates,
so asymptotic theory for dependent random variables must be used. Section 3.2 establishes
consistency of £®*) under reasonable assumptions, while section 3.3 establishes asymptotic

normality.

3.1 Notations and Assumptions

For convenience, we let E*(-) represent expectation over random variates Gz(j ) ,e=1,...,n;j,
J =1,2,... (E* is just a notational device; we will only actually be taking expectations
over finite sets of {02@}.) Let ng), for ¢ = 1,...,n5,7 = 1,2,..., be real valued Borel
measurable random variables, and let F; be the o-field generated by 8. ... 8% where

99 = (0@, e ,07(%)),]' =1,2,... Finally define, for any measurable function ¢,

009) = o060 — [@O)1(0)d, i=1,...,n5, j=1,2,...  (55)
TJ?(Q(J.)) = igl t;o(az(]))’ .7 = 1) 2) M I (56)

The following assumptions will be used in this section.
Assumption I: ¢¥), k =1,2,..., have the same support as f.

Assumption II: F exists.
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Assumption ITI: w®*) is bounded by a constant M for all £ =1,2,... .
Assumption IV: E¢ exists.
Assumption V: g, is a continuous function of A.

These assumptions are fairly innocuous, except for Assumption III, which is often not
satisfied for an unconstrained family of density function G. For example, G = {g,x; 9.5 is a
T1(1, X) density function, u € R?, X is p.d.} will typically lead to unbounded w® Dby letting
|2] — oo (so that the denominator of w*) goes to zero). Choosing G = {gx, A € A}, where
A is a compact set and the tails of gy are heavier than those of f, typically does guarantee
assumption III. Use of a constrained A could be harmful to the efficiency of AIS, however,
and the consistency theorem is undoubtedly actually true with much weaker assumptions.
In practice, therefore we suggest choosing unconstrained G, but monitoring X to see that A(*)

doesn’t wander off to the boundaries or infinity.

3.2 Consistency

Lemma 3.1 Under assumptions I and II,

(i).  Given Fj_1, t2(6), i =1,...,n; are i.i.d. (57)
(i) E°(t£(69)) = E*(B*(t5(67)1F ;1)) = 0. (58)
Proof. Because, given 00 1=1,...,5—1, the ng),i =1,...,n;, are i.i.d. random variates

from gU=1(9), result (z) is obvious. Now,

B @ (0)Fjm) = E (o8P O0)|F;1) - [ 0(0)5(6)d0
= [ 0)(£(69)/g-D(60)g ) (6)do - [e@)r0)a0
= [(2(6?)16P)a69 ~ [ p(6)5(6)d0
= 0.

Hence,

E*(£2(67)) = B*(E*(t(69)|F;-1)) = 0. O (59)
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Lemma 3.2 Under assumption II,

BT @)IF-1) = ni{ [ £ 00w0)10)d0 - ([ o(0)f(0)d0) ). (60)

Proof.
B (T3 (@) Fi1) = E'(3 09)1Fi)
= 2 E((5609))"| 1) by Lemma 3.1
= ni{ [ (O (0)£(0)d0 — ([ ¢(6)£(6)d8)?)
since, given F;_y, ng),i =1,...,n;, are from gt~. O

Theorem 3.1 Suppose that assumptions I, Il and III hold and that ¢ has finite second

moment. Then

E®y 2% EBo as nl) — . (61)
Proof. Given in the appendix. 0O

Corollary 3.1 Suppose that assumptions I, II, IV, and V hold and that ¢ has finite second
moment. Let \®) = E(®)¢  \* = E¢; then, for each 0,

g® ) 25 ge(8) as n® — co. (62)

Proof. From Theorem 3.1, A(®) 23 )*. The convergence (62) follows from Chow and
Teicher (1978, Cor. 2, p. 67). O

3.3 Approximate Normality

As mentioned in section 1.1, EBy is approximately normally distributed when the sample

size is large enough. Here, it will be shown that E'(k)go has the same property.

23



Theorem 3.2 Suppose assumptions I — V hold, ¢ has finite fourth moment, and

2 n2/(n®))?2 — 0 as k — oo (which is true, for instance, if all nj < N). Then

a)  Va®(EW®y — Ep) -5 N(0,0?), (63)
b) gUR) 22 52 (64)

where 52F) is given in (14) and o? is given by ({) and (5) with g* = gx+ for g.

Proof. Given in the appendix. O

4 Conclusions and Generalizations

The advantage of AIS include its efficiency, its potential for being automated, and its flexibil-
ity. Its efficiency arises from the possibility of repeatedly improving the importance function
during the simulation, from the utilization of all Monte Carlo observations in the computa-
tion, and from the utilization of cheap linear operations to update the importance function.
The automatic nature of AIS is attractive in that once the class of importance functions
is chosen, and the sample sizes and desired accuracy specified, there is no need for further
interaction with the statistician.

Finally, AIS is flexible in terms of its features, allowing any class of parameterized im-
portance functions (with linearly estimable parameters) and arbitrary sample sizes in each
stage. When the initial inputs are quite uncertain and/or the extra cost of AIS is relatively
small, one can make the sample size in each stage very small (even one) so that parame-
ters of the importance function are updated often. It is even possible to have the choice
of the sample size for the next stage depend on the current estimates; for instance, if the
importance function has stabilized and there is still a long way to go to achieve the desired
accuracy, one might choose a larger sample size for the next stage.

Combination of AIS with other adaptive (nonadaptive) schemes is possible. For example,

it might be advantageous to run the first few stages with moderate sample sizes, and then
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begin a new AIS with the updated importance function, ignoring the random drawings from
the first few stages in actual calculation of the integral. This would prevent the possibly
bad initial stages from contaminating the estimates. As another example, one could obtain
information about f using AIS, and based upon this information choose a new form of the
importance function (a new family of density functions) if the current form is not a good fit.

AIS could then be utilized with this new family, and the process repeated as necessary.

APPENDIX
Proof of Theorem 3.1
Let X; = T}(6Y). Then
i B*(X;|Fjo1) = S8, E* @1 (09)))F;_1) = 0, for all j, by Lemma 3.1.

ii. Claim:
o 1
S oyl (X5) <o
Proof:
o * _ 1 * *
.Zl (n(n) BX5) = 3 (n(j))zE (B (X51F5-1) (65)
J:
= _1 n(]))2 (/w(ﬂ) )da—(/f(é)d9)2)
by Lemma 3.2 (66)
T = 1 n(J) /f )do(M -—/f(@)da) (67)
by assumption III. (68)
But
) (5) _ p-1) €] 1 ()
_ny _ nD—nl 1
(n(j))2 B (n(]))2 - /n(j_l) (n(g))2d$ < /1;.(1 1 x2d$ (69)

25



f < [Tl L L

i=2 (n()2 W g2 n)  pm)’
< e
BmoRE = @ <%
Q.E.D. O
i, nM < n® < ... 5 .

X; a.s.

¢From i, ii, and iii above and Feller (1971, Thm 3, p. 243), —J(k—)’ — 0, hence

Bk 5wl 9(1))
]: a.. f
n(k) /

Similarly,
7 2;§=12”J (0(3))11)(‘7) 0(.7)) s,
L) [0

The theorem follows from Chow and Teicher (1978, Cor. 2, p. 67). O

Proof of Theorem 3.2 a)

Let 0
t2(6;”) 1

R o B Y r 1> Y

for arbitrary constants a;, a; and let Sy = Z§-=121 lr(k) . Then,

ta1+a2¢(0(3))

i). Claim: {(Ske, F¢), 1 <€ <k, k> 1} is a 0-mean square integrable martingale.

Proof: By Lemma 3.1, given F;_q,r ,(_7), =1,...,nj, are i.i.d. and
E*(rP\F;a) =0.

Thus,
E*(Ski|F 1) = Sky- 1+E*(E 9| Fio1) = Skjo1,

from which it follows by induction on j that

E*(Sw) = E*(Si1) = E%2#% 0.
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By Lemma 3.2 and assumption III,

E*(( (k)) Ij:'] 1) = 'nTk)-E*((.glt;1+a2¢(0§j)))2|fj—l)— (

= 2 [(an+ aap(0) D (0)£0)d0 — ([ (a1 + axp(6))7(0)d0)
< Z5{M [+ a0 £(0)d8 ~ ([ (@1 + axe(0)) f(0)d0)?}

- n’”(‘;) M* < . (77)

— S E (T2 (09))*| )

Now,
EX(Sy) = E[E*((Ski—1+ 2 ry ) lfz 1)]
= E*[S{;1+25kiE" ( P1F) +E*((Z )2 Fen)]

= B(Sii) + EY(E (X n% >> |F1-1)) (by (74))

= B2 E (3 rPPIFi)

< B(E M) (by (1)

< M <. O (78)
). Claim: Let

it = L mew—< | soyasy (19)

o1z = / “0(9 PO)/°0) 4o / o(6)£(8)d8 / (6 (80)

= [ ‘”Tg(")do—(/ o(0)/(6)d0)". (81)

Then, '§1 E*((T‘Ej1 rgf))Zlfj_l) 2% 4202 + 2a1a9013 + a2o2.

j= i=
Proof: By Corollary 3.1, (a1 + aa(8))*w@(0)f(8) = (a1 + a20(0))*£%(0)/9(6). And
(a1 + az0(0))?w)(0) £(0) < M(ay + az0(0))?f(0), by assumption III. By assumption, ¢ has

finite second moment, so that the Lebesgue Dominated Convergence Theorem yields,
[ a1+ azp(0)?0(0)£0)d0 =2 [ (a1 +axp(0))*£(6)/9(6)d0
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Hence,

B (0N Fi) = [(ar+0ap(6)w(0)7(0)d0 — ([ (a1 + axp(0)) £ (0)d0)?
% [ (a1 + axp(0))12(0)/9(0)d8 — ( (ax + atp(8)) £(6)d0)’
= a2o? 4 2a1a0012 + alol.

Therefore,

by (74) and that r({c) and i.i.d. given F;_4 (82)
1 CL az
= 55 B (00)2 F ) (83)

n(k) j=1li=1
— alal + 2a1a3013 + a302 by Rudin (1964, p. 70).

iii). Claim:
2 E*((, 2 PNV F;Z1) — 0, as n® — oo
Proof:

E*(( (k)) Ij:J 1) _ E*(igl(rz(;i))‘l-i_im:%]# (k)( (k))3
+ 2 VSN IF).

i,m=1,i#m

By (74) and that 7"( ) are i.i.d. given fj_l,E*(T(k)( (k)) |F;—1) = 0. Now,

B(Fm) = B () ) (84)
= n(i)z { / (a1 + azp) (w2 f — 4 / (a1 + azp)* (w2 f - / (a1 + azp)f
+6 [ (1 + )00 f - ([(a1 + az) )? (85)

4@+ ap) )@+ aD)f*+ ([@+an)nt} (36

< =M [+ axe)'r + 40 [ los + axplf - [las+azls (87
6 [(ar + 0 f - ([ (a1 + @) = 3([ (@ + ap) )} (89)
by assumption III (89)
1 ok %k
< n(k)z'M < oo. (90)
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Similarly, E*((r (k)) (r (k))zlf ~1) < M**/(n*))? < oo. Thus,
k 1 % 1
5 E((3rNF) < B M 4 onjn; — M)
=1 = n()* j=1 2

1 k %% ke ek
= o B M = M) o+ (ng) M

__.._)0’

by assumption.

;From i, ii, iii, and Hall and Heyde (1980, Cor. 3.1),
Skk 4, N(0,a20? + 2a1a2012 + aZod).
Because ay, as are arbitrary constants,
1 (Ta X ACUA 0 o} o1
Vn® %] N \\o) 2 ) )
w® \ 5, ¥ e(69) 0) \ow o

The theorem follows from Bickel and Doksum (1977, p. 461, A.14.18). O

Proof of Theorem 3.2 b)
Let

Xis = (9(69) (DD — [ ¢ (0)w(0)(8)ds.

(91)

(92)

(93)

(94)

Then, by analogous arguments to Lemma 3.1 and 3.2, it can be shown that given F;_1, Xj;

are i.i.d. with E*(X;;|F;-1) =0, and

E*((3 Xs)'|lFin) = E'(3 X5Fia)

- n]{/g04(0 wl (8 (/so wl(9) f(6)d )2}

IA

ni{M® [ ¢*(0)7(8)d0 — M? ( [F@s0)0) ),

Thus,

L
(n(@)2

1
(n)?

29

572 EN(3i2,X45)%) = B2 g EX B (314 X5) | Fjo1)] < oo



By Feller (1971, Thm 3, p. 243),
E?:lz?ilXij a.s.

(k)
T — 0, as n'™ — oo.

(95)

But ¢2(0)w')(8)F(0) < Mp*(0)f(0) and E¢? exists. By Corollary 3.1 and the Lebesgue

Dominated Convergence Theorem,
[ Ou0)f0)d0 =2 [ 5(6)5(6)/9(8)ds.

Hence, by Rudin (1964, p. 70),

k 6)wl)
> fsorf(k)) (6)7(0)d /(p (0)£2(6)/9(0)d0

;From (94), (95), and (97),

SAL S (BN (wD (BN o [ 0(0)F2(6)
1 n(k) - /——g—(-e)—da’

as n® - oco. Similarly,

S5 52, 0(08)) (w (69)))? /90 f2(0
n(k)
b BH, (w(67)))? £0) 4.
n (k) / g(0)

By Theorem 3.1, @* — [ f(8)d6, and E®¢p — Ep. Thus,

v&r(k)(w) 2% g2, cév(k)(gow,w) 22 019, v&r(k)((,ow) 2% o2,

(96)

where var) (w), cov® (pw,w), var®(pw) are defined in (16), (17), (18), respectively. The

theorem follows. O
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Figure 1: Contour map of f
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