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ABSTRACT

This paper deals with the problem of selecting the best population from among
k(> 2) two-parameter exponential populations. New selection procedures are pro-
posed for selecting the unique best. The procedures include preliminary tests which
allow the experimenter to have an option to not select if the statistical evidence is not
significant. Two probabilities, the probability to make a selection and the probabil-
ity of a correct selection, are controlled by these selection procedures. Comparisons
between the proposed selection procedures and certain earlier existing procedures
are also made. The results show the superiority of the proposed selection procedures

in terms of the required sample size.

1. INTRODUCTION

The problem of selecting the best population from among k(> 2) populations has
been studied extensively. A lot of selection procedures have been derived for different
selection goals by several authors. Among them, Bechhofer (1954) introduced the
indifference zone approach for selecting the normal population with the largest mean.
In his approach, the determination on the sample size is heavily dependent of the

indifference zone assumption. Also, the probability of a correct selection depends



on the unknown parameters and is analogous to the power of a test. However, a
probability that is analogous to the probability of type-I error of a test was not
taken into consideration. Bechhofer’s procedure forces the experimenter to make
a selection, and often that procedure is not used in practical applications because
of the lack of a statistical test for the homogeneity of the parameters (see Simon

(1977)).

Based on the preceding reasoning, Bishop and Pirie (1979) introduced a selection
procedure in which a test of homogeneity was conducted. The procedure allows the
experimenter to have the option not to make a selection if the statistical evidence is
not significant. Later, Chen (1985) proposed modified selection procedures for the
problem of selecting the best normal population. He considered a preliminary test
based on the sampled spacing between the largest and the second largest ordered
statistics. If the statistical evidence of the preliminary test is not significant, the
experimenter decides not to make a selection. Otherwise, he selects the population
yielding the largest sample mean value as the best population. The sample size
is determined to control both the probability of type-I error for the preliminary
test and the probability of a correct selection. Analogous to Chen (1985), Chen
and Mithongtae (1986) proposed selection procedures for two-parameter exponential
distribution models. However, their procedures are conservative in the sense that
the determined sample size is always larger than the required minimum sample
size. Also, their procedures can not be applied for a case where the common scale

parameter is unknown.

In this paper, along the lines of Chen (1985) and Chen and Mithongtae (1986),
we study the problem of selecting the best population from among k(> 2) two-
parameter exponential populations. Selection procedures are derived according to
whether the common scale parameter is known or unknown. Exact sample sizes are
determined to control both the probability of type-I error and the probability of a
correct selection for the cases considered by Chen and Mithongtae (1986). When
the scale parameter is unknown, a two-stage selection procedure is also proposed.
The two-stage selection procedure covers the case where the procedures of Chen

and Mithongtae (1986) can not be used. It should be pointed out that the proposed



procedures can be implemented by using certain existing tables.

2. FORMULATION OF THE PROBLEM
Let 7q,..., 7, denote k(> 2) independent two-parameter exponential distribu-
tions with guaranteed life times py, ..., Kk, respectively, and a common (known or
unknown) standard deviation 8. Let pp) < ... < KK denote the ordered values of

{1, .-,k in the parameter space Q where

Q={(p)p= (1, sBi)y —00 < i < 00,1 = 1,...,k, 6 > 0}.

We partition the parameter space into the following three subspaces:

the preference zone: Q(PZ) = {(,f) € Q|AE—tr=i > 6,

the nonselection zone: QN Z) = {(g,0) € Qppk-1 = BK

and the indifference zone: Q(IZ) = Q — Q(PZ) - AN Z),
where § is a known positive constant.

Denote the event of a correct selection by CS and the event of selection by §.

The goal is to develop selection procedures R to select a single best population with
a minimum sample size from each population such that the following probability

requirements are satisfied:
P(E,g)(SlR) <a for all (p,0) € QNZ) (2.1)

and

P.0(CS|R) 2 P* for all (y,8) € QUPZ) (2.2)

where a € (0,1) and P* € (1/k,1) are preassigned constants.
The selection procedure R depends on whether the common standard deviation
is known or unknown. |
3. SELECTION PROCEDURE FOR STANDARD
DEVIATION KNOWN CASE
Let Xi1,...,Xin be a sample of size n arising from population 7; and let Y; =
min X;j, ¢t = 1,. .o, k. Also,let Y3 < ... < Y|y denote the ordered statistics of

1<j<n
Yi,...,Ys. When 6 is known, we propose a selection procedure R; as follows:



R;: select the population yielding Y[y as the best population if Yiy — Ypg >
A8/n; otherwise, do not make a selection, where A and n are chosen to satisfy the

probability requirements (2.1) and (2.2).

For the rule R;, we need to investigate the supremum of P 1,8)(S|R1) for (u,6) €
(N Z) and the infimum of Plu,6)(CS|Ry) for (u,0) € Q(PZ).

Firstly, let V;, i = 1,...,k, be independently distributed with two-parameter
exponential distributions with guaranteed life times p;, i = 1,...,%, and common
standard deviation 1. Let Viy £ ... £V} denote the ordered statistics of V4,. .., Vi,
#p) < ... < ppxy be the ordered guaranteed life times, and Vi) be the random
variable associated with parameter dpg, ¢ = 1,...,k, respectively. Then we have

the following Lemma:

Lemma 3.1. For any positive constant ¢, PE{V[;‘] ~ Vjk—1) > ¢} is nonincreasing in
B, t=1,...,k—2.

Proof. Let F be the cdf and f be the pdf of the standard exponential random

variable. By symmetry we may assume that y; < pp <...< px. For any ¢ > 0, we

have
Pu{Vitg = Visny > ¢} = E A H Flz + i - 1 - ©)f(2)de,
J#t

where

_JbBe—pite, i=1,...,k-1,

P ma‘x(onuk—l - pet C), i=k.
For{=1,2,...,k-2,

0
a_;LgPE'{V[k] - V[k—l] >ec}=hL+ 1, - I, (3.1)

where

S

~1

/:’ IIF(z+m—uJ+c) (e + b - i — )f(2)

7]

H
i M
i

#1(
- fle = ) f(z + pe ~ pi)}dz,

k-1
H F(z 4 pe—pj - ¢) | f(= + pe ~ pic - ¢) f(z)d,

J#l

Il
s\g



and

oo | k-1 '
13=L II F@ + e = i =€) | f(z + i = pe - €) f(z)da.
k j=1
J#e

I = 0, since f(z+pe—pi—c)f(z) = f(z—c)f(z+ pe— p;). For I, — I5, we consider

the following two cases:

Case 1. pr-1 — px + ¢ > 0. After changing variables,
L -5

. k-1
=/ I Pz + pe— i = o) | [f(@+ pe — e — ) f(2) - f(z )

k—petc
%t
f(z + pe — pi)ldz
pr—pete | k-1
-/ [ Fa+ue—pi=0) | fo - )flet pe—mdde.  (32)
Be—1—pete | 5o
J#e

The expression in the bracket of the first term in (3.2) is zero and the second term

is nonnegative, hence the derivative (3.1) is nonpositive.

Case 2. pg-1 — px + ¢ < 0. Analogous to the argument of Case 1, we have

I - I3

k-1

=/°° HF(a:+ug—pj—c) [f(z + pe = px — ¢) f(z)

k—Ht4e i=1

J#e
- f(z — ) f(z + pe — pi))dz
pr—prte | k=1
—/ HF(""*'W_/‘J'—C) f(z = c)f(z + pe — pi)dz
Hk —He j=1
Jj#e

<0.

This completes the proof of Lemma. O



From Lemma 3.1., we have the following corollary:

Corollary 3.2. Pu{Vig = Vik—q) > ¢} < P{|Z, - Z3| > ¢} for all L € QNZ), where
A and Z3 are independent having standard exponential distribution. Furthermore,
sup Pu{Vy — Vjg_q) > ¢} = 2H(~c¢),

QINZ) —

where H(t) denotes the cdf of Z; — Z.

Note that

_J1-2e7t fort>0
H(t) = {%e‘, fort < 0. (3.3)

Since n(Y; — u;)/6 is distributed as a standard exponential, we have the following

Tesult:

Theorem 3.3. Qﬁg};) Flu,0)(S[Ry) = e,

Proof. For (u,6) € QN Z),

n¥iy _ n¥ioy

2 g > A} <e by Corollary 3.2. O

})(ﬁva)(SlRl) = P(ﬁ,e){

Remark 3.1. In order to satisfy the probability requirement (2.1), we may let
e~* = a. Thus

A=—fno. (3.4)

We next evaluate the infimum of Fu,6)(CS|Ry) over Q(PZ).
Theorem 3.4. The infimum of Fiu,6)(CS|Ry) over Q(PZ) occurs at the configura-

tion ppy) = ... = Kik-1] = sk} — 60 and

o0
. — — e—(T+T=2)\k-1_—z .
ol3, Pua(CSIR) = [T )-le=zdz, (3.5)

where £ = max(0,A — ) and 7 = né. Further, if 7 > A, then

Q%%fz ) Pluo)(CSIR1) = €721 - (1 - e~(T=M)¥) 1, (3.6)



Proof. See Chen and Mithongtae (1986). O

Remark 3.2.

(a) I 7 < A, then the right hand side of (3.5) is +€"~* which is less than or equal
to 1/k.

(b) Since T = né, for n large enough, we have 7 > X. In order to satisfy the

probability requirement (2.2), from (3.6), we may let
e M1-(1- e )Yk = p*, (3.7)
(c) Let v =e~("=%) | then (3.7) can be rewritten as
v71(1 - (1 - v)F) = kP, (3.8)

Tables for the v values when P* = 0.90, 0.95, 0.975 and 0.99; k = 2(1) 15 are
available from Raghavachari and Starr (1970).

(d) Fora € (0,1), P* € (1/k,1) and k,let A = —fn a. Also let v be the solution of
the equation (3.8). Then 7 = —¢n(av). Let < z > denote the smallest integer
not less than z, then '

n =< —fn(av)/é > (3.9)

is the smallest sample size satisfying the probability requirements (2.1) and (2.2).
(e) In order to compare our procedure with Chen and Mithongtae’s procedure, we
let n*, A%, 7* and 6* denote the corresponding notations of Chen and Mithongtae’s
procedure. Then, A* = A+ ¢n u, 7* = n*6, 6* = 60, 7 = nb and v = e~ (76~ =
e=(n"6-2) where u = 1 + 1:211 1/(k—i+1). Hence n* = n +fn u/6. Thus, n* > n
as k> 3.

Example. For k=35,60 =2, 6* =0.5, a = 0.05 and P* = 0.95, then n* = 29 and
n = 27.
4. SELECTION PROCEDURE FOR STANDARD
DEVIATION UNKNOWN CASE
Under the formulation of Q(PZ) in Section 2, we have a single stage selection

procedure when the standard deviation is unknown. We take a sample of size n, say



Xij, 3=1,...,n from each population m;, i = 1,...,k. Let ¥; = 1I<n_ié1 Xij. The
<j<n
minimum variance unbiased estimator of 8 is

n

k
6= ZZ(X‘J' -Yi)/v

=1

where v = k(n ~ 1). Let Yy € ... £ Yy denote the ordered values of ¥;’s. We

propose a selection procedure R as follows:

Ry: select the population yielding Y[y as the best population if Yii = Yjeqyg >
79/11; otherwise, do not make a selection, where 4 and n are chosen to satisfy the

probability requirements (2.1) and (2.2).

Note that Z; = n(¥(;) ~ p)/0, i =1,...,k, and 6 are mutually independent.
Z; ~ standard exponential and Q = 9/ 0 has a gamma distribution with parameters
v and v. We use G(z) to denote the cdf of Q. Then g(z) = G'(z) = %e‘”.
By applying Corollary 3.2, we have the following result:

Theorem 4.1.
v

Y+v

sup P, 6)(S|R2) = ( )Y (4.1)
NZ)

o

Proof.

Pluo)(S|R2) = P{¥y = Yy} > 76/n}
= E(Pue{Yiy — Yir-y > 7Q0/n|Q}).
where E denotes the expectation over the distribution of Q. Now, by Corollary 3.2,

Puoy{Yin — Yieoy) > 7Q6/0|Q = 2} < 2H(—yz) = e~

Hence
v

T+

Sup P(E,G)(SI‘Rz) = A C-Wsz(:E) = ( )‘U. D

QNZ)

By setting sup P, ¢)(S|R2) equal to a, we obtain
QNZ)

¥ = v{a'l/” -1} (4.2)



Now we evaluate the infimum of Plu,0)(CS|R2) for (p,0) € Q(PZ).

Theorem 4.2. The infimum of Plu,6)(CS|R;) over Q(PZ) occurs at the configura-

tion pp) = ... = pp_y = ppy — 66 and
né
inf P, 6(CS|Ry) = / " —1-6"5-‘7-‘”(1 -(1- e'w:—ms)k)dG(z)
Q(P2) (u:6) o k
4 [ Lems-rrgaqy. (4.3)
ns/y K

Remark 4.1. Although Theorem 4.2. is similar to Theorem 4 of Chen and Mithong-
tae (1986), the concept is different. In their procedure the value of 6*/8 should be
specified in advance. However, it seems hard or not possible since the value of the
parameter 6 is unknown. We have avoided this problem by specifying the preference
zone in terms of 6/ rather than in terms of 8. If this is not acceptable, then the
two-stage procedure of Section 5 should be used.

In order to satisfy the probability requirement (2.2), we set

I s —né\k © 1 s
/ Ee" (1 - (1-e")NdG(x) +/ Ee” dG(z) = P*. (44)
0 n6/~
The numerical methods of Chen and Mithongtae (1986) can be applied for solving
equation (4.4). |
5. A TWO-STAGE SELECTION PROCEDURE WITH
UNKNOWN STANDARD DEVIATION
In the following, we consider the case where the parameter space is partitioned

in the same way as in Chen and Mithongtae (1986). That is, for fixed § > 0,
UPZ) = {(g, Ol ~ pie-1) > 6},

and QUNZ) = {(, 0)lpr-1) = i }-

When 6 is known, the situation is equivalent to the one discussed in Section 3.
However, when 6 is unknown, a single stage selection procedure proposed by Chen

and Mithongtae (1986) can not be implemented since it seems not possible to specify



the value of the ratio §/6 in advance. Analogous to that of Desu, Narula and
Villarreal (1977), a two-stage selection procedure Rj is proposed as follows:

(i) Take an initial sample of size ng from each of the k populations, say Xj,...,
. k n
Xingsi=1,....k. Let ¥i(no) = min Xyj,i=1,...,k,andfp= 3 3°(Xijm
(]

<i< i=1 j=1
Yi(n0))/vo, where vg = k(no — 1).

(ii) compute n = hfy /6, where h > Yo is determined so that

o0 oo
| a-ettmmomptecagyayis = p, (5.1)
0 0

Yo = vo{@~1/% — 1} and g(z) is the pdf of Q = 6, /6. Let N = max{ng,< 7 >},
where < £ > denotes the smallest integer not less than z.
(iii) If necessary, take N — ng additional observations from each of the k populations

and compute
Yi(N)= min Xij, i=1,...,k
(iv) Let Yj;j(N) < ... < Yjy(N) denote the ordered statistics of Yi(N),...,Yi(N).
Select the population yielding Yjy(NV) as the best population if Yi(N)-
Y-y (N) > ~7000/N; otherwise, do not make a selection.
Let Z; = N(Yi(N) — w)/0, i = 1,...,k. It is well-known that, given N =
ny Zi, i=1,...,k, are i.i.d. having standard exponential distribution.

Now, we evaluate the supremum of Py,6)(S|R3) for (u,6) € QN Z).

Theorem 5.1. For any (g,6) € $(NZ) and any positive constant 7o,
Plus){Yi(N) =Yje-q)(N) > 7060 /N} < (2= )%.

Proof. Let A, = {N = n}. Then 4,, = {Q < ﬂh"oﬁ} and 4, = {gn_;olﬁ <@ <

6
%} n>mng.

Plu,o){Yx) (V) = Yir—1)(N) > 7000 /N}

NY(N)  NYj_qy(N)
=P(g,e){ U;] - [01]( > 70Q
°° NYy(N)  NYjy_y(NV
= Z/ P(g,o){ “:9]( )_ “’01]( )>7oz}g(z)dfv
n=ngp An

o0
< Z / e "%g(z)dz, by corollary 3.2.
An

n=ng



/ e~ "%g(z)dz
0

Yo
(%) :
Yo + vo

Remark 5.1. Note that sup P, (S|R3) < (z2—)". In order to satisfy the
UNZ)

Yo+vo

probability requirement (2.1), we may set (#’_{_’%)W = « and hence

Yo = vo{a‘l/”° - 1} (52)

Next, we evaluate the infimum of the probability of a correct selection for (u,9) €

PZ).

Theorem 5.2. The infimum of P, 6)(CS|R3) over (PZ) occurs at the configura-
tion ppy =...= Kk—-1} = p{x} — 6 and

_inf P(“,g)(CSIRs)Z/ / (1 — e~¢~(h=r0)2)k~1e=C e () dz. (5.3)
QPrPz)y — 0 0

Proof. P(E,g)(CS[R:;)
ZP{ZJSZk‘l'iVe—a_'rOQ’]:l,)k_l}
. . Né§
>P{Z; < Zy+hQ —%Q, j=1,...,k -1}, smce—o—ZhQ

o0 o0
- /0 /0 (1 = e~ (r=1)2Y6=1¢=C g 2V do. O

Remark 5.2. We choose h > 7p since otherwise it may be shown that the R.H.S.
of (5.3) should be replaced by a quantity < 1/k. In order to satisfy the probability

requirement (2.2), we may set

/000 /(;oo(l - e'c‘(h‘“)r)hle"(d(g(x)da: = P*. (5.4)



Remark 5.3. Table of Desu, Narula and Villarreal (1977) can be used to implement
the proposed two-stage procedure R3. Let d be the value obtained from their table,
then h = v + 2vod.

Example. Let us assume that we want to choose the best of k = 5 two-parameter ex-
ponential populations with common and unknown standard deviation §. We would
like to determine the sample size n with a probability of correct selection at least
P* = 0.95 whenever g5 — pjq) > 6 = 0.6, and the probability of type-I error is at
most equal to a = 0.05.

Suppose we take an initial sample size ng = 21 from each of the five populations.
Based on the initial set of data, we compute éo, say, 8y = 4. From Desu, Narula
and Villarreal (1977), d = 0.0186. Also, vo = k(ng — 1) = 100,75 = vola~1/% —
1] = 3.0410558. Thus, h = 7o + 2vod = 3.7610558 and g = 2% = 45.0737. So,
N = max{ng,< n >} = 46.

Thus, we need N — ng = 25 additional observations from each population in

order to satisfy the conditions that

_inf P(u’g)(CSlR;;) 2 P* =0.95
QUPZ)y —

and sup P, (S|R3) < a=0.05.
NZ)
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