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ABSTRACT

This paper deals with the problem of estimating the binomial parameter via the
nonparametric empirical Bayes approach. This estimation problem has the feature that
estimators which are asymptotically optimal in the usual empirical Bayes sense do not
exist (Robbins (1956, 1964)). However, as pointed out by Liang (1984) and Gupta and
Liang (1986), it is possible to construct asymptotically optimal empirical Bayes estimators
if the unknown prior is symmetric about the point 1/2. In this paper, assuming symmetric
priors a monotone empirical Bayes estimator is constructed by using the isotonic regression
method. This estimator is asymptotically optimal in the usual empirical Bayes sense. The
corresponding rate of convergence is investigated and shown to be at least of order n=?,
where n is the number of past observations at hand.
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1. INTRODUCTION

Consider a sequence of N Bernoulli trials. Let p denote the probability of success for
each trial and Y stand for the number of successes among the total N trials. Then YV
follows a binomial distribution with probability function f(y|p) = (1; )p¥(1 —p)N-Y y =
0,1,...,N. Suppose that the parameter p is a realization of a random variable P having a
prior distribution G. Thus, under the squared error loss, given Y = y, the Bayes estimator

of p is the posterior mean of P given by

[ pf(z|p)dG(p) _ w(y)
Jy f(zlp)dG(p)  h(y)

vs(y) = (1.1)

where h(y) = [; pY(1 — p)N~¥dG(p) and w(y) = f; pr+1(1 - p)N=¥dG(p). Also, f.(y) =

Mh(y) is the marginal probability function of Y. The minimum Bayes risk is r(G) =
v g
r(G,ps) = E[(SOG(Y) - P)2]'

When the prior distribution G is unknown, many authors, based on the past observa-
tions, treated this estimation problem via the empirical Bayes approach of Robbins (1956,
1964). For details, the reader is referred to Liang and Huang (1988), Vardeman (1978)
and the related references. However, as pointed out by Robbins (1956, 1964), this esti-
mation problem has the feature that estimators which are asymptotically optimal in the
usual empirical Bayes sense for all prior distributions do not exist. This is related to the
fact that the function w(y) cannot be consistently estimated when the prior distribution
G is completely unknown. To remedy this deficiency, Robbins (1956) suggested observing
one more trial and proposed an estimator which is asymptotically optimal in a modified
sense. Gupta and Liang (1989) treated this estimation problem through the parametric
empirical Bayes approach assuming the prior to be a member of beta distribution fam-

ily with unknown hyperparameters and then using the past observations to estimate the
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unknown hyperparameters. Liang (1984) and Gupta and Liang (1986) have pointed out
that if the unknown prior distribution is symmetric about the point %, it is possible to
construct asymptotically optimal empirical Bayes estimators for the binomial parameter

p. However, no estimators were proposed.

In this paper, we deal with this estimation problem through the nonparametric em-
pirical Bayes approach assuming symmetric prior distributions. A monotone empirical
Bayes estimator is constructed by using the isotonic regression method. This estimator is
asymptotically optimal in the usual empirical Bayes sense for the class of symmetric prior
distributions. The corresponding rate of convergence is investigated and shown to be at

least of order n~! where n is the number of past observations at hand.

2. CONSTRUCTION OF EMPIRICAL BAYES ESTIMATORS

Foreach j =1,2,..., let (Y}, P;) be a pair of random variables where Y; is observable
but P; is not. Conditional on P; = p;,Y; has a binomial distribution B(N,p;). assumed
that P;j,j = 1,2,..., are independently distributed with common unknown prior distribu-
tion G. Therefore, Y;,j = 1,2,..., are iid with marginal probability function f,(y). Let
Y, = (Y1,...,Y,) denote the n past observations and Y;,+; = Y the current random obser-
vation. In the empirical Bayes estimation case, an estimation ¢, for the present problem
1s a function based on a sequence of past observations Y, and the present observation

Y = y. We investigate this estimation problem under the following assumption.

Assumption A: The prior distribution G is symmetric about the point %, and N is an

even number.

Under Assumption A, we have the following lemma which describes the relationship

between w(y) and h(y).



Lemma 2.1. Under Assumption A, we have
(@) w(F)=3r (%)
(b) w(z)=w(N —z~1)forz=0,1,..., N —1.
(¢) w(z) +w(N —z) = h(z) = k(N — ),z = 0,1,..., N.
(d) w(z)+w(z+1)=h(z+1),2=0,1,..., N —1.

(e) pe(z)=1-@go(N —z),z=0,1,...,N, and

[N b

E M= = (1R () e = 4,

(f) w(z) =

Proof: Parts (a)-(e) can be obtained directly through straightforward computation by
noting the fact that h(z) = fol p*(1 — p)N2dG(p) and w(z) = fol p*TH(1 — p)V—2dG(p)
and by the symmetric property of the prior distribution G about the point 1/2, which is

guaranteed under Assumption A. Part (f) is a consequence of parts (a) and (d). O

For each y = 0,1,..., N, define

2 len-n () iy # g,
fn(y)=fn(N—y)= . n . N
n 2 Ty (¥5) ify=7%.

) = 1)/ (1 ).

Also, for each y = N/2,..., N, define
vE : i _ N

=0

and for each y =0,...,N/2 — 1, let

wn(y) = ha(y) — wa(N —y).

Both hn(y) and wn(y) are unbiased estimators of h(y) and w(y), respectively, y =

0,1,...,N. Thus, it is intuitive to use 1:”((5)) as an estimator for ¢ (y) = %)- However,

4



this naive estimator may have serious deficiencies. First, hn(y) may be equal to zero and

z:n ((3)) is not well defined. Second, it is possible that the value of l:"((;’))

may be greater than 1 or less than 0, while 0 < ¢c(y) < 1lforally =0,1,...,N. Third,

thus, the function

the estimator ¥n(¥) may not possess the increasing property as y) does. Hence, in
kn(y) & Pe

the following, we seek a smoothed estimator. The following lemma states the monotone
properties of the functions ¢;(y), A(y) and w(y). These properties may suggest a way
how to construct reasonable empirical Bayes estimators. We note that, in the literature,
Van Houwelingen (1977) has studied a method to monotonize empirical Bayes estimators
for discrete exponential family distributions. Also, Stijnen (1982) and, Van Houwelingen
and Stijnen (1983) have studied monotone empirical Bayes estimators for the continuous

one-parameter exponential family distributions.

Lemma 2.2. (a) For any prior distribution G, (y) is an increasing function of Y,y =

0,1,...,N.
(b) Under Assumption A, both A(y) and w(y) are increasing in y for y = %’3 ..., N.

Based on Lemmas 2.1 and 2.2, we construct a monotone empirical Bayes estimator

as follows. Let {ﬁn(x)}i\;ﬂ be the isotonic regression of {hn(a:)}i\;ﬂ with equal weights.
x

Define @, (z) = i;o hn(@ = 8)(=1)F = (=15~ % ha (&) /2, for & < & < N. Thus, hn(z)
is nondecreasing in z for % < z < N, and by this nondecreasing property, Wn(z) > 0 for

% < z < N. However, W,(z) may still not possess the nondecreasing property. Thus,

we let {w;(x)}iv: X be the isotonic regression of {zbn(z)}i\; x with equal weights. Then

define hy(z) = wi(z — 1) + wi(z) for % +1< 2 < N and A% (&) = 2w? (%) By the

nondecreasing property of w}(z), k}(z) is nondecreasing in z for —]2! <z < N. Now, for
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% <z < N, define

() = { W i h(e) 0,

i if RY(z)=0.

Since ¢n(z) may not be a nondecreasing function of z for % <z < N, we consider the
isotonic regression {cp;(a:)}i\;_g_, of {gon(m)}i\’:% with equal weights. Also, for 0 < z <
i,j— — 1, define ¢}(z) = 1 — ¢} (N — ). Now one can see that ¢%(z) is nondecreasing in z
for z =0,1,...,N. We propose using ¢} (z) as an estimator of ¢ (z),z =0,1,...,N.
Remark 2.1. By the nondecreasing property of w(z) on z,z = %, ooy Nypn(z) > £ for
all z > & and hence, ¢%(z) > 3 for z > & Also, hi(z) = 0 iff w*(z) = 0 iff Wn(y) =0
for all % <y < ziff hy(y) =0 for all % Sy<Lziff ho(y) =0forally=N—=z,..., 2z,

where z > %
3. ASYMPTOTIC OPTIMALITY

Let 1¥,(y) denote an empirical Béyes estimator based on the current observation y
and the past data Y, = (¥1,...,Y,). Let r(G,¢,) denote the conditional Bayes risk
(conditional on Y,) of the estimator 1, and Er(G,%,) the associated overall Bayes risk
where the expectation E is taken with respect to ¥ ,. Since r(G) is the minimum Bayes
risk, 7(G,¥n) —r(G) 2 0 and therefore Er(G,,) —r(G) > 0. The nonnegative difference
Er(G,¢n) — 7(G) is often used as a measure of the optimality of the empirical Bayes

estimator v,,.

Definition 3.1. A sequence of empirical Bayes estimators {4, }52, is said to be asymptot-
ically optimal in E at least of order $, relative to the prior distribution G if Er(G,vy) —

r(G) < O(Br) where {8,}22, is a sequence of positive numbers such that lim 8, =0,

The usefulness of empirical Bayes estimators in applications clearly depend on the

convergence rates for which the risks of the successive estimators approach the minimum
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Bayes risk. In the following, the performance of the proposed empirical Bayes estima-
tors {5} is evaluated on basis of the rates of convergence of the nonnegative difference

Er(G, ;) — r(G). In the following, all the computations are made under Assumption A.

Lemma 3.1. Foreach y = & +1,...,N, and for 0 < ¢ < min(l — ¢, (y), o6 (y) — 3), if

hz(y) > 0 and [¢7(y) — ¢c(y)| > ¢, then

(N+2) £ [ha(2) = h(@)? > [R(V/2)1)2.

=

oz

Proof: [ph(y) — s (W)l >t = ¢} (y) — s (y) > t or 93(y) —94(y) < —t. By the definition
of p3(y), wi(z), Wn(z), An(z), Lemma 2.1 and Theorem 2.1 of Barlow, et. al. (1972), we

have:

n(y) —ws(y) >t
= ¢n(z)—@e(y) >t forsome N/2+1<z<y.
= wa(@)[1 - ps(y) —t] = wi(z — Dpg(y) + 1] > 0 for some N/2+1<z <y
= [wn(z) —w(@)[1 - s (y) - 2] = [wi(z = 1) — w(z - 1)]lps(y) + 1] > h(N/2)t
for some N/2 +1<z <y
= [wa(2) —w(@)] > h(N/2)t or [w](z — 1) — w(e - 1)] < ~h(N/2)t
for some N/2+1<z <y

=  sup |wp(z)—w(z)| > h(N/2)t
%SISN

= % fwl(e) - w(@)? > (V2P

=L
N ~ " 2 7 2
= D [a(e) —w(@)] > [A(N/2)1],
: N * 2 N 2 -5
since ¥ [wp(z) —w(z)]* < 3 (@alz) - w(z))?, see Theorem 2.1 of Barlow, et. al. (1972).
I:% z=%



Now, by the definition of @,(z), we have, for each z = —2—7, ..., N,

[Bn(z) — w(z)]?

= | 2, [ha(z =) = bz ~ ))(=1) = (=1)"F [Ra(N/2) - B(N/2)]/2

N
2

<2 % [ha(z) - h(z)?

N

<2 3 [ha(e) - ()P

where the last inequality is again from Theorem 2.1 of Barlow, et. al. (1972).

Based on the above discussions, we conclude that

Pr0) = 9oly) > 1= (N +2) T [ha(e) —h@P > B(V/2*. (1)

Analogous to the preceding discussion, we can obtain:

P2 = 9a(y) < ~t and B(Y) > 0= (N +2) 5 [ha(2) — hG)P > [(N/2)° . (3.2)

Therefore, (3.1) and (3.2) together lead to the result of the lemma. O

Remark 3.1. Let Y, be the sample space generated by Y,,. Then for each y = %—i—l, co, N
as t > 1—pg(y), {Yn € Inloi(y) — @a(y) > t} = ¢; also, as t > o (y) — 3,{¥, €

Yuloh(y) — 0s(y) < —t} = 4.

Lemma 3.2. For each y = % +1,...,Nandt>0,

N en(E)()e
Plen(y) ~es(y)l >tand hi(y) > 0} < & 2¢77 iz .

==

2

Proof: By Remark 3.1, P{lpr(y) — ¢o(¥)| > £, hi(y) > 0} = 0 if ¢ > max(1 — o (y),
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¢e(y) — 3). Thus, as 0 < t < max(1 — ¢4 (y), Ps () %), from Lemma 3.1,
es(Y)l > t,hn(y) > 0}

P{len(y) -
Nyi2
< P{ i[hn(z) = h(2)]* > [t?v(j ;] }
N
< =g { n(z)-h(z>l>%}
N\ (N
= gup{un(z) fe(2)l > \/ét?\’(-ig(Z)}
N a2 F)e
< X 2 (N+2)?
O

where the last inequality is obtained from Theorem 1 of Hoeffding (1963)

The following theorem is our main result

Theorem 3.1. Let {¢}52,; be the sequence of empirical Bayes estimators constructed in

Section 2. Then, under Assumption A

Er(G, o) —r(G) < O(n™1).

Proof: First, we consider the case where G(0) < % Straightforward computation leads to

the following.
0 < Er(G,ey)—r(G)
= % E{(¢n(v) — ¢c1)))fs(v) (3.3)
=2 3 Eleh) - po )l
y=5+1
For each y = % +1,...,N,
El(en(y) — vs())?]
ws(y)l >t hy(y) > 0}dt

max(1—eq (9),95(y)—%) .
/ 2tP{|ph(y)

0

+ (s (y) = 1/2)° P{R}(y) = 0}.
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Now, from Remark 2.1,

P{h,(y) =0} = P{fa(z)=0forallz = N —y,...,y}

=[1-Fo(u)+ Fo(N -y -1)]"

(3.4)
= exp(—nin(l - Fs(y) + Fo(N -y — 1))_1) »
<0(n™h).

where F(-) is the marginal distribution function of Y. Also, from Lemma 3.2, and the

fact that max(l — ¢s(y),v6(y) — 3) < % for y > & + 1, we have

max(l_ﬁac(y):ﬁoc (y)_%)
/ 2P{e%(y) — w0 () > &, hL(y) > O}dt.

0
LN e (E)(A)e
< / 4 ¥ e winT gt
0 I=J;—7 (35)
1 N 2
= n.h *‘( o
=4 212 (§) ()’
= O(n_l).
From (3.4) and (3.5), we conclude that for each y = %’- +1,...,N,
El(¢7(y) = ¢s())*] < O(n7Y). (3.6)

Since N is finite and fixed, (3.6) and (3.3) together complete the proof of the theorem.

Next, we consider the case where G(0) = 3. Under this case, by the symmetric

property of G, one can show that fo(y) =0forally =1,...,N — 1. Thus, (3.3) can be

reduced to

0< Er(G,¢y) —r(G)

~1
~—

= 2B[(5(V) = 0o (V)] (), (3.

where ¢ (N) = 1, which can be verified by straight computation.
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Also,

P{Y; € {0,N} for allj=1,...,n} =1 (3.8)

Thus, with probability one, we have: ha(N) = ha(0) = 1 and ha(y) =0,1<y <N -1
Following the way to construct the isotonic estimators ¢%(y),y =0,1,..., N, one can see
that ©*(N) = 1. This fact and (3.7) together imply Er(G, ©*)—r(G) = 0, which concludes

the theorem. 0
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