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1. Preface

These lectures are an introduction to a “probabilistic” approach to two classes of
counting problems — problems concerning the orbit of a point under the action of a discrete
group, and problems concerning the periodic orbits of hyperbolic flows. There are other
methods, very elegant methods, that have been developed to deal with these problems.
Mark Pollicott will talk about some of these in his lectures. The various approaches all

have their advantages and disadvantages.

The methods that I will tell you about are based on an analogy with some parts of
random walk theory. There is also some heavy machinery involved — Perron-Frobenius
theory, Gibbs states, and so on — which, in my view, obscures the main ideas somewhat.
So I am going to begin by talking about two simple problems where the machinery isn’
needed (secs. 2~6). The solutions will only involve some elementary renewal theory, which
you can read about in any basic text on stochastic processes (a resumsé is given in sec. 4). 1
hope these problems won’t seem too artificial. If you’re patient enough to last through the
lectures you will see that these problems are a good starting point. Afterwards (secs. 7-10)

I will show how to handle some more difficult problems.
2. Semigroups and Self-Similar Fractals

Let’s start by constructing a self-similar fractal in R2. Take a triangle K and let S,
S2, S3 be similarity transformations of R? which shrink K onto pairwise disjoint triangles

at the vertices of K, specifically,
Siz = ai(z — v;) + vy

where v1, vz, vs are the vertices of K. The contraction ratios a; should be such that
0 < a; <1and a; + a; <1 for any pair ¢ # j. Then S1, 82, S3 map K onto pairwise
disjoint triangles K;, K2, K3 contained in K , each similar to K. The self-similar fractal

3
A will be the unique compact set contained in K such that A = U S:A.
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You can obtain A as follows. Let 2172 ...7, be a sequence of length n from the index

set {1,2,3}, and let §1,, be the set of all such sequences. Define

Kiiig.in = 8,5, ... 5, K,
An = Kiyigooiins
2,
oo
A= An
n=1
The intersection [A, is a nonempty compact set, because K D A; D Az D ...is a

3
nested sequence of compact sets. The set A = [ A, clearly satisfies A = |J S;A; what’s
1

more, each of SiA, SaA, and S3A is a scaled-down copy of A. This is what is meant by

“self-similarity”.

Take an infinite sequence ¢;72... of 1’s, 2’s, and 3’s. Then K D K;, D Kj,i, D ...
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and diameter (Kj,i,. .1,) = (][] @;) diameter (K). Consequently,
i

kiyig... = [} Kirig..iin

consists of a single point. This point is in A because K i,...i, C An. Notice that for
distinct sequences 7375 ... and #{7% ... the points k; ;.. and ky i ... are different, because
K i,..i, D K"'xf'z---*"n = & unless i; = z';- V 7 < n. Thus we have a 1 — 1 correspondence

between the set {} = {all sequences 7;72...} and A. The action of S; on A is just

Siki iy... = kiiyi,....

Choose any z € K. For each sequence 7175... €  and each n = 1,2,..., the point

5:,8i,...8;,z € Kji,..i, . Since the diameters of K, i,..i, shrink to zero as n — oo,
lim S; S;,...8;, z= kii,... .
n—oo

So A is precisely the set of limit points of the “orbit” {S;, S;, ... S;, z} of z under the action
of the semigroup generated by S, S2,Ss. This also shows that A is the unique compact
3

set satisfying A = |J S;A.

1=1
3 00
Take z € K — (|J K;); for each finite sequence i1i5...1, € U 2. (2 = {empty
1 n=0

sequence e}) define

kiyiy.in = 8i,8i, ... 5,z (and k. = z).

3
None of the points k;,,...s, is in A, since z € K — (|J K;), but the set of all possible limit

1
points is A. So for any € > 0 only finitely many of the points k; i,..:, are farther than e

e

from A. Define
N(e) = number of finite sequences 71z... 1,

such that distance (Kj,4,..4,,A) > €.

Problem: How does N(€) behave as € | 0?

This is motivated by an analogous problem in hyperbolic geometry, the noneuclidean

lattice point problem. Consider the orbit-of a point z in hyperbolic space under-the action
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of a discrete group of noneuclidean isometries. How many points of this orbit are within

(hyperbolic) distance t of z (as t — 00)? We’ll come back to a variant of this later.

There are a number of other counting functions associated with A that are of interest.

For example,
N*(€) = minimum number of e-balls

needed to cover A;
this is of interest because the metric entropy of A is determined by N* (¢) (in particular,
m.e. (A) = lime;o(log N*(e))/(log €) provided the limit exists). The method we will use to
analyze N(e) also works for N*(e).

3. Periodic Orbits of the Bernoulli Flow

The Bernoulli flow is a contraption much beloved by ergodic theorists, because many
chaotic flows are isomorphic to it in a measure-theoretic sense. That isn’t important here,

though. - 14R

Let B > 0 be a fixed irrational number, and /
define / / / L)
(z) = 1 if0<z<1/2 // ,—’
e = B+1 if%<z<1, / /
I'={(z,t): 0<z<1and '
0<t<r(z)} FTT <
— ,A —
-7 <N\

The Bernoulli flow is the flow on T for which the ,f \ \
dynamics are as follows. Starting at any (z,t) € { A \\ \
T, travel up the verticle line through (z,¢) at unit /f‘ ) \
speed until reaching the “ceiling” (z,7(z)); then A :
jump instantaneously to (2z,0) (where 2z means ) ;)

LR | /
2z mod 1) and proceed at unit speed up the ver- X 4;‘( g:\ - d
tical segment through (2z,0). S - -

Some orbits of this flow are periodic, for example, the orbit through (1/3, 0). In fact,

the orbit through (z, 0) is periodic iff z has a periodic binary expansion. If this is the case,
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and if n is the (smallest) period of the binary expansion, then the (smallest) period of the
orbit through (z,0) is r(z) + r(2z) +... + r(2"~1z). You can see from this that for any

t < oo there are only finitely many periodic orbits with periods < . Define

M(t) = number of (distinct) periodic
orbits of the Bernoulli flow

with (minimal) period < t.

Problem: How does M(t) behave ast — co? How are the periodic orbits distributed in
I?

There is some precedent for this problem also. Mathematicians have been interested
in the periods of the closed geodesics on a negatively curved, compact manifold for years.
For example, they figure prominently in Selberg’s trace formula. And it has been known
since Margulis’ thesis (or longer) that there is a connection between closed geodesics and

the noneuclidean lattice-point problem.
4. Some Elementary Renewal Theory

One of the fundamental theorems of probability theory is the renewal theorem, which
guarantees the convergence to a steady state for large classes of stochastic processes. You
can view it either as a Tauberian theorem (see Rudin [12] for a proof based on Wiener’s
general Tauberian theorem) or as a mixing property of random walk (see Lindvall [9] for
a simple and intuitively appealing probabilistic proof). I’ll present a very simple proof in

the arithmetic case based on the ergodic theorem.

Let F(dz) be a Borel probability measure with support contained in [0, 00) such that
(4.1) p= / zF(dz) < oo.
0

In all the applications given in these lectures the measure F is supported by a finite set
of points. If F is supported by a discrete (additive) subgroup of R, and if AZ is the
smallest such subgroup, call F h-arithmetic. Otherwise, call F nonarithmetic. Let z(z) be

a bounded, real-valued function with isolated discontinuities, satisfying

(4.2) - 2(z)] < Ci1e~ %12l vz e R
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for some 0 < Cy, C2 < oo. The renewal equation is
o0
(4.3) Z(z) = 2(z) + / Z(z — y)F(dy).
0

RENEWAL THEOREM: If F is nonarithmetic and Z (z) satisfies the renewal equation

Vz € R and is bounded on finite intervals, then

(4.4) lim Z(z) = / " alv)dy/u.

—_
z (o o] — 00

If F is h-arithmetic and Z(z) satisfies the renewal equation V z € hZ then

(4.5) lim Z(nh) = ) z(mh)/p.

n—oo
meZ

Here is an example of how this theorem works in the limit theory of stochastic pro-
cesses. Suppose you have an electric lamp that burns continuously. Whenever the light
bulb fails, you replace it with a new bulb. It is reasonable to assume that the lifetimes
X1, X2,... of the successive bulbs are independent and satisfy P{X; € dz} = F(dz) for
some F. Suppose you insert a new bulb at time 0, and let R; be the remaining lifetime of

the bulb in the lamp at time ¢. If Z,(t) = P{R; > u} then Zy(t) =0for t <0 and
o0
Zy(t) = P{X1 > u+t} +/ Z.(t — y)F(dy),
0

because the system “renews” itself at the instant the first bulb blows. The renewal theorem

implies that for any v > 0
Jim Z,(t) = / P{X1 > u+t}dt/u,
b de o) O

so the distribution of R, approaches a steady state as t — oo. (Note: The exponential
decay condition (4.2) isn’t necessarily satisfied in this example, but don’t worry, I haven’t
stated the renewal theorem in complete generality. If you want the whole story, see Feller,
vol. 2, ch. XL.)

The renewal equation can be reformulated in the language of probability as follows.

Let X1, X5,... be independent random variables each with distribution F, i.e., P{-X,-_ €
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dz} = F(dz). Write So =0 and S, = X; + X2 + ...+ X,. Then the renewal equation
(4.3) is equivalent to

Z(z) = z(z) + EZ(z — S1).

LEMMA 1: The unique solution of the renewal equation (4.3) that is bounded on each

halfline (—o0,4a], a < 0o, is

(4.6) Z(z)=FE Z z(z — Sy).

n=0
Lemma 1 is a fairly easy consequence of

LEMMA 2: For each € > 0 There ezists a constant C < oo such that for any finite tnterval
[a,b] with b—a > e,

0o

E) 144(S.) < C(b-a).

n=0
The function 1, 3j(z) takes the value 1if £ € [a,b] and is 0 otherwise. Lemma 2 says
that the expected number of visits to any interval of length > ¢ by the sequence {Sn}n>0
is bounded by a multiple of the length of the interval. You can find proofs of both lemmas
in Feller, vol. 2, ch. XI, sec. 1; both are easy.

According to the strong law of large numbers
(the ergodic theorem), S,/n — u a.s. Another
way of saying this is that the sequence (n,S,)n>0 ~
will eventually stay between the lines with slopes x .
p + € and p — € through the origin. Now sup-
pose that z(z) has compact support, say [—1,1]. x
Then with high probability, if z is large, all the

non-zero terms in the series (4.6) lie in the range

z/(p+€ < n < z/(p—€). Even if z(z) does

. X+ . -~
not have compact support, but satisfies the expo- zsnaw, T 77177777777 )/,{

nential decay hypothesis (4.2), the major contri- -
bution to the sum (4.6) will come from the terms Z

z/(p+€) <n<z/(u—¢€). In other words, Z




LEMMA 3: For € > 0 define Z(z) = Eznzln—$l>ez |2(z — Sy)|. ThenV e >0,
m

=cll’n‘}o Z(z) =0.
EXERCISE: Give a complete proof of this.

Here is a probabilistic proof of the renewal theorem in the arithmetic case. This proof
can be adapted to the nonarithmetic case, but there are a few new wrinkles. Other proofs,

all analytic in nature, are given in Breiman [4], Feller [5], and Rudin [12].

Asume that F is 1-arithmetic, and, for simplicity, that F' is supported by the positive
integers and F({1}) > 0. Thus, the sequence Sp, 51, S2,... has positive jumps, and con-
sequently doesn’t visit any point more than once. According to Lemma 1, the solution of

the renewal equation is

Z(m)=Eiz(m—Sn), m € 1

n=0
oo
=FE Z z(z)Zl{Sn=m—:z:}
zeZ n=0
= Z 2(z) P{S, = m — z for some n > 0}.
z€Z

Since ), ¢ 7 |2(2)| < oo, we can prove (4.5) by showing that

(4.7) lim H(m) =1/u, where

m~+00

H(m) = P{S,, = m for some n > 0}.

Suppose we can show that the limit in (4.7) exists. Call it . Then a = 1/u, because

the existence of the limit implies

M
a= L}Enm _]\1_4 m=OP{Sn = m for some n > 0}
1 o0
= li — <
1\4hinoo M ;P{Sn - M}

Ll
= A}@w—ﬂ;P{Sn/ngM/n}

(o ]

1
= 1 _— <
Jim 37 2 Hu < M/n)

n=1

= 1/””



by the (weak) law of large numbers.

To prove that the limit in (4.7) exists we introduce a system of random arrows on the
integers as follows. Let {Yy,}mez be independent random variables, each with distribution

F. For each m € Z, imagine that there is an arrow from m to m + Y,, as in the figure.

For each starting point m € Z the arrows specify an increasing sequence (path) ~(m)
through the integers, namely m - m+Y,, 2 m+ Yy +Ypiy, — ---. ForeachmeZ
and k > 0, the probability that (™) passes through m + k is H (k). Suppose we can show
that all of the paths 4(™), m < 0, eventually coalesce, i.e., with probability 1 there exists
a (random) integer N such that the intersection of v(°) with {N,N 4+ 1, N +2,...} is the
same as that of v(™) with {N,N+1,N +2,...} for every m < 0. Then it will follow that
forall k, k' > 1

[H(k + k') — H(k)| < P{N > k};

since limg oo P{N > k} = 0, this will prove that the limit in (4.7) exists.

So to finish the argument we must show that with probability one all of the paths
(M) 'm < 0, eventually coalesce. Say that there is a bottleneck at k € Z if there are
no arrows connecting (—oo,k — 1] to [k + 1,00). If there is a bottleneck at k then all the
paths v(™), m < k, must pass through k. Therefore, we can finish the proof by showing
that there is, with probability one, a bottleneck at some k > 0.

Remember that
o0 o0 o0
b= 30T ) = S YR <o
i=1 i=li=j
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so there is an r sufficiently large that

> Y F{iy <)
J=r+2 i=j

Consequently, for any £ € Z the probability that there is an arrow connecting (—o0,k —
r — 1] to [k 4+ 1,00) is < 1/2. Since F{1} > 0, the probability that ¥,, = 1 for each
m € {k—rk—r+1,...,k—1}is (F{1})" > 0.

‘e avtevvs GCvess)

0/\: b/\\;’ .. r\\l\. /.\:‘ r§
k-v ks

Therefore, the probability that k is a bottleneck is at least (1/2)(F{1})" > 0. Now let
Jr = 1if k is a bottleneck and J; = 0 otherwise. Then {Jk}x>0 is an ergodic, stationary
sequence (since it is derived from the ergodic, stationary sequence {Ym}mez), so by the

ergodic theorem

K
. 1 r
Kh—I»rclao.f—(k';'_OszEJOZ (1/2)(F{1}) >0

almost surely. Therefore, with probability one, there is a bottleneck at some k > 0.
PROBLEM 1: Modify this argument to show that the assumption F {1} > O is unnecessary.
*PROBLEM 2: Find a similar proof for the nonarithmetic case.

5. Accumulation of Orbits at Cantor Sets

Let’s consider again the counting function N(e) introduced in sec. 2:
N(€) = number of finite sequences ¢;7s.. .1,

such that distance (Kj,4,..i,,A) > €,

where

3
T, xEK—UK,-.

i=1

ki iy..in = Si, S8, ... S

in

Remember that each of Sy, Sy, S3 is a similarity transformation of R2, and that S; multiplies

distances by a;. Since S; maps A into A, you can see (with a little work) that

(5.1) distance (k;,s,...i,,A) = a;, distance (Kijig..ins )
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S.x

Now consider those points k;,i,...;, that are counted in N{e). Some are in K;, some in
K3, somein Kj3; only one, k. = z, is not in K;UK;UK3, and this only if distance (z,A) > e.
How many are in K;? Any such k;,;,...;, must have 7; = ¢ and distance (k;,..:,, A) > ¢,
so by (5.1) distance (ki,4,...i,,A) > €/a;. Conversely, if distance (kiys,...5,, A) > €/a; then

kii,is...i, is in K; and its distance to A is > €. Therefore,

3
(5.2) N(e) = R(e) + Z N(e/as) where
i=1
1 if distance (z,A) > ¢
0 if distance (z,A) < ¢

R(9 = {

We can rewrite the functional equation (5.2) as a renewal equation. First, define the

similarity dimension § of A to be the unique (positive) real such that

3
Z af =1.
1=1

Next,
Z(t) = e %IN(e™?),
2(t) = e % R(e™?);
then
3
(5.3) Z(t)=2() + ) _olZ(t—loge]").

1=1
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This is a renewal equation. The kernel F is the probability distribution which attaches

8, a8,ad to the points log al_l, log ay ! log ag 1. Applying the renewal the-

probabilities
orem, we get
oo
Jim Z (t) = / z(z)dz/p (nonarithmetic case)
lim Z(nh) = Z 2(zh)/p  (h-arithmetic case)
n—oo
zeZ

which is the same as

THEOREM 1: If the smallest closed subgroup of R containing log aI’l,log a;l,log a;l s
hZ, then

3
N(e—nh) ~ ethe—8n.h(1 _ e—b‘h)—l(z a{—& ]og a-i_l)
i=1

as n — 0o, where n, ts the smallest integer > h=log (dist (z,A))~1. If there is no such
subgroup, other than R itself, then
3

N{e) ~ e~5(dist (z,A))%/6 Z o7 log a;?

T
1

PROBLEM 1: In the arithmetic case you can obtain much more precise information about

N(e~™") by using generating functions and (5.2). Do so.

PROBLEM 2: Consider the “Sierpinski gasket”, obtained by removing middle triangles

successively from an equilateral triangle as shown.

2 2
%///, N

Define

A

2N
H>

AL

N*(e) = number of e-balls needed to cover.
Show that N*(27") ~ C - 3™ for some 0 < C < oo.
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HINT: See Lalley [6].
6. Counting Periodic Orbits of Bernoulli Flows

Recall that an orbit of the Bernoulli flow is periodic iff it passes through a point
(z,0) such that z has a periodic binary expansion. Also, if the least period of the binary

expansion £1z2Z3... of z is n then the period of the orbit through (z,0) is

=1
- T - = -~
ST T T T T~
/ \\
l V.
Py
U
A A Fy
|
]
/
— v/
of g=—~--""7
o . o
o) \-*(-8 “« —~

So it follows that the number of periodic orbits with (minimal) period <1 is

M(t) = Z%#{x:zlzg...zneﬂn: n+ﬁZziSt}

n=1 =1

where
1, ={sequences z1z2 ...z, of 0’s and 1’s of length
n with no period d < n,d|n}.
Define -
- 1 - i
M) = Z ;#{x: Z1ZT2...Zp € Nyt n+ﬂZzi <t},
n=1 1=1
and o "
N() = 2#{x= L1Tg...Tp € (p: n-{-ﬂZzi <t},
n=1 =1
where

0, = {all sequences z,z3 ...z, of 0’ and 1’s of length n}.
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We will begin by analyzing N (t) and M(t), then return to M (2).

n
Consider a finite sequence z,z2...z, satisfying n + 8 )" z; < t. Either z; = 0, in
1=1
n n
which case (n—1)+8 }_ z; <t—1, or z; = 1, in which case (n-1)+8> z; <t—-1-4.

=2 1=2
Consequently,

N(t)=N(t —1) + N(t — 1 - 8) + R(t), with
Rty=1{t>1}+1{t > +1}.

Let v be the unique real number such that e~7 + ¢~7(8+1) — 1; observe that v > 0. Set

Z(t) = e "N (1),
5(t) = e~ R(2).

Then
Z)=2(0t)+eZ(t—1)+ e "Bz — g _ 1),

which is once again the renewal equation. The distribution F, given by
(6.1) F{1} = e, F{1+8} = 7+

is nonarithmetic, because 4 is irrational. The mean of F is u = e~ 71+ (B+1)e ), and

fooo Z = (1/v). Thus, by the renewal theorem,

. = 1 - et

(6.2) tl_l_g.lo Z(t) = o = N(t) ~ ot
The idea behind the next step is simple, although the details are a little messy. Re-
member that Z(t) = E § Z(t — Sn) (Lemma 1) and that the main contribution to the
sum comes from those Ze=r(1)'ns for which |n — ¢/pu| < e (Lemma 3). Now the only dif-
ference between the series defining M (t) and N (t) is the factor 1/n multiplying each
term. If the main contributions to the series come from the range n —t/u| < et then

{tle+u1}<1/n<1/{t(—e+ p~1)}. Letting t — co, €| 0, and using (6.2), you get
3y ~ &

6.3 t) ~ —.

(63 0~

We’ll give a complete justification of (6.3) shortly. First, though, let’s consider again the

function M(t). The difference between M(t) and M(t) is that M counts only sequences
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Z1T3...Z, € N, whereas M counts all sequences I1Z2...Z, € §),,. Hence M(t) < M( )-

Nowifx = z;z,.. xneﬂ ~0n a.ndn+ﬂz:z:,<t thenx = zyz5...24 2122 ...24... 24
ford=n/m, m > 1, and d+ﬂ;:z:,- <t/m,soz1z3...z4is counted in J\zf(t/Z). Therefore
M(t) < M(t) < M(2) + M(t/2),

and (6.3) implies
THEOREM 2: M(t) ~ e /~t as t — oo.

This is a special case of a theorem of Parry [10]. In fact you can obtain Parry’s

theorem from the renewal theorem — this makes a nice problem.

To prove (6.3) we will show that V ¢ > 0,

(6.4) tlim e~ N,(t) = 0 and
(6.5) Jim te” " M(t) =0
where

1 . n
= - e Ty n: i <t}
;(n)#{xlzz z, €0 n+ﬂzljz <t}

n
=Z#{zlzg...zn€ﬁn: n+ﬂzzi§t},
€,t 1

and 3, denotes the sum over all n > 1 such that In —¢/u| > et. Once (6.4)-(6.5) are
accomplished, since

1 . M(t) - (t) 1
(249 = NO-NG) S i@Z=d’

I

(6.2) will imply (6.3).

Let’s start with (6.4):

eTIN() =) > e 7*1{n+ﬂzz, <t}

Et XGQ

__Z Z exp{~~(t — n-i-ﬂz:z:, ))} exp{— '7n-i—ﬂz,7:1 }l{n'i‘ﬂzzzﬁt}

€t XGQ

=ZE2 t— S
€,t
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where 2(z) = e77*1{z > 0} and S, = X1 + X2+ ... + X, with X;,X,,... independent
and distributed according to F, defined by (6.1). Explanation: for any z;z5...z, € (5,

P{X1=2z,,Xs=122,...,Xp =15} = exp{—v(n + ,BZ:::,-)}
1

Now (6.4) follows directly from Lemma 3.

Finally, consider (6.5):

te™ M (t) =) n7t ) te” 7*1{n+ﬂ2z,5t}

E,t xen
Fix 6 > 0 small, and write }__, = 3°., + 3", where
Z* = sum over all n included in Z

é,t E,t

such that n > 6t,

& %k
E = sum over all n included in E
€t ) €,t

such that n < 61,

Z Y te 1 {n+ 8 Z z; <t}

xeﬂ

<E Z 671 —7t1{n+ﬂZa:,§t}

€, t xen
< 67 e N (t) — 0 by (6.4).

Z Z te~""1{n +p Z z; <t}

E,t er

_Z Z te” '7t1{n+,BZ:z:,§t}

xeﬂ

<Z Z te~ "tl{n+ﬂz<6tl+ﬂ

er

Then

Also

because if n is included in }°7 then n < 6t so n + ﬂZzi < 6t(1 + B). The last series

equals

te" TN (6t(1+8)) — 0
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provided 6 < (1+ )=, by (6.2).
7. A More Sophisticated Renewal Theorem

Unfortunately, the usefulness of classical renewal theory in counting problems of the
general types considered in secs. 23 is very limited. Let’s look at yet another problem to

see what the difficulty is.

Let r(z) be a C', strictly positive function on [0,1] and let T, = {(z,t): 0 < z < 1
and 0 <¢ < r(z)}. We can define a flow on T', the same way we defined the Bernoulli flow
on I' in sec. 3. Starting at any (z,t) € Iy, travel up the vertical line segment through (z,t)
at unit speed until reaching (z,r(z)), then jump instantaneously to (2z,0) and proceed up
the vertical segment through (2z,0), etc. (As below, 2z means 2z mod 1.) Call this the

suspension flow under r.

X %

As for the Bernoulli flow, the periodic orbits of the suspension flow are the orbits
through points (z,0) for which z has a periodic binary expansion. If (z,0) is such a point
and n is the (smallest) period of the binary expansion then the period of the orbit through
(z,0) is

r(z) + r(2z) +--- +r(2" '2).

n
For the Bernoulli flow this sum was n + 8 >_zi. For the suspension flow, however,

1
n

n—1 i
>_ 7(2'z) cannot be represented as Y f(z;). This is crucial, because if we define
0 1

N) =) #{x e nz_: r(27z) <t}
n=1 7=0
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as in sec. 6, then there is no functional equation for N(t) that can be rewritten as a renewal
equation. Conditioning on the value of z; of the first coordinate in the binary expansion
just doesn’t get you anywhere, because r(z) isn’t a function of only z;.

So what we need is a “renewal theory” suitable for dealing with counting functions
involving sums like Z;:OI r(o’ z), where o is the forward shift on a sequence space. First,

some definitions and notation:

(7.1) A={1,2,...,£} (the alphabet);
(7.2) A(i,5):  irreducible, aperiodic, 0-1 matrix on 4 x A;
(7.3) Q1 ={finite or infinite sequences x = z,z5...z,, or

X = z1Z3...such that A(z;,z;41) = 1V i};

(7.4) o: (1 — : the shift, defined by
O: T1T3...— ZaZT3...
0. T1Z2...Zy — T2T3...Z4,

o: e—e (e= empty sequence);

(7.5) d=d,: metric on 1 defined by
d(x,y) =p",n=min{s: z; #y},0<p < 1;

r,9: {1 — R Lipschitz continuous (some p);

(7.6) Sar(x) = 7(x) +r(ox) + ...+ r(¢™ 'x), Sor = 0;

(7.7) Z Z ¥)1{S.r(y) < t}.

Call Ny(t,x) the renewal function. To guarantee that there are only finitely many nonzero

terms in the sum defining N, (¢, z), we make the following
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ASSUMPTION: 3 n > 1 such that S,r(x) > 0 for all infinite sequences x.

As in classical renewal theory there is a difference between the arithmetic and nonar-
ithmetic cases. Say that r is nonarithmetic if there is no function 7 valued in a discrete
subgroup of R such that r — 7 is cohomologous to zero (i.e., r — 7 = h — h o ¢ for some

continuous h).

THEOREM 3: Assume that r is nonarithmetic and that Snr(x) > 0V infinite sequences
X, for some n > 1. Then there exzist a constant § > 0, a probability measure v(dx) on 1),
and a positive, Lipschitz continuous h: @ — R such that for every continuous ¢g: {1 — R,

f gdv

(7.8) Ng (t,X) ~ Cath(X) {W

}ast—>oo,

untformly for x € 1.

The relation (7.8) not only tells you how many sequences y there are such that o'y =1z

and S,r(y) <t for some n; it also tells you how they are distributed in 1. Fix x € 1, and
oo

define u¥ to be the uniform distribution on |J {y € Q: o™y = x and Snr(y) <t}. Thus

n=1
for any continuous function ¢g: 0 — R,

/ gdi¥ = N, (t,%)/N:1 (t,%),
and according to (7.8), this converges to [ gdv as t — co. So we have
COROLLARY: Ast — oo, ¥ =5 .

There is also a theorem that explains how Ny (t;x) grows when 7 is arithmetic. Let’s
not go into this here (for the whole sordid story, see [7]). In the most interesting ap-
plications, r is nonarithmetic. Establishing that r is nonarithmetic is usually difficult,

though.

You will probably want to know something about the quantities 8, h(x), and v(dx)

which occur in (7.8). For this you need a dose of Perron-Frobenius theory.

RUELLE’S P-F THEOREM: For each 8 € R there exist \g > 0, a Lipschitz continuous

ho: ©1* — (0,00), and a Borel probability measure vg(dz) on 1* such that

(7.9) Aeho(x) = Y e"Phy(y) vxen?
: Y: oy=x
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and
(7.10) Yo [ama@n) = [{ 3 e Ogfy)puo(ax)

for all continuous functions g: 0* — R.
NOTE: Q* = {infinite sequences z,z;... € 0}.

If Spr > 0 on N* for some n then )y is a strictly increasing, continuous function of 6
such that Ao > 1 and Ag — 0 as 6 — —oo (proof: see [7]). Define 6 > 0 to be the unique

real number such that

(7.11) A_s =1;
also

(7.12) v=v_g,
(7.13) h=h_s.

PROBLEM: Show that there is a unique continuous extension of hy from 1* to Q such
that (7.9) holds V x € Q.

Theorem 3 doesn’t look much like a “probabilistic” theorem at all. But this is
only because we haven’t renormalized the renewal function Ny(t,x). In fact, the theo-
rem says the same thing about the “random walk” Sn7(x) under the probability measure
h(z)v(dz)/ [ hdv that the classical renewal theorem says about random walks with pos-
itive, independent increments. The novelty is that the increments in Snr(x) aren’t inde-

pendent. This makes it impossible to deduce Th. 3 from the classical renewal theorem.

If you’re not a probabilist you might think all this discussion about whether or not
Th. 3 has a probabilistic interpretation is just so much hot air. But it isn’t. The reason
is that the random walk S,r(x) behaves a lot like a random walk with independent incre-
ments: there is a law of large numbers, a central limit theorem, large deviation theorems,
and so on. These have some important ramifications in counting problems. We’ll give just

one example, an analogue of Lemma 3 in sec. 4.
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Define
p(dx) = h(x)v(dx);

7= /gdu, Vge ()
F*t = {y: o™y = x and Snur(x) < t, some n > 0};
P*! = yniform distribution on Fxt.

n(y) = {maxn: o™y = x and S,r(x) < t}, y € F>t,

THEOREM 4: Under the hypotheses of Th. 8, for each g € C(N) and each € > 0,

Pxily: |%)()—g|36}—>1and
P y: |—— —F <€} — 1
o 15 -7l <9

as t — oo, uniformly for x € Q.

In other words, “nearly all” y in F** have the property that y, oy, o%y,...,o"¥) (¥)

are distributed approximately as p in Q.
8. Reflection Groups

Now we’ll discuss a problem very similar to the noneuclidean lattice point problem,
which we mentioned earlier. This concerns reflection groups. Given a circle I' with, say,

center at zo and radius r, the reflection T in T is
Tz = zo + (r/|z — zo|)*(z — 20), z € CU {oo}.

The points Tz and z are on the same ray emanating from zo, and distance (zo,z) and
distance (zo, Tz) multiply to give r2. So T maps the inside of I' onto the outside of T', and

vice versa, and T o T = identity.

Take a collection of mutually exterior circles, say three for simplicity, labelled T'y, ', I's.
Let T; be the reflection in T';. We are going to be interested in the group G generated by
T1,T2,T3. If we were interested in pursuing the lattice-point problem in general, we would
consider finitely generated discrete groups of hyperbolic isometries (without parabolic el-
ements), and things would work out in pretty much the same way. But G has a simple
structure, the “symbolic dynamics” is very straightforward, and the action of G on C is

easy to visualize, so we’ll limit ourselves to G. -
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You can begin to get a picture of how G acts on C by looking at what happens to
I't,T2,Ts. For any T € G, TT; is a circle, because each T € G is a conformal mapping.

The circles {TT;: T € G,1 = 1,2,3} may be arranged by “generations”:

Go ={T'1,T3, T3} O

G1={Til;: i # 5} )
o
G2 = {T;,T;,T: iy # ia,i2 # 5}

Gn=A{Ti, ... Te,Tj: i # tki1,1n # 5} el g \
’ N }
th S Voo 0 )
The n'" generation circles are mutually ﬂ | ..o, \\ ) -
exterior, each n* generation circle is con- Py
. . th . . , o O l
tained in an (n — 1)** generation circle, { )
\ ’
and each nt* generation circle contains Al

exactly two (n + 1)** generation circles (proof by induction). It follows that each T € G

has a unique representation as T, ... T5,,n 20,85 # 1541,

The circles {TT;: T € G, i = 1,2,3} chop up C into countably many disjoint, con-

nected, open sets. If R is the region exterior to T'y,T2, and I'; then the regions TR, T € G
3

are precisely the connected comonents of C — |J UTT;. If ¢ € R then the orbit G € of ¢

i=1 G
has one point in each TR, T € G. Define
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(8.1) A = {accumulation points of G¢},

(8.2) M(e) = #{T € G: distance (T¢,A) > €}.

PROBLEM: How does M(¢) behave as € | 07
NOTE: distance in (8.2) means Euclidean distance.

This problem should be highly reminiscent of the problem posed in sec. 2 about semi-
groups of contractive similarity transformations. But there is an important difference. The
elements T' € G do not scale down distances exactly, as the similarities did. Consequently,
you don’t get a simple functional equation for M (e) as we did in sec. 5. Nevertheless, there
is “local” self-similarity, because every T’ € G is conformal, and this will, in the end, save

the day.

As we mentioned earlier, there is a very simple “symbolic dynamics” associated with
the action of G on C. We have already seen that there is a 1 — 1 correspondence between
the set ' of finite sequences 172...7, of 1’s, 2’s, and 3’s satisfying tj # 1741 and the
group G, given by

titg...tn = T3, Ty, ... i, 7 — identity

(n is the empty sequence). Let 0* = {infinite sequences 7;4273... of 1’s, 2’s, 3’s with
tj # tj41 Vs}. For each ¢1¢5...1,01 € ¥, n > 0, define D;,i,..i,., to be the closed disc

interior to T3, T3, ... T; . Ts, .
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O~ f\f

For each sequence 1372t3... € )* the discs Dy, . ;_ are nested, i.e., D;, D Dy i, D Dyjiyig O
.+, and therefore have a nonempty intersection. (Recall that the circles T} ;,..; inLi,,, are
nested by generations.) Also, 3 constants C < oo and 0 < p < 1 such that for every

t122¢3... € 1* and every n > 1,
(8.3) diameter (D, i,...:,) < Cp™.

This is because each T; shrinks distances outside of I’;. So

11‘l2 n Dillg

n>1
is a single point. This point k;,;,... lies in A, because it is the limit of the sequence

kiiy..s, 2 T, T;, ... T, €,

since ki i,...i, € Di,i,...i,. Finally, distinct sequences 7;7273... and t1757% ... in * corre-

spond to distinct points kili:z--- and k;1 ;.. of A, because if 4175 ... 7, # ¢]7...4" then the
circles 73, T3, ... T

ip_

,I'i and T T ... T _ Ti are mutually exterior, and

ki i,... € Dyj4,..5, = interior nTi,...T;,_,T;,
k,'ll it.. € D,‘l1 it...sr = Interior T,-l1 T,-l2 - T,-;_II‘,-IR.

So now we have 1 — 1 correspondences
0o G GE and
0 < A
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given by
iliz---in—*TiITig---T'in = Kkiig i, and

111213 ... = Ky ipig....

The counting function M(¢) defined by (8.2) can now be pulled back to the sequence space
0 =0’ U Q*, where there is some hope of using Th. 3. Define

o { distance (k;,i,...i,,A) } ,

distance (ki,is...:,, )
T(ilig .. ) = — log IT,,I (kigia...)ls

r(n) =0.

T(iliz e Zn) =

Here |T}(2)| is the local expansion factor for the mapping T; at the point 2z (recall that
T; is conformal, but orientation-reversing). Because of (8.3), r is Lipschitz continuous on
1, and because k;,q,... is outside T;,, r(i192...) > 0 V 432213... € *. And the most

important point:

Snr(f1t2...4,) = log {

distance (k;,4,...5,,A) -
distance (k,,A) ,

SO

M(e) = N;i(—log(e/distance (ky,A)),7)
where N (t,x) is defined by (7.7).

Before we can apply Theorem 3 we must verify that r is a nonarithmetic function.
This isn’t at all easy. In fact, it is equivalent to the fact that the geodesic flow on the unit
tangent bundle of H3 /G™ is topologically mixing, where H?® is hyperbolic 3-space and G*
is the group of H3-isometries induced by {T},T;,...T;.: n even}. See [7], sec. 11, and
[13] for details. '

Theorem 3 now implies that M(e) ~ Ce=% as € | 0 for some 6§ > 0 and 0 < C < oo.
With some additional work, it can be shown that 6 is the Hausdorff dimension of A, and
that the measure on A induced by v is the normalized 6-dimensional Hausdorff measure

on A. (See (3] for a similar calculation.) In summary,

THEOREM 5: As e | 0,
M(e) ~ Cet
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where § is the Hausdorff dimension of A and 0 < C < co. If P¢ is the uniform distribution
on the set of £ € G¢ such that distance (z,A) > €, thenase |0

P¢ 2, normalized 6-Hausdorff measure on A .

9. Periodic Orbits of Suspension Flows

We return now to the suspension flow under under r(z), which we introduced in
sec. 7. Remember that this flow works just like the Bernoulli flow — the only difference
is the “ceiling” of the region on which the flow takes place. This ceiling is the graph of
the function r(z). Assume that r is strictly positive and Lipschitz continuous on [0,1].

Assume also that the suspension flow is topologically mixing.

The suspension flow under r is a more important gadget than you might at first think.
This is because a large class of hyperbolic flows, the “Axiom A” flows, can be “represented”
by suspension flows over shifts of finite types. I don’t want to explain precisely what I
mean by “representation” here. You will probably hear somethiilg about this in-sdme of
the other lectures (or see ’[14], [1]). Suffice it to say that counting problems for periodic
orbits of Axiom A flows can be (and have been) reduced to counting problems for periodic

orbits of suspension flows.

So let’s think about periodic orbits of the suspension flow under r. We have seen that
the periodic orbits of this flow are the orbits that go through points (z,0) such that z has a
periodic binary expansion. If z has a periodic binary expansion with (least) period n then
the periodic orbit through (z,0) has (least) period Snr(z) =r(z) +r(oz) +...+ (0" 1z)

(here o represents the shift on the binary expansion). Also, this periodic orbit goes through_:
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(2,0), (0z,0), (022,0),..., (0" z,0), but no other points (y,0). Define

Prn = {sequences z1z5... of 0’s and 1’s with least period n};

Pn = {sequences £,z ... of 0’s and 1’s with period n};

M) = Z% > USar(x) <t}

n=1 x€P,
(9.1) M) =S % Y 1{Sar(x) < 1),
n=1 " »ecp,

Then M (t) is the number of periodic orbits of the suspension flow with (least) period < ¢.
NOTE: we won’t bother to distinguish between sequences x of 0’s and 1’s and points z
of [0,1).

THEOREM 6: Ast — oo,
(9.2) M(t) ~ €%/ (61)
where & is the topological entropy of the flow.

This theorem is essentially the same as the main result of Parry and Pollicott [11], the
“Prime Number Theorem” for periodic orbits of an Axiom A flow. Their proof is quite a
bit different than the one you’re going to see here, and, perhaps, more natural, following
one of the standard proofs of the prime number theorem. But the approach taken here
leads also, via Theorem 4, to some additional results about the distribution of a “typical”

periodic orbit.

To prove Th. 6 it suffices to show that (9.2) holds when M(t) is replaced by M(t).

You already have seen the argument for this, in sec. 6, so we won’t go through it again.

The sum defining M (t) looks vaguely similar to that defining N(t,x) in (7.7). There
are two differences. First, the factor % does not appear in (7.7). The same difficulty arose
in sec. 6, and we dealt with it by using Lemma 3; we will be able to deal with it here in
much the same way, using Theorem 4 in place of Lemma 3. Second, in (7.7) the sum is
over those y such that o™y = x, whereas in (9.1) it is over y € P,. This problem didn’t

arise in our analysis of the Bernoulli flow (sec. 6). To deal with it we proceed as follows.
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Choose a large integer k, and choose infinite sequences x(*) = :cg'.)zgi) et =1,2,...,2k
such that the finite sequences zgi)zgi) ... :z:,(j), i=1,2,...,2% are the 2% distinct sequences

of 0’s and 1’s of length k. Define

gi(x) = 1{z; = zj(-i) Vi=1,2,...,k};

NOW = Y sl1{Sar() <t).

x: onx=x()

LEMMA 4: For eachn>k andt >0

2k 2k
(9.3) Y OND@E - ) < > 1{Sar(x) <t} < S ONO(E + ex)
where €5 = 27%Y1C and C is a Lipschitz constant for r on [0,1], i.e., |r(z) — r(y)] <
Clz—y| Vz,y €[0,1].

Some comments: NS (t) is precisely the type of sum that occurs in (7.7). The fact
that (9.3) may not hold for n < k doesn’t matter, because for ¢ sufficiently large the terms
n < k in (9.1) add up to zero. Observe that ¢ — 0 as k — oo.

PROOF of Lemma 4: For every sequence x € P, there is one and only ones € {1,2,...,2%}

such that g;(x) = 1. Consider the sequence % given by

~

Zy;=x; forj<n+k,

Z; = z}i) for y >n+k.

You have
(9.4) o"% =x(),
(9.5) gi(X) = gi(x) =1, and
n—-1
(9.6) |S,7(%X) — Sar(x)] < Z Ir(67%) — r(o?x)]
=0
(s o)
< CZ 2=kt — ¢,
5=0



Conversely, if % is a sequence such that o"% = x(!) and gi(X) = 1 then you can obtain a
sequence x € P, by
zj = Z; for j < n,

Zj =Zzj_nforn <j<2n,

.
and for this sequence x, (9.4)-(9.6) still hold. So thereisa 1 — 1 correspondence between
X € P, and sequences % satisfying (9.4)-(9.5) for some 7, and corresonding x, X satisfy

(9.6). The inequality (9.3) is a direct consequence. O

Theorem 3 only applies when r(x) is a nonarithmetic function. But we assumed that

the suspension flow under r is mixing; this implies that r(x) is nonarithmetic.

EXERCISE: A flow T; on a compact metric space X is topologically mixing provided
there is no continuous f : X — C such that foTy=¢€%tfVvi> 0, some 6 € R. Use this
characterization to show that if the suspension flow under r is topologically mixing, then

r(x) is nonarithmetic.

So now Theorem 3 applies, and tells you that

NO@) 23" NO@)
n=1

l

o
]

g:(x)1{Spr(x) < t}

n=1 x: a"x:x(")
~ Cietst,

with )
c. - L giv)h(x?)
o §f(fR)dy

Notice that .
h(xO)p{x: z; = Igi) V1<j<k}
=1

;C" =* § [(Fh)dv
z/hdu/(&/(fh)du)

when k is large. Theorem 4 guarantees that the primary contribution to N (¥ (t) comes
from those N,(Li) (t) for which

In —t/f| < et.
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By letting € | 0, you get

(9.8) Z Z =Nt ZC)e“f/t

i=1 n=1
EXERCISE: Fill in the details in this last step.

Putting (9.3), (9.7), and (9.8) together gives

Mt)=Y~ 3 1{Surlx) <}

n=1 xe—P-n
e\ flhrdv €%
t ) &6ffhdv — 6t

This proves (9.2), except for the identification of § as the topological entropy of the flow.[]

How do periodic orbits distribute themselves on the suspension space 'y, = {(z,s): 0 <
z < 1and 0 < s < r(z)}? Take a continuous function G: T, — R, and for a periodic orbit
7 define 7(G) to be the integral of G over (a single period of) 7. The distribution of 7 on

I’y is determined by the integrals 7(G) for all continuous G.

Define a probability measure Q on T', by

Q(d(z,s)) = dsu(dx) // p(dy) where

u(dx) = hx)u(ax)/ [ hly)(ay)

as in sec. 7. Since p is an invariant probability measure for the shift, @ is invariant for the

flow. (EXERCISE: Prove this.) For € > 0 set

M_(t) = number of periodic orbits 7 with

period <t and |Z% —/GdQI > €.
T

THEOREM T: lim (M, (t)/M(t)) =0, V ¢ > 0.
— 00

What this means is that for large ¢, nearly all periodic orbits with period < t are
such that the average value of G on the orbit is approximately J GdQ@. More simply, most
periodic orbits-are distributed on I'; approximately (in the weak * topology) like Q.. There
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are even more sophisticated results than this — see [8] — but I won’t go into these here.

I should mention also that Q is the maximum entropy measure for the flow (see [11]).
PROBLEM: Using Theorem 4, prove Th. 7.

You can find the solution in {7], sec. 5.
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