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Abstract

Let X™ denote a sequence of adapted processes with paths with one right continuous
and left limits. Let Y™ be a sequence of semimartingales. Simple sufficient conditions are
given so that when (X™,Y™) converge weakly to (X,Y), the limit Y is a semimartingale
and further f X7 — dY? converges weakly to f Xy — dY,. Analogous results are given
for stochastic differential equations. Examples are given showing how these results can be

applied. Theorems of Jakubowski, Mémin, Pages and Slominski are generalized.
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1. Introduction. For n = 1,2,... let {Yﬂ:k >0} be a Markov chain. The classical assumptions

leading to a diffusion approximation for such a sequence are that the increments of the chain satisfy

(1.1) EIYE, , — YRIF]] = b(YD)} + o(})
and
(1.2) E((YE - YD2ID] = a(YD} + o(d)

Using these assumptions we can write

k=1
n __ n n n
(1.3) YR =Y + Z‘b(YH_l -Y))
1=

k—1 x
=¥+ Y WO+ 3 {s0) ] g + exor
1=
where

n n
) - 2|0
VBV g — YR - B0,y - YRIoE)2Ie])

are martingale differences with conditional variance 1. If we define Xj(t) = Y?nt] and
, [nt]
(1.5) Wa(t) = _{1=n >
i=0
then
[nt]

i’ B t
(1.6) Xn(t) = Xp(0) + Jon b(Xp(s))ds + Jo 1Ia(Xn(s-))de(s) + error



Under mild additional assumptions, the martingale central limit theorem implies W, = W,
(throughout => will denote convergence in distribution) where W is a standard Brownian motion.
This convergence suggests that X; should converge to a solution of the obvious limiting stochastic
differential equation. This approach to deriving diffusion approximations has been taken by many
authors (see, for example, Skorohod (1965), Chapter 6, Kushner (1974), and Strasser (1986)) although
in recent years it has been largely replaced by methods which exploit the characterization of a Markov

process as a solution of a martingale problem.

A key step in the application of the stochastic differential equation approach is to show that the
sequence of stochastic integrals in the approximating equation converges to the corresponding
stochastic integral in the limit. That there is a difficulty to be overcome is well-known from the work

of Wong and Zakai (1965). See also Protter (1985).

Growing interest in stochastic differential equations driven by martingales (and more generally
semimartingales) other than Brownian motion has led to renewed interest in this approach to the
derivation of approximating processes. In addition, functionals of stochastic processes which can be
represented by stochastic integrals arise in many areas of application including filtering and statistics.
Limit theorems in these settings require conditions under which convergence of the integrand and

integrator in a stochastic integral implies convergence of the integral.

Throughout, we will be considering cadlag processes (that is, processes X whose sample paths are
right continuous and for which the left limit X(t-) exists at each t > 0). This restriction to cadlag

processes allows us to define stochastic integrals as limits of Riemann-Stieltjes-like sums, that is,

t
(1.7) Jo X(s-)dY(s) = lim ) X(t;) (Y(t 1) = Y()

where {t.} is a partition of [0,t] and the limit is taken as the maximum of t;p1 — ¢t tendsto
zero. The integral exists if the limit exists in probability. Recall that the choice of the left end-point
of [t;,t; +1) as the argument of X is critical even when Y is a Brownian motion. Indeed in the
Brownian differential case, if we take the argument of X to be the midpoint, we obtain the
Stratonovich integral. (We will, of course, assume that X is adapted (and hence the left continuous

process X(:-) - is predictable) and that Y is a semimartingale for the same filtration, but the

uninitiated reader can follow much of what is going on without a thorough knowledge of these



matters.)  Throughout, we will use Protter (1989) as our basic reference for material on

semimartingales and stochastic integration. See this volume for details and further references.
The following two examples will help motivate the assumptions of the main theorem.

1.1 Example Let X =Y =X, = x[l o) and Y, = x Then

[14+3,00)
t
(1.8) J Xn(s-)dYp(s) =1
0
but the limiting integral gives
t
(1.9) J X(s-)dY(s) = 0
0
1.2 Example Let W be standard Brownian motion, and define Wy so that
(1.10) 4 Wi (t) = n(WE) — W), t € [5.58)
Then
t
(1.11) J Wn(s-)dWy(s)
0
t t
. ns ns
= [ Wal@hawa + [ a0 — walGhyawneo
A
= S W WD = W) + T W+~ W) W) - Wil o
. v
- J W(s)dW(s) + it
0
Example 1.1 is indicative of problems that will arise whenever the integrand and the integrator have
discontinuities which “coalesce” in the wrong way. We will avoid these difficulties by requiring that
the pair of processes (Xp,Yp) converge in the Skorohod topology on DR2[0,oo) which is stronger
than' assuming convergence of each component in DR[O,oo). For future reference, let A denote the
collection of continuous, strictly increasing functions mapping [0,00) onto [0,00). Recall that for any

metric space E a sequence of cadlag, E-valued functions {xp} converges in the Skorohod topology to

x, if there exists a sequence {Ap} C A such that xpolAp(t) — x(t) and Ap(t) — t uniformly for ¢



in bounded intervals. Note that in Example 1.1, Y, converges in the Skorohod topology with E =
R, but the pair (Xp,Yp) does not converge in the Skorohod topology with E = IR2, and in general,
convergence in the Skorohod topology with E = R2 excludes the possibility of the type of coalescence
of jumps that causes the problem in that example. In particular, for each n, let y, be piecewise
constant, and suppose the number of discontinuities of y, in a bounded time interval is uniformly

bounded in n. Then if (xp,yn) — (x,¥) in the Skorohod topology on DR2[0,oo), then

1.12 .xns-dns—> .xs-d s
(1.12) J @)@ = [ )
and

1.13 .ns-dxns—> . s-)dx
(1.13) RACLECRY IOLI0

in the Skorohod topology on DR[O,oo). (Actually, the quadruple consisting of xp, ypn, and the two

integrals converges in DR4[0,oo) )-

Example 1.2 points to more subtle problems, and we will come back to it when we discuss the

hypotheso% of the main theorem.

We will formulate the main theorem, Theorem 2.2, in Section 2. This theorem is essentially the séme
as that given by Jakubowski, Memin, and Pages (1988), but we believe that our formulation and proof
are more readily accessible to researchers without extensive expertise in the theory of semimartingales
and stochastic integration. Section 3 will be devoted to further examples and applications. Section 4
contains some relative compactness results for stochastic integrals and some variations on the main
theorem. Applications to stochastic differential equations will be discussed in Section.5. In particular,

we generalize results of Slomifski (1989). Some technical results will be given in Section 6.



2. Weak convergence of stochastic integrals. Throughout we will be making various transformations

of the processes involved. We will need to have information about the continuity properties of these

transformations, and the following lemma will be useful in obtaining this information.

2.1 Lemma Let E; and Ey be metric spaces, and let F:DEI[O,oo) — DE2[0,oo). Suppose F(xo0l)

= F(x)oA for all x € DE1[O’°°) and all A € A. Suppose xp(t) — x(t) uniformly for t in
bounded intervals implies F(xp) — F(x) in the Skorohod topology. Then xp — x in the Skorohod
topology implies that F(xp) — F(x) in the Skorohod topology. If xu(t) — x(t) uniformly on
bounded intervals implies F(xp)(t) — F(x)(t) uniformly on bounded intervals, then x;, — x in the
Skorohod topology implies (xp,F(xp)) — (x,F(x)) in the Skorohod topology on DElez[O,oo).

Proof Suppose xp — x in the Skorohod topology. Then there exist Ay € A such that xpoAn(t) .
— x(t) and Ap(t) — t uniformly on bounded intervals. It follows that .F(xno,\n) — F(x) in the
Skorohod topology, so there exist 7y € A such that nn(t) — t and F(xpolp)ony(t) — F(x)(t)
uniformly on bounded intervals. Since Apony(t) — t and F(xp)oAponn(t) = F(xpodp)ony(t) —
F(x)(t) uniformly on bounded intervals, it follows that F(xp) — F(x) in the Skorohod topology.
The last statement is immediate from the definition of the Skorohod topology. o

The following functional gives a good example of an application of the lemma. Fix m, and define

hg:{0,00) = [0,00) by hy(r) = (1 — §/r)". Define J:Dpm[0,00) — Dgml0,00) by

2.1 35(x)(t) = D hy(lx(s) — x(=))(x(s) — x(s-))
s<t
Lemma 2.1 shows that x — J¢(x) and x — x — J¢(x) are continuous. Consequently, by (1.12), if

(%n,¥n) — (x,¥), then
(2.2) Jo xp(s-)dJ 6(yn)(s) — Jo x(s-)dJ 6(Y)(s)

Let {‘.Ft} be a filtration. A cadlag, {éFt}-adapted process Y is a semimartingale if it can be
decomposed as Y = M + A where M is an {¥F;}-local martingale and the sample paths of A have
finite variation on bounded time intervals, that is, there exists a sequence of {¥,}-stopping times, T
such that 7 — oo a.s and for each k, M« = M(-A'rk) is a uniformly integrable martingale, and
for every t > 0, T;(A) = sup ZIA(ti +1) - A(ti)l < oo a.8 (where the supremum is over partitions
of [0,t]).



An R™._valued process is an {%}-semimartingale, if each component is a semimartingale. Let Mkm

denote the real-valued, kxm matrices. Throughout, [XdY will denote [X(s-)dY(s).

2.2 Theorem For each n, let (Xp,Yy) be an {‘.F?}-adapted process with sample paths in
DMkmx ml0,00), and let Yy, be an {?F?}-semimartingale. Fix 6 > 0 (allowing § = o0), and
define Yp =Y, —J 6(Yn)' (Note that Yg will also be a semimartingale.) Let Yg = Mg + Ag

be a decomposition of Y{Sl into an {‘.F?}-local martingale and a process with finite variation. Suppose

C2.2(1) For each a > 0, there exist stopping times {r5} such that P{r§ < a} < % and
supp E[[ME], re + T Ara(A)] < co.

If (Xp,Yn) = (X,Y) in the Skorohod topology on DMkm Rm[O
X

with respect to a filtration to which X and Y are adapted, and (Xp,Yy,[XpdYy) = (X,Y,[X4dY)

xIRk[O,oo). If (Xp,Yn) — (X,Y) in probability, then the

,00), then Y is a semimartingale

in the Skorohod topology on DMkm RM
X
triple converges in probability.

2.3 Remark For c¢ > 0, define 7§ = inf{t:lMg(t)WlMg(t-)l >c or Tt(Ag) > c}. Suppose the

following conditions hold.
C2.2(ii) {Ty(AJ)} is stochastically bounded for each t > 0.

C2.2(iii) For each ¢ > 0, supy E[Mg(t/\rﬁ)2 +T (Ag)] < o0

tATS
Since supt<a|M,61(t)l = supt<a|Y15,(t) - Ag(t)l < supy ., [Yn(t)| + Ta(Ag) is stochastically
bounded in n for each e, there exists cqo so that P{r5* < a} < i. In addition E[[Mg]t/\ cal =

. ™
E[(MS (tA75%)%], and C2.2(i) is satisfied with 7@ = 752,

For 6 < oo, C2.2(iii) will usually be immediate since the discontinuities of Yg are bounded in

magnitude by § (making Yg a special semimartingale) and there will exist a decomposition with the

discontinuities of each term bounded by 26 (see Jacod and Shiryaev (1987), Lemma 1.4.24).

2.4 Remark To see that Y is a semimartingale it is enough to show that Y isa semimartingale.

Without loss of generality, we can assume that for o = 1,2,.., 75 < rﬁ+1. Let Yga =



Yg(-/\‘rﬁ'). Then {(Xn,Yn,Yg,Ygl,Ygz,...,7'111,1'121,...)} is relatively compact in
D, jkm, g, gml0:09)XDgum[0,00) ®x[0,00] . Let XY, Y Yol y82 7172 ) be some limit
point, and let {F} be the filtration generated by the limiting processes and random times. For each
T >0, let '

(2:3) Vp(YA®) = sup E[TIE[YA*(t;, 1) — YA*(t,)IFE])
where the supremum is over all partitions of [0,T]. Then

(2.4) supn Vp(Y3®) < supn E[Tr , _a(AS)] < oo

TATH

and hence VT(Y6a) < oo (Vg defined using {%F;}). (See for example Meyer and Zheng (1984) .
Theorem 4 or Kurtz (1989) ?77?) It follows that Y8 s a local {%}-quasi-martingale and hence an

{%,}-semimartingale. But

) ay _ voa 6/ o bay o
(2.5) YOUATT) = YOH (t) + (YO(r®) — Yo%~ ))x{r°’<t}
so Y’ is alocal {%}-semimartingale and hence an {%¥,}-semimartingale.

2.5 Remark Note that if {(Xp,Yyp)} satisfies the conditions of the theorem, then { X, dYy} satisfies
C2.2(i).

2.6 Remark With reference to Example 1.2, note that T,(Wp) = O(«n).

Proof Let Zp = (Xp,YnJ 6(Yn),Y161). Zn has sample paths in DE[O,oo) for E =
MED R RM A RM  The limit in (1.13) suggests attempting to approximate X; by a piecewise
constant process. The problem is to find such an approximation that converges in distribution along
with X, (in fact, along with Zp). Furthermore, the approximation must be adapted to a filtration
with respect to which Yp is a semimartingale. By Lemma 6.1, there exists a (random) mapping
I¢:Dg[0,00) — Dp[0,00) such that |z(t) — Ie(z)(t)| < € forall z € Dpl0,00) and t > 0, I(z) isa
step function, and the mapping z — (z,I¢(z)) is continuous at z a.s for each z € DE[O,oo).
Furthermore, I¢(Zy) is adapted to a filtration g? = ??VJG, where J6 is independent of {‘EF?} (and
hence Y, will be a {gg}-semimartingale. Let X& denote the first, ME™_yalued component of
Ie(Zn). Then |Xp — X§| < €, and (Xn,YnJdg(Yn) Y3.XE) = (X,Y,35(V), Y X6).



Define Uy = [XpdYy, and Uf = [Xj ayd + JXndJ5(Yn) with similar definitions for U and

U€. Then it follows as in (1.12) and (1.13) that (X,,Ypn,US) = (X,Y,U€) in Dy km_gm Rk[O,oo).
X X

Observing that

(26)  RE = Uy — U§ = [(Xg — X§)dY] = [(Xn — X§)dM§ + [(Xy — X§)dA

we see that for any stopping time =

1
(2.7) Efsup, iz - IREE)]] < ¢(2EMMA A 12 + E[Ty 0 -(A0)))

with similar estimates holding for U — US. Applying C2.2(i), it follows that (Xy,Yn,Up) = .
(X,Y,U).

A review of the proof shows that if convergence in distribution is replaced by convergence in

probability in the hypotheses, then convergence in probability will hold in the conclusion. O

The transformation J 5 provides a convenient, continuous way to eliminate the large jumps from Yy
in Theorem 2.2. Occasionally, however, it may be useful to apply some other truncation of the large
jumps. For exé.mple, if Yp is a martingale it may be possible to truncate the large jumps in such a
way that the truncated process is still a martingale, simplifying the verification of the hypotheses of the

theorem. With these possibilities in mind, we state a slightly more general version of the theorem.

2.7 Theorem For each n, let (X,,Yn) be an {?FItl}-a.dapted process with sample paths in
DMkmem[O,oo), and let Yy be an {EF{’}-semimartingale. Suppose that Y, = My + Ap + Zp,
where Mp is a local {?F?}-martingale, Ap is an {F{}-adapted, finite variation process, and Zj is
constant except for finitely many discontinuities in any finite time interval. Let Np(t) denote the
number of discontinuities of Z; in the interval [0,t]. Suppose {Np(t)} is stochastically bounded for
each t >0, and '

C2.7 For each a > 0, there exist stopping times {75} such that P{r§ < a} < ! and
supp E[[Mn]t,\,.g + TtATﬁ(An)] < 0.



If (Xp,Yn,Zn) = (X,Y,Z) in the Skorohod topology on DMkmem[O,oo), then Y is a

semimartingale with respect to a filtration to which X and Y are adapted, and (Xp,Yn,[X,dYp)
= (X,Y,[XdY) in the Skorohod topology on DMkmemek[O,oo). If (Xp,Yn,Zn) — (X,Y,Z)) in

probability, then convergence in probability holds in the conclusion.
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3. [Examples and applications

3.1 Example As a simple first example, we consider limit theorems for sums of products of
independent random variables which arise in the study of U-statistics. Let {Ei} be i.i.d. real-valued

random variables with mean zero and variance 0'2. Define

(k) .\ _ 1
(3-1) Wn (t) - F 215i1<"'ik5["t]Ei],n'fik

1 1
and Zp = (W'I(l ),...,ng)). Note that Wg) = oW, where W is standard Brownian motion, and

observe that we can write

t _
(3.2) wi) = [ 0 wi ey awPs)

1 1
It follows (by induction) that Zp, = Z = (W( ),...,W(m)), where W( ) = oW and W(k) is the
corresponding interated integral. (Note that X, = X in Dp[0,00) implies that (Xp,Xp) = (X,X)
in Dg, g[0,00)).

3.2 Example (Bobkoski (1983)) Let {¢;} beas above. For a constant ¢, let {Y } satisfy
(3.3) Yk+1 = ¢Yk + £k+1

Given Yl,...,Ym, the least squares estimate (3) for an unknown ¢ is the value of ¢ minimizing

E(Yk 41 ¢Yk)2, that is, the solution of

(3.49) 2V Yy — 8% =0
given by
2 _ 2V
(3.5) ¢=———5"
=Y}
Now consider a sequence of such processes {YE} in which the true ¢, = (1 — g . If we define
Xn(t) = £Y}

{n " [nt]
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t
(3.6) Xa() = 6%, (0) + | 0 SP Il )

where Wy = ng), and if Xy(0) — X(0), it follows that X, = X given by
t _a(t-

8.7 X(t) = e_ﬂtX(O) + I e At s)erdW(s)
0

Note that X is an Ornstein-Uhlenbeck process satisfying dX = —fXdt + odW. For the least

squares estimate of ¢, at time t, we have

[nt]—1 )
(38) > YR((¢n — dn)YE + ) =0
k=0
which implies
(3.9) n(6n — ) | " Xa()2ds = [ Xa(s)dWa(s)
0 0
and it follows that
t
oX(s)dW(s)
(3.10) n(¢n — én) = L5
J X(s)2ds
0

More general results along these lines have been given by Llatas (1987) and Cox and Llatas (1989).

3.3 Example Work on approximation of nonlinear filters, DiMasi and Rungaldier (1981, 1982),
Johnson (1983), Goggin (1988), involves studying the limiting behavior of a sequence of Girsanov-type
densities, each of which typically includes the exponential of a stochastic integral. For example, let
{Xan} be a sequence of processes with sample paths in Dp[0,00), such that X = X. Let N bea

unit Poisson process independent of the Xp, let the observation process Yy be given by
| ¢ 1
(3.11) Yalt) = N(nJ (3 + 0 Zh(Xq(s)) ) ds)
_ 0
and define

1
(3.12) Un(t) = n 2(Yn(t) — Ant)
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Note that ‘.FF" = ‘.F? " and observe that (Xp,Up) = (X,U) where for a standard Brownian motion

W independent of X
t

(3.13) U(t) = VAW + J h(X(s))ds
0

Suppose that (Xp,Up) is defined on a probability space (Q,¥,Pp). Then there exists a probability
measure Qp on the same measurable space, (2,F), under which X; has the same distribution as
under Pp, Y, is independent of X, and is a Poisson process with parameter nA, and Pp < Qp

on G = o(Xn(s),Un(s)is<t) with

dP,

(3.14) Ln(t) = g

o

= _exp{Lt) 1;1(1 +n"1§x1h(xn(s-)))dYn(s) - J; n%h(Xn(s))ds}

= exp{J:) n%ln(l+n-%/\'1h(Xn(s-)))dUn(s)

t Al 1
+ J (n,\ln(1+n 2,\'1h(xn(s-))) - n2h(Xn(s)))ds}
0

Similarly, if (X,U) is defined on a probability space (Q2,%,P), there exists a measure Q on (Q,F)
such that, under Q, X has the same distribution as under P, U is independent of X with the same
distribution as YAW, and P < Q on G, = o{X(s),U(s):s<t} with

(3.15) L(t) = g—gl = exp{J:)A'lh(X(s))dU(s) - I:) IX1h2(x(s)) ds}
t

g

Expanding the logarithm in (3.14) in a Taylor series and applying Theorem 2.2, we see that L, = L
under {Pp}, P and under {Qp}, Q.

Results of Goggin (1988) can then be applied to show that the conditional distribution pp(t) of
Xp(t) given ‘EF?(" converges in distribution to the conditional distribution u(t) of X(t) given “.FP
as a process in D,:.P(E)[O,oo).
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3.4 Example (Meyer (1989), Emery (1989)) Next we consider the problem of showing existence of
solutions of the structure equation arising in the study of chaotic representations formulated by Meyer.

Given F € C(R), the problem is to show existence of a martingale X satisfying
(3.16) d[X]; = dt + F(X(t-))dX(t)

or, equivalently,

t t
(3.17) X(£)2 — X(0)2 — 2JOX(3.) dX(s) = t + JOF(X(&))dX(s)

Of course, if X is standard Brownian motion, then (3.16) is satisfied for F(x) = 0. If X is a.
martingale with |X(t)] = t, then, obviously from (3.17), (3.16) holds with F(x) = —2x. See
Protter and Sharpe (1979) and Emery (1989) for a construction of such a martingale. For Azema’s
martingale (Protter (1989) §IV.6), F(x) = —x.

Following Meyer (1989), we define a sequence of discrete time martingales and show that the sequence

is relatively compact and that the limit satisfies (3.16). Setting AYp(k) = Yp(k+1) — Yp(k) and

assuming for simplicity that Yy, (0) = 0, the discrete time analogue of (3.16) becomes
(3.18) AYp(k)? = L + F(Yn(k)) AYp(K)

Consequently,

F(Yn(K)) + \F(Ya(K)? + &
2

(3.19) AYp(k) = = A (k)

and since we want Yy to be a martingale, we must have

An(k)

(3.20) - P{AYp(k) = Af(k)} =1 — P{AYp(k) = Ap(k)} = S CST)

nt]

Define Xp(t) = Yn([nt]). Note that E[Xn(t)2] = [_n' and more generally

(3:21) E[(Xn(t+h) — Xn()) A" = BEFR]_ B
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The relative compactness of {Xp} (and hence for {(Xp,FoXp)}) follows easily. (See, for example,
Ethier and Kurtz (1986), Remark 3.8.7.) Since X, satisfies

t t
(3.22) Xa(®)? — Xn(0)? - 2j0xn(s)dxn(s) =k, jowxn(sf))dxn(s)
we see that aily limit point of the sequence {Xp} satisfies (3.17).
More generally, the above construction will give solutions of
(3.23) dX], = dt + F(X,t-)dX(t)

for any F:Dp[0,00) — Dg[0,00) satisfying C5.2(ii) and C5.2(iii) below and F(x,t) = F(xt,t) for all .
x € DR[0,00) and t > 0 where xt = x(- At).

3.5 Example (Neuhaus (1977)) Let £;,£,,... bei.i.d. uniform-[0,1] random variables, and let h be a

measurable, symmetric function defined on [0,1]x[0,1] satisfying

1.1
(3.24) J I h2(x,y) dxdy < oo
0’0
and
1 1
(3.25) J h(x,y)dx = J h(x,y)dy = 0
0 0
Define
(3.26) zh =1 3 h(£;,¢;)
1<igj<n

Then {Zg} is asymptotically Gaussian. To see that this is the case and to identify the limit, we
follow a suggestion of Lajos Horvath and represent (3.26) in terms of the empirical distribution

function Fy

(.27 Fa® = § D e, coy®
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In terms of Fy, Zlﬁ can be written

(3.28) zh = n” h(s,t) dFp () dF g (t)
s<t

and defining Bp(t) = ¥ (Fp(t) — t), the symmetry of h and (3.25) give

(3.29) v - J J h(s,t) dBp(s) dBp(t)
s<t

If g satisfies the same conditions as h, then
h _ 582 _ aa=1flf 2
(3:30) Bl - 2% = 2537 | ) — gtxaaxay

Since any h € L2([0,1]x[0,1]) can be approximated by smooth g, we may as well assume that h is

continuously differentiable. Under this assumption we can write

t t
(3.31) Xn(t) = jo h(s,t) dBn(s) = h(t,t) Ba(t) — jo hs(5,t)Ba(s) ds

and, since Bj => B, the Brownian bridge, (see, for example, Billingsley (1968), §13 and §19, or Protter
(1989) §V.6), the continuous mapping theorem implies that X, => X given by

(3.32) X(t) = r h(s,t) dB(s)
0
More precisely, (Xp,Bn) = (X,B) in DRxR[O’oo)'

The process Bp is a semimartingale with decomposition

t t
(333)  Ba(t) = E(Fa(t) — &) = ¥G(Fn(t) - jol—lFTr{jS)ds) — 0 Fu®) =3,

t
= Mp(t) — Io 1= Bn(s)ds

Note- that E[Mn(t)2] = E[[Mp}] = t. In fact, [Mp}; — t, implying, by the martingale central
theorem, that My => W and yielding, in the limit, the classical stochastic differential equation for B.

For this decomposition we have
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(3.34) Eﬁ(ﬁﬁs%®®ﬂ =ﬂ{ﬁﬁﬂmﬁmﬁ
< J:; i—i——S\|E[Bn(s)2]ds = J Eds < o©

t
0

for t < 1. Consequently, the conditions of Theorem 2.2 are satisfied, and Zlﬁ converges in

distribution to
h 1.t
(3.35) 7" = I J h(s,t) dB(s) dB(t)
0’0

For related results see Hall (1979). Rubin and Vitale (1980) and Dynkin and Mandelbaum (1983)
consider more general symmetric statistics. Rubin and Vitale represent the limiting random variables
as series of products of Hermite polynomials of Gaussian random variables. Dynkin and Mandelbaum
represent the limits as multiple Wiener integrals. These higher order limit theorems can also be
obtained by the techniques used above with the limiting random variables represented as multiple
integrals of B. Filippova (1961) obtained limits represented as multiple integrals of Brownian bridge

in special cases. O

3.6 Example (Duffie and Protter (1989)) Theorem 2.2 is useful in the derivation and justification of
models in continuous time finance theory as limiting cases of discrete time models. For example, let
the sequence of random variables 611‘,6121,. .. denote the periodic rate of return on a security with initial

price SO' After k periods the price of the security will be
n n k n
(3.36) S =Sy ‘Hl 1+¢)
1=
Let Yg(t) = EiS[nt] Ef' and Sp(t) = S?nt]' Noting that SE+1 —SE = Sll: 62, we can write
t
(337) Sn(t) = Sa(0) + josn@») d¥n(s)

If 0{(‘ units of the security are held during the (k+1)th period, the financial gain for the period is
HE(SE +1- SE) , and the cumulative gain up to time t can be written

t
(3.38) %m=h%@®m)

where Op(t) = Hﬁlt]. Suppose that {Yp} satisfies C2.2(i) for some & and that (Yp,0p,5,(0)) =
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(Y,8,5(0)) (in DR2[0,oo)xR). Then the limiting equation

t
(3.39) S(t) = S(0) + J S(s-)dY(s)

0
has a (locally) unique global solution, so by Theorem 5.4 below (see also Avram (1988)), S, = S.
(More precisely (Ypn,0n,Sn) = (Y,6,S).) It follows that {Sp} also satisfies C2.2(i), so that G, = G
given by

t
(3.40) G(t) = jo 6(s-) dS(s)

The solution of (3.39) with S(0) = 1 is called the stochastic or Dol¢ans-Dade exponential and is
denoted &(X). The general solution is then given by S = S(0)&(X). (Protter (1989) §II.8.)
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4. Relative compactness and additional convergence results

4.1 Proposition Let {(Up,Yn)} be relatively compact (in the sense of convergence in distribution) in
DkaRm[O,oo) with (Up,Yn) adapted to {‘:'F?}, and {Yp} satisfying C2.2(i) for some § > 0.
Suppose that X; has sample paths in DMkm[O,oo) and is adapted to {‘.F?} Let Hp(t) =
sup ¢ «<|Xn(s)|, and suppose that {Hyp(t)} is stochastically bounded for each t. Define

t
(&) (0 = Ta® + | Xae)d%al@

Then {(Upn,Yn,Zp)} is relatively compact in D {0,00).

RXxR™MxRK

4.2 Remark The result will also hold under the assumption that X; is predictable and Hy is a right -

continuous, adapted, increasing process satisfying |Xp(s)] < Hp(t) for s < t with the usual
extension of the stochastic integral to predictable integrands. This result is very close to part (ii) of

Theorem 2.3 in Jacod, Memin, and Metivier (1983).

Proof The relative compactness of {(Up,Yp,[XpdJ 6(Yn))} is immediate. Since the stochastic
integral on the right of (4.1) has a discontinuity only when Yp has a discontinuity, and {(Up,Yn)}
is relatively compact, the proposition will follow if we show that {[Xy dYg} is relatively compact
(see, for example, Kurtz (1989), Lemma 2.2). By the same observation, we can, in fact, treat the
summands in the matrix multiplication separately. Consequently, to simplify notation we will assume
that k =m = 1.

Define ng = inf{t:Hp(t) > b}. Let ¢ be C2, convex and symmetric with ¢(0) = ¢'(0) = 0,
¢"'(0) = 1, ¢ decressing, and ¢''(1) = 0. Let Gy = x_ p Xn, Vo = [GndY], and Wy
[Gndly(Yn). Then setting AVy(s) = Vp(s) — Vn(s) a[r?&"“fvﬁ]g = [V}, — S AYS(s
(note that wﬁ]° = [Mg]c), Ito’s formula gives -

e |l

(4.2)  @(Vn(t)—Valty))

b ] tl " 2 oy
= Jt 4 (Vn(s')—vn(to)) Gn(s-)dYn(s) + Jt 5¢ (Vn(s')—vn(to))Gn(S') d[Yn]s
0 0
+ 3 (2(Va@E)=Valty) — #(Va(s)=Valtg)) — AVa(s)¢'(Va(s)—Va(ty)))
t0<sst .
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t
< j #'(Va(s) — Va(ty)) Gu(s) dME(s)
ty

+ b(Ty(Ad) — T, O(Ag)) + LMl - [Mﬁ]go) + ;qw(ﬂ;(i))
053

b ! | é
< L ¢'(Va(s) — Va(ty)) Gn(s) dME(s)
0

+ o vl — ol + T(AD ~ Ty (AD)]
for some constant C. (The last inequality uses the fact that ¢(u) < u2/\|u|.) Then

(4.3) #(Va(t) — Valty)) — C[[Mﬁlt - padly, + Tyad) - TtO(Afa]

is a local supermartingale, and, with reference to C2.2(1) and the observation that {[Mg]t} is
stochastically bounded for each t, we see that the conditions of Theorem 1.2 of Kurtz (1989) are
satisfied. Let Cp be the dual predictable projection of t+ [Mg]t + Tt(Ag), and define Vp(t) =
limg_, ;. Vn(C5'(s)-), with similar definitions for ¥p, Up, and Wy. Then {(Up,¥0,Vn,Wn)} is
relatively compact in the Skorohod topology, and {Cp} is relatively compact in the topology
corresponding to convergence at every point of continuity. Let (fJ’,Y,V,W,C) be some limit point.
Since (Up,Yp) converges in distribution in the Skorohod topology, Lemma 2.3 of Kurtz (1989)
implies that in any interval on which &l ois constant, (fI,Y) is constant except for at most one
jump. The same observation must hold for (fI,Y,V,W), since the jumps of V and W are bounded
by b times the magnitude of the jumps of Y. Consequently, by Kurtz (1989), Lemma 2.3(b),
{(Un,Yn,Vn,Wpn)} is relatively compact in the Skorohod topology, and since b 1is arbitrary and
limy _  supp P{ng < T} =0 for each T > 0, the proposition follows. ' a

This general relative compactness result leads to the problem of identifying the limit under more
general assumptions on the limiting behavior of {Xp} than in Theorem 2.2. First assume that
(Xn,Yn) = X)Y) in DMkm[O,oo)xDRm[O,oo) (rather than in DMkmem[O,oo)) and that {Yp}
satisfies C2.2(1). For all but countably many € > 0, (Xp(-—¢),Yn) = (X(-—¢€),Y) in
DMkmem[O,oo)). Consequently, for each such ¢,

t t
(4.4) Jo Xp(s—e-)dYp(s) = Jo X(s—e-) dY(s)
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and hence there exists a sequence ¢ — 0 slowly enough such that
t t

(4.5) J Xn(s—ep-)dYp(s) = I X(s-)dY(s)
0 0

Noting that {[XpdYp} is relatively compact by Proposition 4.1, assume that [X,dY, = Z.
Consequently,

(45) J a®) = Xalo—eaNa¥a® = 20) = | x@)av(0)
Note that the sequence on the left in (4.6) is relatively compact by Proposition 4.1.

Let Jg(Xp) denote the ME™_valued process whose ijth component is J 6(XH) where XH is the ijth
component of Xp, and let Xg = Xp — J5(Xp). Let Vg(t) = supgcy |X161(s) - Xg(s—en)|. Then
Vg = vo given by V‘s(t) = Supg¢ |X6(s) - Xé(s-)l < {kmé. By t—he same type of estimate as in
(2.7), to identify the right side of (46—) it is enough to identify the limit of

t
(1) 080) = [ (3Kn)(e) = 3gRa)le—en)d¥ale

(along .a subsequence if necessary) and then to let¢ & — 0. Let {T;Sn} denote the times of
discontinuity of J 5(Xn) with Tgn = 0. Note that {Tisn} are just the times when at least one

component of X, has a discontinuity larger than é. Then Ug can be written

4.8) > (Ya(rd +en) — Ya(rd )@ 5Xn)(r) — 35(Xa)(7E)))
e

and any limit point U® of {US} satisfies

49 ude) = ; 5X)(B5) — 315X)(BENY(BS) - Y(BL-))
py <t \

where {,B;S } is some subset of the times at which some component of X has a discontinuity larger

that 6. Letting & — 0, we see that
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t
(4.10) U = 7() — jo X()AY() = 35 (V3 = YBNK(E) = X(8;)
gi<t

where {f.} is some subset of the times at which both Y and X bhave discontinuities. From (4.8) it
is clear that { ,Bi} is empty unless some discontinuities of Yy “coalesce” with discontinuities of X

from above. The following theorem gives conditions under which no such coalescence occurs.

4.3 Theorem For each n, let (Xp,Yp) be an {‘:'FE}-a.da.pted process with sample paths in
D Mkmem[O,oo), and let Yp be an {fF?}-semimartingale. Suppose that for some 0 < § < oo,
C2.2(i) holds and that for all T > 0 and 7 > 0 there exist random variables {7}(1})} such that

(4.12) E[1A[Yn(t+u) — Ya(®)|FR] < Elva ()|FR],  0<u<n, 0<t<T
and lim,__  fim E[vL(n)] = o.
n—0 n— 00 n

If (Xp,Yn) = (X,)Y) in DMkm[O,oo)xDRm[O,oo), then Y is a semimartingale with respect to a
filtration to which X and Y are adapted, and (Xp,Yn,[XpdYp) = (X,Y,[XdY) in
DMIkmemek[O,oo). If (Xp,Yn) — (X,Y) in probability, then the triple converges in probability.

4.4 Remark See Ethier and Kurtz (1986) Theorem 3.8.6 and Remark 3.8.7 for the connection of (4.11)
to conditions for the relative compactness of {Yp}. These conditions imply a type of uniform quasi-
left continuity on the sequence {Yp}. Consequently, this theorem is related to Theorem 5.1 of

Jakubowski, Memin, and Pages (1989).

Proof We need only show that U = 0 in (4.10). The inequality in (4.11) holds with t replaced by a
stopping time. Consequently we have (with reference to (4.8)) for e < 9

(4.12) E[i LA[(Ya(rS AT +en) = Ya(rd AT)[1A|05Xn) (5, AT) - 3 6(xn)(ranT-))ﬂ
‘ i=1

< E|:1Xn: 7E(n)lA|(15(Xn)(fanT) -1 5(xn)(ranT-))|:|

1=1

< mE[7; ()]
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Since the number of discontinuities of J5(Xp) in any finite time interval is stochastically bounded in

n, it follows that U6(t) = 0 for each t > 0. Consequently, U = 0 and the theorem follows.

Noting that if a sequence {Up} is defined on a single sample space and Uy = 0, then Uy — 0 in’
probability, we see that convergence in distribution can be replaced by convergence in probability in

the statement of the theorem. 0

In the next theorem we weaken the assumption that the integrands converge in the Skorohod topology
at the cost of adding the requirement that the limiting integrator be continuous. The conditional

variation on [0,t] of a process X with respect to a filtration {F;} is defined by

(4.13) V(X) = sup E[Z]E[X(ti 40— X(ti)|“fti]|]
1

where the supremum is over all partitions of [0,t]. Mp[0,00) denotes the space of (equivalence classes

of) measurable E-valued functions topologized by convergence in measure.

4.5 Theorem For each n, let (Xp,Yp) be an {?F?}-a;dapted process with sample paths in
DMkmem[O,oo), and let X; and Y, be {‘.FE}-semimartingales. Suppose that for some 0 < § <
00, C2.2(i) holds for {Yp} and that for each t > 0

(4.14) supp (Vi(Xn) + E[iXa(t)l]) < oo

where V.(Xp) is the conditional variation with respect to the filtration {“.F?}. If (Xp,Yn) = (X,Y)
in MMkm[O,oo)xDRm[O,oo) and Y is continuous, then X has a version with sample paths in
D Mkm[(),oo), Y is a semimartingale with respect to a filtration to which X and Y are adapted, and
(Xp,Yn,JXndYn) = (X,Y,[XdY) in MMkm[O,oo)xDRmek[O,oo). If (Xp,Yn) — (X)Y) in
MMkm[O,oo)xDRm[O,oo) in probability, then the triple converges in probability.

Proof Let ¢ be convex, symmetric and c? on R, and suppose that ¢(0) = 0, o' 0 =1,¢" is

decreasing on [0,00), and <p"1 = 0, and define ¥ on Mkm by ¥(x) = > ¢(x:.). Asin (1.4) of
1

Kurtz (1989), there exists an increasing process By such that

(4.15) _ ¥(Xn(tg+t) — Xn(ty)) — (Bn(tg+t) —Bnl(ty))
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is a local {?Fto +t}-supermartingale for each to > 0.
Then setting Cn(t) = Bn(t) + [MJ], + T,(A8) It follows from C2.2(i), that
(4.16)  $(Xn(ty+t) — Xnltg)+ ME(tg+t) — MEGQIZ + [AS(tg+t) — Ad(e)l
— (Calty+t) — Cnlty))

is a local {‘:'Fto +t}-supermartingale for each ty 2 0 and that the conditions of Theorem 1.1 of Kurtz
(1989) are satisfied for Z, = (Xn,Mg,Ag). Let Dp denote the dual predictable projection of
Cn(t)+t, and let vy denote the inverse of Dp. Define Zy(t) = (XD,M,&,,AQ)) = .

limg_, ¢, Zn(yn(s)-). Then {(Zn,yn)} is relatively compact in D R[O,oo)x[O,oo].

P MK RMXxR™xR" s
Furthermore, Y = My + Ap is a sequence of semimartingales satisfying C2.2(i) (with Mp in place
of Mg and 11161 in place of Ag). It follows that if a subsequence of {(Zp,yn)} converges to a

process (Z,‘y), then, setting Z= (X,M,A) and Y = M+A, along that subsequence
(4.17) Vo = [Rpd¥d = [Xd¥ =V

But VpoDy = [Xj dYg, and defining 7'1(t) = inf{ury(u) > t}, then (X,Y) has the same
distribution as (5'(07'1,?07'1) (since the continuity of Y ensures that Yg = Y). The fact that
Yg = Y and that Y is continuous implies that Y is constant on any interval on which v is
constant (by Kurtz (1989), Lemma 2.3(c)) and hence V is also. Furthermore, the continuity of Y
ensures the continuity of V, and it follows from Kurtz (1989), Lemma 2.3, that VpoDp = V07'1 =
j'f(o—y'ld?o'y'l, which gives the theorem. a

The above theorem still is not optimal even in the case of continuous integrands. For example, if each
Yy is a standard Brownian motion and (Xp,Yp) = (X,Y) in Luz‘[O,oo)xDR[O,oo), then [X,dY,
= [XdY. The following theorem comes close to covering this situation at the cost of placing strong
conditions on the relationship between X, and Yp. Of course, other approximations of X; could

be used in place of Xlﬁ defined below.
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4.6 Theorem Let {(Xp,Yn)} satisfy the conditions of Proposition 4.1, and Y, = Mp + Ay + Zp,
where (Mp,Ap,Zp) satisfy the conditions of Theorem 2.7. Define XB by

t

(4.18) xB(e) = h‘lj Xp(s)ds
t—h
Suppose that foreach t > 0 and ¢ > 0
— offt<h 2 ¢ ¢h
(4.19) lim _lim P{ |Xn(s-)—Xn(s-)[“d[Mpls + | |Xn(s-) —Xn(s-)|d(Ts(Ap)+Ts(Zy)) > e}
h—Qn—=0%0 U, 0
=0

If (XD’YD’ZD) = (X,Y,Z) in MMkm[O,OO)XDRmem[O,W), then

t
(4.20) U(t) = lim J xhay
h—0J
exists, and (Xp,Yp,[XpdYpn) = (X,Y,U) in MMkm[O,oo)xDRmek[O,oo). If (Xp,Yn,Zn) —
(X,Y,Z) in MMkm[O,oo)xDRmem[O,oo) in probability, then (Xp,Yy,[XpdYy) — (X,Y,U)

converges in probability.

Proof Since X}ﬁ is locally Lipschitz, the conditions on Hp in Proposition 4.1 ensure that
(xlﬁaYn’Zn) .=> (Xh’Y,Z) in
Consequently, (4.19) implies the result. u}

DMkm me me[O,w) and hence that IXB’ dYn = J'Xh dy.
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5. Stochastic differential equations In this section we generalize results of Slominski (1989). (See also
Hoffman (1989) for results assuming the limiting semimartingale is continuous.) Note that Slominski
also considers Stratonovich equations. Avram (1988) considered the special case of stochastic

exponentials, that is solutions of equations of the form (k = m = 1)
t

(6.1) Xt) =1+ I X(s-)dY(s)
0

For n = 1,2,... let Fn:DRk[O,oo) — DMkm[O,oo), let Uy and Y, Dbe processes with sample paths
in DRK[O,oo) and DRm[O,oo) respectively, adapted to a filtration {??}. Suppose Yy is a
semimartingale and that F; is nonanticipating in the sense that Fp(x,t) = Fn(xt,t) forall t >0

and x € DRk[O,oo), where xt(.) = x(+ At). Let X, be adapted to {G.F?} and satisfy
t
(52) Xa(® = U + | Fa(ks)d¥a®

In order to apply Theorem 2.2 to the study of the weak convergence of solutions of this sequence of

equations to the solution of a limiting equation
t

(5.3) X(t) = U(t) + J F(X,s) dY(s)
0

we need conditions under which weak convergence of the pair (Xp,Yn) = (X,Y) implies
(Yn,Fa(Xn)) = (Y,F(X)). We could, of course, simply assume that (xn,yp) — (xy) in
DkaRm[Ovoo) implies (xn,)'an(xn)) - (xvY1F(x)) in D

assumption we have the following proposition.

kaRmekm[O,OO), and under that

5.1 Proposition Suppose that (Up,Xp,Yy) satisfies (5.2), that {(Up,Xp,Yn)} is relatively compact
in DkakaRm[O,oo), that (Up,Yn) = (U,Y), and that {Yp} satisfies C2.2(i) for some 0 < 6§ <
00. Assume that {F,} and F satisfy

C5.1 If (xn,yn) — (x,y) in the Skorohod topology, then (xp,yn,Fn{(xn)) — (x,,F(x)) in the
Skorohod topology.

Then any limit point of the sequence {Xp} satisfies (5.3).
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Proof First note that if a subsequence of {X,} converges in distribution, then along a further

subsequence the triple will converge in distribution to a process (U,X,Y). Theorem 2.2 then implies

that (5.3) is satisfied. 0
The following lemma, a generalization of Lemma 2.1, shows that the assumption on the sequence
{Fp} 1is valid for many interesting examples. Let Al be the subset of absolutely continuous
functions in A for which () = Iln;\loo is finite.

5.2 Lemma Suppose that {F,} and F satisfy the following conditions:

C5.2(i) For each compact subset % C DRk[O,oo) and t > 0, Supxeﬂ(;S“psgtlFﬂ(x’S) —
F(x,s)| — 0.

C5.2(ii) For {xp} and x in DRk[0’°°) and each t > 0, supg.|xp(s) — x(s)] — 0 implies
supsSt|F(xn,s) — F(x,s)] — 0.

C5.2(iii) For each compact subset % C DRk[O,oo) and t > 0, there exists a continuous function
w:[0,00) — [0,00) with w(0) = 0 such that forall A € Al, supxe%sups<t|F(xo/\,s) -

F(x,A(9))| < w(v(A))-

Then (xp,yn) — (X,y) in the Skorohod topology implies (xp,yn,Fn(xn)) — (xy,F(x)) in the
Skorohod topology.

Proof If (xp,yn) — (x,y¥) in the Skorohod topology, then there exist Ay € Al such that 1(Aq) —

0 and (xpoAp,ynoAn) — (X,y) uniformly on bounded time intervals. Consequently,
(5.4)  Fn(xn,Mn(8)) — F(xs) =

Fa(tn,An(s)) — F(xaAa(s) + F(xn,dn(®) = Fxnodns) + Flxnodns) — F(xe)
goes to zero uniformly in s on bounded intervals. a

5.3 Examples Let g:Ika[O,oo) — MK ang h:[0,00) — [0,00) be continuous. The following
functions satisfy C5.2(ii) and C5.2(iii). ' ’
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a') F(x1t) = g(x(t)’t)
t

b) F(xt) = J h(t—s)g(x(s),s) ds
0

For k=m=1

c) F(xt) = SupSSth(t—S)g(x(S),s)

d)  F(xt) = supg < h(t—s)g(x(s) —x(s-),5)

One shortcoming of Proposition 5.1 is the apriori assumption that the sequence of solutions is relatively
compact. We can avoid this assumption by localizing the result and applying Proposition 4.1. We say
that (X,r) is a local solution of (5.3) if there exists a filtration {F;} to which X, U, and Y are
adapted, Y is an {‘.Fg}-semimartingale, 7 is an {%¥,}-stopping time, and

tAT
(5.5) X(tAT) = U(tAT) + J F(X,s-)dY(s)
0

We say that local uniqueness holds for (5.3) if any two local solutions (X17)s (Xgy79) satisfy X 1(8)
= Xy(t), t T{ATg, a.s. See Protter (1989), Chapter V, for sufficient conditions for uniqueness.

5.4 Theorem Suppose that (Up,Xp,Yn) satisfies (5.1), (Up,Yp) = (U,Y) in the Skorohod topology,
that {Yp) satisfies C2.2(i) for some 0 < § < oo, and that {Fp} and F satisfy C5.1 (see Lemma
5.2). For b > 0, define 7)3 = inf{t:|Fn(Xp,t)|V|Fa(Xp,t-)| > b} and let XB denote the solution of

(5.6) Xg(t) = Un(t) + Jt X, b (S')FD(XB,S') dYp

0 [0,7m)
that agrees with X, on [0,7)}1)). Then {(Un,Xg,Yn)} is relatively compact and any limit point,
(U,XP,Y), gives a local solution (XP,r) of (5.3) with 7 = 5 = inf{|F(XP)|VIF(XP,t)| > c} for
any c < b. If there exists a global solution X of (5.3) and local uniqueness holds, then (Up,Xp,Yn)
= (U,X,Y).

5.5 Remark If U and Y are continuous then, then C5.1 can be replaced by

C5.4 If (xp,yn) — (x,y) in the compact uniform topology (that is (xp(t),yn(t)) — (x(t),y(t))
uniformly on bounded time intervals), then (xp,yn,Fn(xp)) — (%,¥,F(x)) in the Skorohod
topology.
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Recall that if 2z, — z in the Skorohod topology and z is continuous, then z, — z in the compact

uniform topology.

Proof The relative compactness of {(Un,XB,Yn)} is an immediate consequence of Proposition 4.1.

The sequence {(Un,XB,Yn,nB)} will be relatively compact in D ,00)X[0,00]. Let

0
bo b kaR"lem[
(U X ,Y,no) denote a weak limit point. To simplify notation, assume that the original sequence

converges and (with reference to the Skorohod representation theorem) assume that the convergence is

b b

almost sure rather than in distribution. Note that 7~ < 7;.

It follows that Up + [Fu(XR)dY, — U + [F(XP)dY and since

(5.7) XB(t) = Un(t) + r Fn(X3,5)dYn(s)
0

for t < nB,

(5.8) xP(t) = U(t) + r F(XP,s-) dY(s)
0

fort < 173. Let c <b. If n° < 17b, then (5.8) holds for t < n°% If 5® = nb, then F(Xb) has a
discontinuity at 7 with |F(Xb,17c-)| < c¢ and |F(Xb,7]°)| > b. It follows that for ¢ < d < b,
(Un(nD), XR(r2),Yn (1), Yn(nl-). Fu(X,n8) Fu(XR.n8-)nf) converges to
U)X (Y)Y (), Y (%) FEPin ) FKP %) n?) and

d
n
(5.9) xP(yd) = u(nd) + jo P(xbs) dY(s)
so that (5.8) holds for t < 7° (= nd). Consequently, (Xb,nc) is a local solution of (5.3).

If local uniqueness holds for (5.3) and there exists a global solution X, then xP must agree with X

on the interval [0,n°] for all ¢ and b with ¢ < b, and since X is a global solution, it follow that

nb — o0 as b — oco. The convergence in distribution of X to X follows. a
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6. Technical results

Uniform approximation by step functions Let E be a metric space with metric r. Let {Hk} be a
sequence of independent random variables, uniformly distributed on the interval [%,1]. Fix ¢ > 0,
and for z € Dgf0,00) define 9z = 0 and rk+1(z) = inf{t > 7.(2)
r(a(t),2(ry (2))) Ve(z(t-),2(7) (2))) > €y} and set 7, (z) = z(r)(2)). Finally, define Ic(z) by
Ie(z)(t) = 7y (2) for 7 (2) <t <7 +1(z). Note that r(z(t),l¢(z)(t)) < € forall t. Let U; =
{uzu = r(z(t),2(0)) or r(z(t-),2(0)) for some t such that z(t) # z(t-)}, and defining m(t) =
sup, «1(2(8),2(0)), let Uy = {m(t):m is not strictly increasing at t}. U; and U, are countable, so
with probability one, 600 g UjuU,. Let zp — z and assume that 600 ¢ U,UU,. Either m is
strictly increasing at 7,(z) or r(z(ry(2)-),2(0)) < €8y < r(z(r,(2)),2(0)), and it follows that r,(zp)
— 74(z). Either z is continuous at 71(2) or ©(z(r(2)-),2(0)) < €8y < r(z(7(2)),2(0)), and it .
follows that v;(zn) — 71(z). In general, if zy — z in the Skorohod topology, tn — t and zy(tp)
— z(t), then zp(tp+-) — z(t+:) in the Skorohod topology. Consequently, zp — z implies
z2n(71(zn)++) — 2(7{(z)+-) as. An induction argument then shows that zp — z implies 7 (zn)
— 7 (z) and 7x(Zn) — 7(2) as for all k. With these observations, we can prove the following

lemma.

6.1 Lemma Let I, be defined as above. If z; — z in the Skorohod topology on DE[O,oo), then

(2n)1e(2n)) — (2,1¢(z)) as. in the Skorohod topology on Dg g[0,00).
To carry out the proof, we need the following (see Proposition 3.6.5 of Ethier and Kurtz (1986)).

6.2 Lemma For an arbitrary metric space (E',r'), vp — v in the Skorohod topology on DE,[O,oo)

if and only if the following conditions hold:
C6.2() If ty — t, then limpy oo’ (vn(tn),v(t)) Ar'(vp(tn),v(t-)) = 0

C6.2(i)) I sp > tp, sp,tp — t,and vy(ty) — v(t), then vp(sp) — v(t).

Proof of Lemma 6.1 Suppose zp — 2z in DE[O,oo) and tp, — t. If rk(z) <t < Tk+1(z), then
Ie(z) is continuous at t, I¢(zn)(tn) — 7, (2) = I¢(z)(t), and C6.2(i) and (ii) follow for {(zn,l¢(zn))}
by the analogous conditions for {zp}. If t = 'rk(z), we can assume that either z is continuous at

7. (2) or r(z(ry(2)-)2(r)_1(2))) < €byy < r(z(7 (2)),2(7)_1(2))). The convergence of 7 ,(zn),
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) (zn)s 7k_1(zn), and 7 (zn) implies C6.2(i) and (ii) for {I¢(zn)}, and if z is continuous at 7 (z),
C6.2(i) and (ii) follow for {(zn,le(zn))}. I r(z(7(2)-),2(7)_1(2))) < €b) 1 < 1(z(7 (2)),2(T_1(2))),
then, with probability one, for n sufficiently large the same inequality holds with z replaced by zj.
Consequently, if tp > 7, (zn) and tn — 7y (2), then zn(tn) and I¢(zp)(tn) both converge to
7(2), and if tp < Ti(zn) and ty — ¢, then zp(tn) converges to z(7,(z)-) and Ie(zn)(tn)
converges to 7} _;(z) = Ie(z)(r) (2)-). C6.2(i) and (ii) follow for {(zpn,l¢(zn))}- 0

Uniform tightness Jakubowski, Memin, and Pages (1989) and Slominski (1989) develop their results

under a “uniform tightness” condition. We discuss this condition for a sequence of one-dimensional
semimartingales {Y,} satisfying Yp(0) = 0. The results below are essentially contained in Lemma

3.1 of Jakubowski, Memin, and Pages (1989). They are presented here for completeness.

Let Jo, denote the collection of cadlag {EF?}-adapted, R-valued processes satisfying |Hp(t)] <1 for
all t > 0. Then {Yp} is uniformly tight if for each t > 0

t

(6.1) {[ Hy(s-)dYn(s): Hy € %n, 0 = 1,2,...}
0

is stochastically bounded.

Assume that {Yp} is uniformly tight. Let T, denote the collection of {?E}-stopping times. For =
€ T, and € > 0,1let Hy = X[o,r) Then the integral in (6.1) gives Yp(tA7), and we see that for
each t > 0, {Yp(tA7):7 € Ty, n = 1,2,...} is stochastically bounded. Considering the collection of
stopping times of the form 7 = inf {s:|Yn(s)| > c}, it follows that {supg[Yn(s)l:in = 1,2,...} is .
stochastically bounded. Recalling that -

9 t
(62) Yal, = Ya()? - [02Yn<s»)dvn(s)

and using the stochastic boundedness of the suprema, we see that {[Yp];:n = 1,2,...} is stochastically

bounded. -

The stochastic boundedness of the quadratic variations ensures that the uniform tightness of {Yy}
implies uniform tightness of {Y2} for each 0 < & < 0o. Fix 0 < & < oo and let Y5 = M{ +
AS be the canonical decomposition of Y3 (Protter (1989) §IIL5). Then the discontinuities of M§
and Ag are bounded by 26, and E[[Yg].,-] = E[[Mg].,-] + E[[Ag],—] for any stopping time 7 (with
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the possibility of co = oo) (Protter (1989) §IV.2.) Let 75 = inf {s:[Yg]s >c}. Fix t andfork =
yeo o let {ti‘} be a partition of [0,t] with lim) |  max;(t; +1— %) = 0. Define

k . 6.k c 6.k A _cri
(6.3) Hp = E :s1gn E[An(t, 1 Avn) — An(t Avn)IF¢]
i ( + ' t') [tk/\‘Yn,tk 1/\7n)

The first term on the right of

(6.4) Ju 2 (s)dvd(s) = Ju X (s-) dME(s) + Ju HE(s-)dAS(s) = UK(w) + VE(u)
0 0 0

satisfies

(6:5) Efsups < UR(s)?] < 4EIME(tATS)Y] < 4(c+(26))

S0 {U]ﬁ(t):k,n = 1,2,...} is stochastically bounded which, by the stochastic boundedness of (6.1) (with
Yn replaced by Yg), implies the stochastic boundedness of {V%(t):k,m = 1,2,...}. But the

predictability of Ag implies

é
(6.6) T, c(AD)
= tim > sign(EAR (1 A75) — ARG AB)IFE]) (AR, AvE) — Ad(F A9D)
= lim _, __ VE(t)

(see Dellacherie and Meyer (1982), page 423) so {Tt Ay c(An)} is stochastically bounded for each «c.
But the stochastic boundedness of { [Yn]t} for each t 1mphes that for each ¢ > 0, there exists a ¢
such that P{y§ < t} < ¢ and hence there exists an a > 0 such that P{Tt(An)Za} <
P{Tt A7ﬁ(Ag)2a} + P{7§ < t} < 2¢, verifying the stochastic boundedness of {Tt(Ag)} and
C2.2(ii). C2.2(iii) is immediate, so C2.2(i) holds.

If {Yp} is relatively compact and satisfies C2.2(i) for some & > 0, then Proposition 4.1 implies
uniform tightness for {Yp}. Actually the relative compactness is not needed. If there exists a é for

which {J5(Yn)} is stochastically bounded and C2.2(i) holds, then {Yy} is uniformly tight.
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