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Abstract

It is observed that unbiased estimators are always inadmissible when the parameter
(or function of the parameter) being estimated has either a maximum or a minimum at
a parameter value for which the probability distribution is nondegenerate. Examples of
problems where this is so include variance components problems, problems with restricted
parameter spaces, and estimation of the risk or variance of shrinkage estimators.

1. INTRODUCTION

It has long been recognized that unbiased estimators can be unsatisfactory. For in-
stance, from the decision-theoretic perspective, unbiased estimators can frequently be

shown to be inadmissible.

One of the most famous instances of inadmissibility arises in estimation of a multi-
variate normal mean (in at least three dimensions), where the usual unbiased estimator is
inadmissible under quadratic loss (cf., Stein, 1981). Curiously, the study of improved esti-
mators, the so—called shrinkage estimators, has led to a resurgence in interest in unbiased
estimation. This is because shrinkage estimators have risk functions (or mean squared
error functions) that are nonconstant and typically unavailable in closed form. This makes
reporting the accuracy of shrinkage estimators potentially difficult. But it so happens
that relatively simple closed form unbiased estimators of the risk (or mean squared error)
functions can be developed (based on ideas in Stein, 1981); these have hence come under
considerable scrutiny (cf., Johnstone, 1981, Lu and Berger, 1989, and Berger and Robert,
1988).

In Berger and Robert (1988), an extensive study of estimating the accuracy of shrink-
age estimators was undertaken, focusing on comparison of unbiased measures of accuracy
and Bayesian measures of accuracy. It was observed that unbiased estimators of risk (say)

often have extreme and undesirable behavior near maxima or minima of the risk function.
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The reason is apparent after a little thought, and immediately generalizes to an inad-
missibility result, given herein, for unbiased estimation of any quantities that have global
maxima or minima at parameter values for which the probability distribution is nonde-
generate. Perhaps the main insight to be gained from this note is that inadmissibility of

unbiased estimators is likely to be the rule, rather than the exception.

2. INADMISSIBILITY

Suppose one observes X € X having density f(z|0) with respect to a measure v on X,
where the unknown 8 is in the parameter space ©. It is desired to estimate a real valued
function h(6) under a loss function L(d, k(8)) which is strictly increasing in d for d > h(6)
and strictly decreasing in d for d < h(6) (i.e., the loss increases as the estimate moves away

from the actual £(8)). The key assumption follows.

Condition 1. The function k(#) is nonconstant and has a global maximum or a global

minimum at a point §* € © for which f(z|0*) > 0 for almost all (w.r.t. v) z € X.

Considerably more general conditions could be utilized, but Condition 1 covers virtu-
ally all the relevant examples and is comparatively simple. The following lemma contains

the key idea.

Lemma 1. Suppose that Condition 1 holds, where §* minimizes h(8), and that fz(z) is
an unbiased estimator of h(f). Define A, = {z € X:h(z) < h(*) — €}. Then there
exists € > 0 such that Pg(Ac) > 0. If §* maximizes h(f), the conclusion is true with the

inequality in the definition of A. reversed.

Proof. Supposing §* minimizes h(f) (the maximizing case is done similarly), we will
proceed by contradiction. Thus suppose that, for all € > 0, iz(X ) > h(0*) — € with P —
probability one. It follows that

Py (R(X) — R(6*) > 0) = 1. | (1)

Unbiasedness of £ implies that

Ee-[h(X) - h(0%) =0. (2)
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But (1) and (2) can hold at the same time only if
Py (R(X) = h(8%)) = 1.
Because of Condition 1, this can hold only if
h(z) = h(6*) a.e. (). (3)
But, if (3) holds, it is clear that E[h(X)] = h(6*) for all § € ©, which contradicts the

nonconstancy of h(#) in Condition 1. 0

Lemma 1 establishes that, with positive probability, ﬁ(X ) must be less than the known
minimum of h(#) (and/or greater than the known maximum). This is clearly unreasonable;
one should never use an estimate of £(f) that lies outside the known range of k(). The

following theorem states this rigorously.

Theorem 1. Under the assumptions of Lemma 1, if & has finite risk function
R(h,h(8)) = EsL(R(X),k(6)),

then A is an inadmissible estimator of h(#). A better estimator is obtained by truncating

h(z) at the minimum (and/or maximum) k(6*).

Proof. For the case where h(6*) is a minimum (the other case is handled similarly), the

truncated estimator is

=+ [h(z) if k(z)> h(6*)
h(z) = {h(o*) if h(z) < h(6*).

The difference of the risk functions of % and k is
R(h, h(68)) — B(h, h(6)) = Bo[L(h(X), h(6)) — L(A(X), h(0))

= [ (@) - L), kO e )
{z:h(z)<h(6*)}

> /[L(h(ﬂ*) — &,h(6)) — L(h(6), h(0))]f (=[0)dv(z)
= Py(Ac)[L(h(07) — &, h(6)) — L(h(6"), h(0))]-
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By the assumption on L, the term in brackets is positive for all €, so that we immediately

have

R(k,h(0)) < R(k,h(0)). (4)

Also, Py« (A.) > 0 by Lemma 1 (for some € > 0), so that the inequality in (4) is strict for
9 = 6*. Hence h is better than h. O

3. EXAMPLES

Example 1. (Shrinkage Estimation). Suppose X = (X3,...,X,) ~ Np(6,I), where 6 =
(61,-..,0,), and it is desired to estimate 6 under the quadratic loss (d—6)*Q(d—0), where Q
is a positive definite matrix. Shrinkage estimators of 8 are of the form 6(z) = (I — H(z))z,
where H(z) is the shrinkage factor (possibly matrix—valued). Shrinkage estimators always
have risk functions, h{6,6) = E¢[(0 — 6(X))*Q(6 — 6(X))], that have a global minimum
at some point * (which need not be unique), so that Condition 1 is clearly satisfied.
Furthermore, using integration by parts (cf. Stein (1981), Berger and Robert (1988)), one
can find an unbiased estimator, hs (z), of h(#,6). Under any reasonable loss L(iz, h) (eg.,
any bounded loss or squared error loss), one can establish that EgL(k(X),k(0)) is finite,
so that Theorem 1 applies; it is thus better to truncate hs (z) at h(6%,6).

For many shrinkage estimators, h(f,6) also has a maximum at some 6*. (Not all
shrinkage estimators have this property; e.g., for minimax shrinkage estimators the maxi-
mum of h(0,8) is typically at |§| = c0.) Then Lemma 1 and Theorem 1 also apply to the

maximumn.

The amount by which iza(z) is excessively small or large can be very substantial,
as illustrated in Berger and Robert (1989). Similar conclusions also apply to unbiased

estimation of variances of shrinkage estimators.

Example 2. (Variance Components). Although Theorem 1 will apply to general variance

components problems, the main ideas can be seen by looking at the simple one-way model
Xij=p+oi+ey, 1=1,...,]Jandj=1,...,J,

where ;; ~ N (0,02) and a; are N (0,72), all independently, and p,0?%, and 7% are unknown.
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Consider, first, estimation of h(u,72,0%2) = 72. This function is clearly minimized

at 72 = 0 (with any values of u and ¢%). Furthermore, even at 72 = 0 the support of
the probability distribution is the entire sample space. Thus Condition 1 is satisfied and
Theorem 1 applies: for any loss function for which the risks exist, any unbiased estimator
of 72 is inadmissible because it must, with positive probability, assume values that are
negative (less than zero, the minimum of 72). It is, of course, well known that the best

unbiased estimator of 72 can be negative, and that this is inadmissible.

Next, consider h(u,72,02) = o%. This function likewise is minimized at 0? = 0 (and
any values of 4 and 72), but now Condition 1 is not satisfied. (The probability distribution
is degenerate when o2 = 0, with X;; = X;2 = ... = X,  for all ¢.) Indeed, the unbiased

estimator for 6% does here only assume values in the range, [0, c0), of o2.

Example 3. (Restricted Parameter Spaces). For completeness, we note that Condition 1
and Theorem 1 typically will apply to situations in which unbiased estimators exist for
a general parameter space ©*, but the actual problem has the parameter restricted to a
subset, O, of ©*. An estimator that is unbiased with the general ®* is also clearly unbiased
over the smaller ©. And, over the smaller ©®, Condition 1 will typically be satisfied. The
inadmissibility of unbiased estimators here is, of course, not a surprise, since again they

virtually always assume values outside the actual parameter space ©.
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