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Let X be a semimartingale. A norm commonly used on the space of semimartingales

is the H? norm: One defines

5p(M, A) = ||[M, M]L? + / 1A, |12

0

for any decomposition X = M 4 A with M a local martingale and A an adapted, right

continuous process with paths of finite variation on compacts. Then
Xl = _inf ip(M, 4)

where the infimum is taken over all such decompositions of X. Then as is well known (see,

for example, Emery [2] or Protter [7], Theorem 2 of Chapter V):
IX* Iz Sl Xllr  (1<p<o0)

where X* = sup | X¢|, and ¢, is a universal constant. An immediate consequence is that if
t

a sequence of semimartingales X" converges to X in H!, then
lim E{(X"-X)*} =0
n—o0

as well.

In this paper we examine the converse question: if X™ = M™ + A" is a sequence
of semimartingales converging uniformly in L! to a process X, what can be said about

the convergence of the M™ and A™ processes of the decompositions? Such a question
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is closely related to recent work on weak convergence of semimartingales: In particular

Jacod-Shiryaev [3], Jakubowski-Mémin-Pages [4], and Kurtz-Protter [5].

The examination of two simple examples illustrates the problems that arise and shows

that one cannot expect a full converse.

Let Y be any continuous, adapted process with ¥y = 0 and Y constant on [1, c0); set

t
th :n/ Y;dS]-{t>1/n}°
t—1/n

Then X" is a differentiable function of ¢ in [L, 00) for each n and in particular each X" is
of finite variation (and hence it is a semimartingale). However the limit ¥ need not be a

semimartingale.

The preceding example indicates that we have to impose some type of uniform bound
on the total variation of the A™ processes. But even if we do this we cannot hope always
to obtain convergence of the A™ processes in total variation norm. Indeed, let 0 < ¢ < z

and define A} = < sinnt. Then fow/ ? |[dA?| =1, but (A™)* converges to zero.

The following theorem avoids the pathologies of the two preceding examples. Recall
that a semimartingale X in H* is special: that is, it always has a unique decomposition
X = Xo+ M + A, where My = Ay = 0, and the finite variation process A is predictable.

Such a decomposition is said to be the canonical decomposition.

Theorem 1. Let X™ be a sequence of semimartingales in H! with canonical decomposition

X" =X + M"™ + A", satisfying for some constant K,

(1a) B T ldAm) <K

(16) E{(M")*} < K.

Let X be a process, and suppose that

2) E{(X"-X)'} >0  asn— co.
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Then X is a semimartingale in H?, and if X = X, + M + A is its canonical decomposition

we have

(3) BUMY <K, B{[ lAl<K
0

and

(4a) lim ||[M" — M||3n =0,

(4b) lim E{(A™ - A)*} =0.

Corollary 2. Let (X™) be a sequence of special semimartingales with canonical decom-
position X" = X + M™ + A", where the A™ satisfy (1a). Then if X is a process such
that lim ||(X™ —X)*||» =0, X is a special semimartingale. Furtherif X = X, + M + A

is its canonical decomposition, then

lim ||[M™ — M|}z =0,  lim E{(A™ — 4)*} =0, E{/ dA,|} < K.
n-—>00 n—oo o

Proof. By deleting a finite number of terms in the sequence (X™), we may suppose that

E{(X™ - X)*} < K for n > 1. But then
E{(M"™ - M)} < E{IX§ — X, |} + B{(X" - X)*} + E{(4" - A")*}

<4K.

So write X® = X" — M = X2 + (M™ — M') 4+ A", X = X — M'. Then the hypotheses
of Theorem 1 hold for X”, X and the conclusion follows easily. U

The proof of Theorem 1 uses some ideas from Kurtz and Protter [5], and it also needs

the following martingale inequality.

Proposition 3. Let p > 1/2, M be a martingale in H*? and K be a predictable process
with K* € L*?. Then

(K - M)*||zs < cpl|[K™||z2e [|M*|| 22
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Proof. Recall the Davis decomposition of M — see Meyer [6, p. 80-81]. Let AM, =

My — M,_. Let Ay = sup|AM,|: then M = N + U, where N is a martingale with
<t

|AN:| < A¢_, and U is a martingale with paths of integrable variation satisfying

||/|dUs|||Lq < collAoollze, g3 1.

Further, we have the pointwise inequalities

Ao < 2M*,
[NIL? < (M1 + (UL,
[U]Y/? < 44.,.

Now (K - M)* < (K -N)*+ (K -U)*, and |[A(K - N);| < K;A;. Hence, by Meyer [6],
Theorem 2 on p. 76,

(K - M)*||ze < ep(I(IK - Nloo + (K* Aoo ) *||zs + I(K - U)*|Izr)
< ep(II[K - NI + K™ Acollze + |I(K - U)*[|z)

< (I[N 2w + (1K *M*||10 + II/IKstUsIIILp)

< (K ML || s + (1K M* || o + || K / U ll120).

The proof is concluded by applying Holder’s inequality, and noting that || [ [dUs|||p2» <

¢p||M*||L2o. (The constant ¢, changes from place to place in the preceding.) O

Remarks. 1. Of course, for p > 1 this inequality is an immediate consequence of the

Burkholder-Davis-Gundy inequalities.

2. This inequality is not true in general for 0 < p < 1/2.

Proof of Theorem 1. First note that as X is the a.s. uniform limit of a subsequence of

the X™, X is cadlag. Also, as || X — Xo||z1 — 0, we may take XJ = X, = 0.

Let H be an elementary predictable process, that is a process of the form

k
Ht = Z hil(t.-,t,'+1](t)’
i=1
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where h; € Fy;, |hi] <1, and t; < t2 < ... < tx. Then writing H - X for the elementary

stochastic integral of H with respect to X, tx+; = 0o, we have

k+1
E{(H-X)oo} = E{)_ hi(Xsy, — X1,)}
=1
k+1
= lim E{} hi(X],, —X7)}
i=1
= lim B{| H.dA?}<K.
n—oo 0

So by the Bichteler-Dellacherie theorem (e.g., Dellacherie-Meyer [1]) X is a quasimartin-
gale, and therefore a special semimartingale. Hence X has a canonical decomposition
X = M + A, with M a local martingale and A a predictable finite variation process.
Choose a sequence (T%) reducing M. Then, if H is an elementary predictable process,

E{(H - A)p,} = B{(H - X)1,} = lim B{(H - X")7,} < K. Thus

Tk
E{/ |dAs|} < K, for each k > 1,
0

and hence E{ [ |[dA,|} < K.

NowM=X-A=(X-X")+(M"+ A") — A, and so

oo

M* S(X—-X")*+(M")*+/ |dA’;|+/ |dAs|.
0 0

Thus E{M*} < 3K < o0, and M is a martingalein H'. Set Y = X" - X, N" = M"— M,
B™ =A™ — A: 'We have

B / dBP|} < 2K,  E{(N"Y'} <2K, limE{(Y"™)*}=0.
0 n
To complete the proof it is enough to prove that
(5) lim E{[Y™)/?} =0.

For then, by Dellacherie and Meyer [1], section VII.95, we have E{[B"]'/?} < 2E{[Y"]'/?}.
Hence, as [N™]1/2 < [BM]1/24[Y™]/2, E{[N"]5?} < 3E{[Y"]2L?}, so that limp—co || N |22
= 0. This implies that E{(M™ — M)*} — 0, and hence that coc E{(A™ — A)*} — 0. Finally,
E{M*} < K follows from (4a) and (1b).



To show that lim E {[Y”]éf} = 0, use integration by parts to conclude
n—oo

[V™oo = (Y2)? — 2/ Y™ dNT — z/ Y™ dA™,
0

0

and so, writing U®" =Y". N",
(6) E{lY"ILf*} < B{(Y")*}+2'PE{((U™))/*} + 21/2E{(/ YL [[dAT])2Y.
0

By Proposition 2
B{(U))?) < (B ™) DY (B{N") 2
< CKI/Z(E{(Y'n)*})lﬂ‘

Similarly, the third term in (6) is dominated by

B{((Y™)" / T dATIY?) < (BT DYA(B / T jdar
< KM EB{(Y™) 2.

Thus limp—e E{[Y"]3*} = 0. O
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