ON CONVERGENCE OF SEMIMARTINGALES

by

Martin T. Barlow¹

Statistical Laboratory

16 Mill Lane Cambridge CB2 15B

England

and Philip Protter²
Mathematics and

Statistics Departments

Purdue University

W. Lafayette, IN 47907

U.S.A.

Technical Report #89-07

Department of Statistics Purdue University

April 1989

¹ Supported by a NSF grant while visiting Cornell University

² Supported in part by NSF grant #DMS-8805595

ON CONVERGENCE OF SEMIMARTINGALES

by

Martin T. Barlow¹ and Philip Protter²
Statistical Laboratory Mathematics and
16 Mill Lane Statistics Departments
Cambridge CB2 15B Purdue University
England W. Lafayette, IN 47907
U.S.A.

Let X be a semimartingale. A norm commonly used on the space of semimartingales is the \mathcal{H}^p norm: One defines

$$j_p(M,A) = ||[M,M]_{\infty}^{1/2} + \int_0^{\infty} |dA_s|||_{L^p}$$

for any decomposition X = M + A with M a local martingale and A an adapted, right continuous process with paths of finite variation on compacts. Then

$$||X||_{\mathcal{H}^p} = \inf_{X=M+A} j p(M,A)$$

where the infimum is taken over all such decompositions of X. Then as is well known (see, for example, Emery [2] or Protter [7], Theorem 2 of Chapter V):

$$||X^*||_{L^p} \le c_p ||X||_{\mathcal{H}^p} \qquad (1 \le p < \infty)$$

where $X^* = \sup_{t} |X_t|$, and c_p is a universal constant. An immediate consequence is that if a sequence of semimartingales X^n converges to X in \mathcal{H}^1 , then

$$\lim_{n\to\infty} E\{(X^n - X)^*\} = 0$$

as well.

In this paper we examine the converse question: if $X^n = M^n + A^n$ is a sequence of semimartingales converging uniformly in L^1 to a process X, what can be said about the convergence of the M^n and A^n processes of the decompositions? Such a question

¹ Supported by a NSF grant while visiting Cornell University

² Supported in part by NSF grant #DMS-8805595

is closely related to recent work on weak convergence of semimartingales: In particular Jacod-Shiryaev [3], Jakubowski-Mémin-Pages [4], and Kurtz-Protter [5].

The examination of two simple examples illustrates the problems that arise and shows that one cannot expect a full converse.

Let Y be any continuous, adapted process with $Y_0 = 0$ and Y constant on $[1, \infty)$; set

$$X_t^n = n \int_{t-1/n}^t Y_s ds 1_{\{t > 1/n\}}.$$

Then X^n is a differentiable function of t in $\left[\frac{1}{n}, \infty\right)$ for each n and in particular each X^n is of finite variation (and hence it is a semimartingale). However the limit Y need not be a semimartingale.

The preceding example indicates that we have to impose some type of uniform bound on the total variation of the A^n processes. But even if we do this we cannot hope always to obtain convergence of the A^n processes in total variation norm. Indeed, let $0 \le t \le \frac{\pi}{2}$, and define $A_t^n = \frac{1}{n} \sin nt$. Then $\int_0^{\pi/2} |dA_s^n| = 1$, but $(A^n)^*$ converges to zero.

The following theorem avoids the pathologies of the two preceding examples. Recall that a semimartingale X in \mathcal{H}^1 is special: that is, it always has a unique decomposition $X = X_0 + M + A$, where $M_0 = A_0 = 0$, and the finite variation process A is predictable. Such a decomposition is said to be the canonical decomposition.

Theorem 1. Let X^n be a sequence of semimartingales in \mathcal{H}^1 with canonical decomposition $X^n = X_0^n + M^n + A^n$, satisfying for some constant K,

$$(1a) E\{\int_0^\infty |dA_s^n|\} \le K$$

$$(1b) E\{(M^n)^*\} \le K.$$

Let X be a process, and suppose that

(2)
$$E\{(X^n - X)^*\} \to 0 \quad \text{as } n \to \infty.$$

Then X is a semimartingale in \mathcal{H}^1 , and if $X = X_0 + M + A$ is its canonical decomposition we have

(3)
$$E\{M^*\} \le K, \qquad E\{\int_0^\infty |dA_s|\} \le K$$

and

$$\lim_{n \to \infty} ||M^n - M||_{\mathcal{H}^1} = 0,$$

(4b)
$$\lim_{n \to \infty} E\{(A^n - A)^*\} = 0.$$

Corollary 2. Let (X^n) be a sequence of special semimartingales with canonical decomposition $X^n = X_0^n + M^n + A^n$, where the A^n satisfy (1a). Then if X is a process such that $\lim_{n\to\infty} ||(X^n - X)^*||_{L^1} = 0$, X is a special semimartingale. Further if $X = X_0 + M + A$ is its canonical decomposition, then

$$\lim_{n \to \infty} ||M^n - M||_{\mathcal{H}^1} = 0, \qquad \lim_{n \to \infty} E\{(A^n - A)^*\} = 0, \qquad E\{\int_0^\infty |dA_s|\} \le K.$$

Proof. By deleting a finite number of terms in the sequence (X^n) , we may suppose that $E\{(X^n-X)^*\} \leq K$ for $n \geq 1$. But then

$$E\{(M^n - M^1)^*\} \le E\{|X_0^n - X_0^1|\} + E\{(X^n - X)^*\} + E\{(A^n - A^1)^*\}$$

$$\le 4K.$$

So write $\tilde{X}^n = X^n - M^1 = X_0^n + (M^n - M^1) + A^n$, $\tilde{X} = X - M^1$. Then the hypotheses of Theorem 1 hold for \tilde{X}^n , \tilde{X} and the conclusion follows easily.

The proof of Theorem 1 uses some ideas from Kurtz and Protter [5], and it also needs the following martingale inequality.

Proposition 3. Let $p \ge 1/2$, M be a martingale in \mathcal{H}^{2p} and K be a predictable process with $K^* \in L^{2p}$. Then

$$||(K \cdot M)^*||_{L^p} \le c_p ||K^*||_{L^{2p}} ||M^*||_{L^{2p}}.$$

Proof. Recall the Davis decomposition of M — see Meyer [6, p. 80–81]. Let $\Delta M_s = M_s - M_{s-}$. Let $A_t = \sup_{s \le t} |\Delta M_s|$: then M = N + U, where N is a martingale with $|\Delta N_t| \le A_{t-}$, and U is a martingale with paths of integrable variation satisfying

$$||\int |dU_s|||_{L^q} \le c_q ||A_\infty||_{L^q}, \quad q \ge 1.$$

Further, we have the pointwise inequalities

$$A_{\infty} \le 2M^*,$$

 $[N]_{\infty}^{1/2} \le [M]_{\infty}^{1/2} + [U]_{\infty}^{1/2},$
 $[U]_{\infty}^{1/2} \le 4A_{\infty}.$

Now $(K \cdot M)^* \leq (K \cdot N)^* + (K \cdot U)^*$, and $|\Delta(K \cdot N)_t| \leq K_t^* A_t$. Hence, by Meyer [6], Theorem 2 on p. 76,

$$||(K \cdot M)^{*}||_{L^{p}} \leq c_{p}(||([K \cdot N]_{\infty} + (K^{*}A_{\infty})^{2})^{1/2}||_{L^{p}} + ||(K \cdot U)^{*}||_{L^{p}})$$

$$\leq c_{p}(||[K \cdot N]_{\infty}^{1/2} + K^{*}A_{\infty}||_{L^{p}} + ||(K \cdot U)^{*}||_{L^{p}})$$

$$\leq c_{p}(||K^{*}[N]_{\infty}^{1/2}||_{L^{p}} + ||K^{*}M^{*}||_{L^{p}} + ||\int |K_{s}||dU_{s}|||_{L^{p}})$$

$$\leq c_{p}(||K^{*}[M]_{\infty}^{1/2}||_{L^{p}} + ||K^{*}M^{*}||_{L^{p}} + ||K^{*}\int |dU_{s}|||_{L^{p}}).$$

The proof is concluded by applying Holder's inequality, and noting that $||\int |dU_s|||_{L^{2p}} \le c_p ||M^*||_{L^{2p}}$. (The constant c_p changes from place to place in the preceding.)

Remarks. 1. Of course, for $p \ge 1$ this inequality is an immediate consequence of the Burkholder-Davis-Gundy inequalities.

2. This inequality is not true in general for 0 .

Proof of Theorem 1. First note that as X is the a.s. uniform limit of a subsequence of the X^n , X is cadlag. Also, as $||X_0^n - X_0||_{L^1} \to 0$, we may take $X_0^n = X_0 = 0$.

Let H be an elementary predictable process, that is a process of the form

$$H_t = \sum_{i=1}^k h_i 1_{(t_i, t_{i+1}]}(t),$$

where $h_i \in \mathcal{F}_{t_i}$, $|h_i| \leq 1$, and $t_1 < t_2 < \ldots < t_k$. Then writing $H \cdot X$ for the elementary stochastic integral of H with respect to X, $t_{k+1} = \infty$, we have

$$E\{(H \cdot X)_{\infty}\} = E\{\sum_{i=1}^{k+1} h_i (X_{t_{i+1}} - X_{t_i})\}$$

$$= \lim_{n \to \infty} E\{\sum_{i=1}^{k+1} h_i (X_{t_{i+1}}^n - X_{t_i}^n)\}$$

$$= \lim_{n \to \infty} E\{\int_0^\infty H_t dA_t^n\} \le K.$$

So by the Bichteler-Dellacherie theorem (e.g., Dellacherie-Meyer [1]) X is a quasimartingale, and therefore a special semimartingale. Hence X has a canonical decomposition X = M + A, with M a local martingale and A a predictable finite variation process. Choose a sequence (T_k) reducing M. Then, if H is an elementary predictable process, $E\{(H \cdot A)_{T_k}\} = E\{(H \cdot X)_{T_k}\} = \lim_n E\{(H \cdot X^n)_{T_k}\} \leq K$. Thus

$$E\{\int_0^{T_k} |dA_s|\} \le K, \quad \text{ for each } k \ge 1,$$

and hence $E\{\int_0^\infty |dA_s|\} \le K$.

Now
$$M=X-A=(X-X^n)+(M^n+A^n)-A,$$
 and so
$$M^*\leq (X-X^n)^*+(M^n)^*+\int_0^\infty |dA_s^n|+\int_0^\infty |dA_s|.$$

Thus $E\{M^*\} \leq 3K < \infty$, and M is a martingale in \mathcal{H}^1 . Set $Y^n = X^n - X$, $N^n = M^n - M$, $B^n = A^n - A$: We have

$$E\{\int_0^\infty |dB_s^n|\} \le 2K, \qquad E\{(N^n)^*\} \le 2K, \quad \lim_n E\{(Y^n)^*\} = 0.$$

To complete the proof it is enough to prove that

(5)
$$\lim_{n \to \infty} E\{[Y^n]_{\infty}^{1/2}\} = 0.$$

For then, by Dellacherie and Meyer [1], section VII.95, we have $E\{[B^n]^{1/2}\} \leq 2E\{[Y^n]^{1/2}\}$. Hence, as $[N^n]^{1/2} \leq [B^n]^{1/2} + [Y^n]^{1/2}$, $E\{[N^n]^{1/2}_{\infty}\} \leq 3E\{[Y^n]^{1/2}_{\infty}\}$, so that $\lim_{n\to\infty} ||N^n||_{\mathcal{H}^1} = 0$. This implies that $E\{(M^n - M)^*\} \to 0$, and hence that $\infty E\{(A^n - A)^*\} \to 0$. Finally, $E\{M^*\} \leq K$ follows from (4a) and (1b).

To show that $\lim_{n\to\infty} E\{[Y^n]_{\infty}^{1/2}\}=0$, use integration by parts to conclude

$$[Y^n]_{\infty} = (Y^n_{\infty})^2 - 2\int_0^{\infty} Y^n_{s-} dN^n_s - 2\int_0^{\infty} Y^n_{s-} dA^n_s,$$

and so, writing $U^n = Y_-^n \cdot N^n$,

(6)
$$E\{[Y^n]_{\infty}^{1/2}\} \le E\{(Y^n)^*\} + 2^{1/2}E\{((U^n)^*)^{1/2}\} + 2^{1/2}E\{(\int_0^\infty |Y_{s-}^n||dA_s^n|)^{1/2}\}.$$

By Proposition 2

$$E\{((U^n)^*)^{1/2}\} \le c(E\{(Y^n)^*\})^{1/2}(E\{(N^n)^*\})^{1/2}$$

$$\le cK^{1/2}(E\{(Y^n)^*\})^{1/2}.$$

Similarly, the third term in (6) is dominated by

$$E\{((Y^n)^* \int_0^\infty |dA_s^n|)^{1/2}\} \le (E\{(Y^n)^*\})^{1/2} (E\{\int_0^\infty |dA_s^n|\})^{1/2}$$

$$\le K^{1/2} (E\{(Y^n)^*\})^{1/2}.$$

Thus $\lim_{n\to\infty} E\{[Y^n]_{\infty}^{1/2}\}=0.$

References

- 1. C. Dellacherie, P. A. Meyer, "Probabilities and Potential B," North-Holland, Amsterdam New York (1982).
- 2. M. Emery, Stabilité des solutions des équations différentielles stochastiques; applications aux intégrales multiplicatives stochastiques; Z. Wahrscheinlichkeitstheorie 41 (1978), 241–262.
- 3. J. Jacod, A. N. Shiryaev, "Limit Theorems for Stochastic Processes," Springer, Berlin Heidelberg New York (1987).
- 4. A. Jakubowski, J. Mémin, G. Pages, Convergence en loi des suites d'intégrales stochastiques sur l'espace D^1 de Skorohod; to appear in Probability Theory and Related Fields.
- 5. T. Kurtz, P. Protter, Weak lmit theorems for stochastic integrals and stochastic differential equations; preprint.

- 6. P. A. Meyer, "Martingales and Stochastic Integrals I," Springer Lecture Notes in Mathematics 284 (1972).
- 7. P. Protter, "Stochastic Integration and Differential Equations: A New Approach," Springer-Verlag, forthcoming.