A LARGE DEVIATION RESULT FOR PROCESSES

by

Thomas Kuczek

and

Keith N. Crank¹

Department of Statistics

Owen Graduate School of Management

Purdue University

Vanderbilt University

West Lafayette, IN, USA

Nashville, TN, USA

Technical Report #89-05

Department of Statistics Purdue University

February 1990

¹This work was supported by The Dean's Fund for Research of the Owen Graduate School of Management of Vanderbilt University.

A LARGE DEVIATION RESULT FOR PROCESSES

by

and

Thomas Kuczek

Keith N. Crank

Department of Statistics

Owen Graduate School of Management

Purdue University

Vanderbilt University

West Lafayette, IN, USA

Nashville, TN, USA

Abstract

A large deviation result is proved for processes. The result is applicable when regeneration points exist for the sequence. An example of such an application is given.

Key words: Large deviations, break points.

1. Introduction

In many stochastic processes one can find regeneration points, so that the changes in state and intervals of time between these regeneration points comprise an i.i.d. sequence of random vectors $\{(X_i, Y_i)\}$. If this is the case, then one can use standard techniques from the theory of collective risks to study the process of interest. The purpose of this paper is to apply the results of Lalley (1984) to prove a large deviation result which is applicable to processes where such regeneration points exist.

In particular, we show the following. If we let

$$\tau_n = \inf\{m : \sum_{i=1}^n Y_i \ge n\}$$

denote the time of the first regeneration after time n, and

$$S_n = (S_n^{(1)}, S_n^{(2)}) = \sum_{i=1}^n (X_i, Y_i),$$

then we show that, under certain conditions,

$$P[S_{\tau_n}^{(1)} \ge an] \sim \frac{c_1}{\sqrt{n}} \exp\{-c_2 n\}$$

and

$$P[S_{ au_n}^{(1)} \le an] \sim \frac{c_3}{\sqrt{n}} \exp\{-c_4 n\}$$

where the c_i are positive constants. An example of such a process with regeneration points may be found in Kuczek (1989), where it was shown that the right edge process of oriented percolation has such regeneration points. This provides at least one setting where the results in this paper apply.

2. Notation and Preliminary Results

The purpose of this section is to introduce notation and terminology and to present the machinery needed to obtain the large deviation results. The theory in this section parallels special cases of results in Lalley (1984). Throughout the paper $\{(X_i, Y_i)\}$ will denote a sequence of i.i.d. random vectors in Z^2 with finite first and second moments. We denote $\mu_1 = EX_1, \mu_2 = EY_1$, and let Σ be the covariance matrix. We assume that $\mu_2 > 0$. Let τ_n and S_n be as defined in section 1.

The major result of this section is the following theorem. The proof is somewhat technical and is not important for understanding the rest of the paper.

Theorem 1 On the set where $|k_1 - n\mu_2^{-1}|/\sqrt{n}$ remains bounded,

$$P[\tau_n = k_1, S_{\tau_n}^{(1)} = a_n^{(1)}, S_{\tau_n}^{(2)} - n = k_2]$$

$$\sim P[S_{\tau_n}^{(2)} - n = k_2]P[\tau_n = k_1, S_{\tau_n}^{(1)} = a_n^{(1)}].$$

as $n \to \infty$, uniformly in k_1 for k_2 on compact sets and for $\{a_n^{(1)}\}$ such that $|a_n^{(1)} - n\mu_1\mu_2^{-1}|/\sqrt{n}$ remains bounded. In particular, (on this same set), the uniform convergence implies

$$P[S_{\tau_n}^{(1)} = a_n^{(1)}, S_{\tau_n}^{(2)} - n = k_2] \sim P[S_{\tau_n}^{(1)} = a_n^{(1)}] P[S_{\tau_n}^{(2)} - n = k_2].$$

Before proving Theorem 1, we need some technical results.

Proposition 1 Let $\{(a_n^{(1)}, a_n^{(2)})\}$ be a sequence such that

$$\left| \begin{pmatrix} a_n^{(1)} \\ a_n^{(2)} \end{pmatrix} - n \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \right| / \sqrt{n}$$

remains bounded. Then for any fixed integer $k \geq 1$,

$$P[Y_n = j_0, \dots Y_{n-k} = j_k | S_n^{(1)} = a_n^{(1)}, S_n^{(2)} = a_n^{(2)}] \longrightarrow \prod_{i=0}^k P^{(2)}(j_i),$$

as $n \to \infty$, where $P^{(2)}(\cdot)$ is the marginal probability distribution of Y_1 .

Proof:

$$P[X_{n} = m_{0}, \dots, X_{n-k} = m_{k}; Y_{n} = j_{0}, \dots, Y_{n-k} = j_{k} | S_{n}^{(1)} = a_{n}^{(1)}, S_{n}^{(2)} = a_{n}^{(2)}]$$

$$= \left(\prod_{i=0}^{k} P[X_{i} = m_{i}, Y_{i} = j_{i}]\right) \left(\frac{P[S_{n-k-1}^{(1)} = a_{n}^{(1)} - \sum m_{i}, S_{n-k-1}^{(2)} = a_{n}^{(2)} - \sum j_{i}]}{P[S_{n}^{(1)} = a_{n}^{(1)}, S_{n}^{(2)} = a_{n}^{(2)}]}\right).$$

By a result of Stone (1967, Corollary 1), the ratio on the right converges to 1, uniformly for $(\overline{m}, \overline{j}) = (m_0, \ldots, m_k, j_0, \ldots, j_k)$ in compact sets. Since the joint distribution converges to what we want, the marginal distributions must also converge to the desired result.

Lemma 2 For each integer k_2 and for each $\epsilon > 0$ there is an integer $k \geq 1$ for which

(1)
$$P[S_{k_1}^{(2)} - S_{k_1-l}^{(2)} \le k_2, \text{ some } l, k \le l \le k_1 | S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2] < \epsilon,$$

for n sufficiently large where $k_1 = k_1(u) = [n\mu_2^{-1} + u(\sigma_{22}\mu_1^{-3}n)^{\frac{1}{2}}]$. Furthermore, k can be chosen so that (1) holds for all k_2 in a compact set and all $k_1(u)$ for u in a compact set, provided n is sufficiently large.

Proof:

$$P[S_{k_1}^{(2)} - S_{k_1-l}^{(2)} \le k_2, \text{ some } l, k \le l \le k_1 | S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2]$$

$$\le P[S_l^{(2)} \le k_2, \text{ some } l, k \le l \le k_1]$$

$$\times \frac{P[S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2 | S_l^{(2)} \le k_2, \text{ some } l, k \le l \le k_1]}{P[S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2]}$$

Now

$$P[S_l^{(2)} \le k_2, \text{ some } l, k \le l \le k_1] \le P[S_l^{(2)} \le k_2, \text{ some } l \ge k]$$

which $\to 0$ as $k \to \infty$ by the strong law and the convergence is uniform in k_2 since the probability is an increasing function of k_2 . By Stone (1967 Corollary 1)

$$\frac{1}{P[S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2]} = \mathcal{O}(k_1) = \mathcal{O}(n).$$

Thus it suffices to show that

$$\max_{0 \le l \le k_1} P[S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2 | S_l^{(2)} \le k_2] = \mathcal{O}(n^{-1}).$$

For $0 \le l \le k_1/2$, the result is true by Stone (1967, Corollary 1).

For $k_1/2 \le l \le k_1$, we have

$$\begin{aligned} \max_{\frac{k_1}{2} \le l \le k_1} P[S_{k_1}^{(1)} &= a_n^{(1)}, S_{k_1}^{(2)} - n = k_2 | S_l^{(2)} \le k_2] \\ &\le \max_{\frac{k_1}{2} \le l \le k_1} P[S_{k_1}^{(2)} - n = k_2 | S_l^{(2)} \le k_2] \\ &\le \mathcal{O}(k_1^{-1}) = \mathcal{O}(n^{-1}) \end{aligned}$$

by Chebyshev's inequality.

That the convergence is uniform on compact sets follows from the fact that compact sets in \mathbb{Z}^2 are finite. This completes the proof.

We are now ready to prove Theorem 1.

Proof of Theorem 1: For $k_2 \geq 0$, consider the event

$$A = \{ \tau_n = k_1, S_{\tau_n}^{(1)} = a_n^{(1)}, S_{\tau_n}^{(2)} - n = k_2 \}$$

$$= \{ S_{k_1}^{(2)} - S_{k_1-l}^{(2)} > k_2, \text{ for all } l, 1 \le l \le k_1, S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2 \}.$$

Then

$$P[A] = P[S_{k_1}^{(2)} - S_{k_1-l}^{(2)} > k_2, \text{ for all } l, 1 \le l \le k_1, |S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2]$$

$$\times P[S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2]$$

$$= \left(1 - P[S_{k_1}^{(2)} - S_{k_1-l}^{(2)} \le k_2, \text{ some } l, 1 \le l \le k_1, |S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2]\right)$$

$$\times P[S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2].$$

By Lemma 2, there is a k such that

$$P[S_{k_1}^{(2)} - S_{k_1-l}^{(2)} \le k_2, \text{ some } l, k \le l \le k_1, |S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2] < \epsilon.$$

Thus

$$\left(1 - P[S_{k_1}^{(2)} - S_{k_1 - l}^{(2)} \le k_2, \text{ some } l, 1 \le l \le k, |S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2] - \epsilon\right) \\
\times P[S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2] \\
\le P[A] \\
\le \left(1 - P[S_{k_1}^{(2)} - S_{k_1 - l}^{(2)} \le k_2, \text{ some } l, 1 \le l \le k, |S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2] + \epsilon\right) \\
\times P[S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2].$$

By Proposition 1, for large n

$$P[S_{k_1}^{(2)} - S_{k_1 - l}^{(2)} \le k_2, \text{ some } l, 1 \le l \le k, |S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2]$$

$$\sim P[S_l^{(2)} \le k_2, \text{ some } l, 1 \le l \le k],$$

and by the strong law

$$\lim_{k\to\infty} P[S_l^{(2)} \le k_2, \text{ for some } l \ge k] = 0.$$

Thus for large enough k, n

$$\left(1 - P[S_l^{(2)} \le k_2, \text{ some } l \ge 1] - 2\epsilon\right) P[S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2].$$

$$\le P[A]$$

$$\leq \left(1 - P[S_l^{(2)} \leq k_2, \text{ some } l \geq 1] + 2\epsilon\right) P[S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2].$$

By Spitzer (1976, Proposition P7.10)

$$P[S_{k_1}^{(1)} = a_n^{(1)}, S_{k_1}^{(2)} - n = k_2]$$

$$\sim \frac{1}{2\pi k_1 |\Sigma|^{\frac{1}{2}}} \exp\left\{ \frac{1}{2k_1} \begin{pmatrix} a_n^{(1)} & -k_1 \mu_1 \\ n & -k_1 \mu_2 \end{pmatrix}' \Sigma^{-1} \begin{pmatrix} a_n^{(1)} & -k_1 \mu_1 \\ n & -k_1 \mu_2 \end{pmatrix} \right\}$$

as $k_1 \to \infty$.

Therefore,

$$P[A] \sim \left(1 - P[S_l^{(2)} \le k_2, \text{ some } l \ge 1\right)$$

$$\times \frac{1}{2\pi k_1 |\Sigma|^{\frac{1}{2}}} \exp\left\{\frac{1}{2k_1} \begin{pmatrix} a_n^{(1)} & -k_1 \mu_1 \\ n & -k_1 \mu_2 \end{pmatrix}' \Sigma^{-1} \begin{pmatrix} a_n^{(1)} & -k_1 \mu_1 \\ n & -k_1 \mu_2 \end{pmatrix}\right\}$$

as $n \to \infty$. Since the first factor does not depend on $a_n^{(1)}$ or k_1 and the second factor does not depend on k_2 , the independence is proved. By Corollary 1 of Stone (1967), the convergence is uniform for k_1 and $a_n^{(1)}$ satisfying the conditions of the theorem. \square

3. Large Deviation Results

In this section we will prove a large deviation result which, by using the i.i.d. sequence of Kuczek (1989), is applicable to the right edge of oriented percolation. We will use the same notation as in section one. (Our Y_i is the same as Kuczek's τ_i .) We will assume that $\phi(\vec{\theta}) \equiv E(\exp\{\theta_1 X_1 + \theta_2 Y_1\})$ exists in a neighborhood R of (0,0). We define $\psi(\vec{\theta}) \equiv \log \phi(\vec{\theta})$, and let $m_1 = \mu_1/\mu_2$ (remember that $\mu_2 > 0$).

Our approach will be to imbed the distribution of (X_1, Y_1) in an exponential family (as in section 3 of Lalley (1984)) and then choose an appropriate member to obtain our results. With this in mind we define (for $\vec{\theta} \in R$)

$$P_{\vec{\theta}}(k_1, k_2) = \exp\{\theta_1 k_1 + \theta_2 k_2 - \psi(\vec{\theta})\} P[X_1 = k_1, Y_1 = k_2].$$

It is easy to see that this is a probability measure on \mathbb{Z}^2 .

The following lemma shows that one of these $P_{\vec{\theta}}$ has certain properties that we desire. Lemma 4 There exists a neighborhood $N(m_1)$ of m_1 such that for any $a \in N(m_1)$, there is a $\vec{\theta}_0 = \vec{\theta}_0(a) \in R$ satisfying

1.
$$\psi(\vec{\theta_0}) = 0$$
 and

2.
$$\frac{\partial \psi(\vec{\theta})}{\partial \theta_1} \Big|_{\vec{\theta} = \vec{\theta}_0} = a \frac{\partial \psi(\vec{\theta})}{\partial \theta_2} \Big|_{\vec{\theta} = \vec{\theta}_0}$$
.

Proof: Let

$$\psi_i(\vec{\theta}) = \frac{\partial \psi(\vec{\theta})}{\partial \theta_i}.$$

Then

$$\psi_{1}(\vec{\theta}1) = \frac{E(X_{1} \exp\{\theta_{1}X_{1} + \theta_{2}Y_{1}\})}{E(\exp\{\theta_{1}X_{1} + \theta_{2}Y_{1}\})}$$
$$= E(X_{1} \exp\{\theta_{1}X_{1} + \theta_{2}Y_{1} - \psi(\vec{\theta})\})$$
$$= E_{\vec{\theta}}(X_{1}),$$

and similarly $\psi_2(\vec{\theta}) = E_{\vec{\theta}}(Y_1)$.

Now $\psi(0,0)=0$; so by the implicit function theorem, there exists a function $f(\theta_1)$, which has a continuous derivative, such that f(0)=0 and $\psi(\theta_1,f(\theta_1))=0$ for θ_1 in a neighborhood of 0. Along the curve $(\theta_1,f(\theta_1)),\psi$ defines a function of θ_1 which satisfies

$$\psi_1(\theta_1, f(\theta_1)) + f'(\theta_1)\psi_2(\theta_1, f(\theta_1)) = 0,$$

or

$$-f'(\theta_1) = \frac{\psi_1(\theta_1, f(\theta_1))}{\psi_2(\theta_1, f(\theta_1))},$$

for θ_1 in a neighborhood of 0.

In particular

$$-f'(0) = \frac{E(X_1)}{E(Y_1)} = m_1.$$

Since ψ is strictly convex, we have

$$0 = \alpha \psi(\theta_1, f(\theta_1)) + (1 - \alpha)\psi(\tilde{\theta}_1, f(\tilde{\theta}_1))$$
$$> \psi(\alpha \theta_1 + (1 - \alpha)\tilde{\theta}_1, \alpha f(\theta_1) + (1 - \alpha)f(\tilde{\theta}_1)),$$

which implies

$$(2) \ \psi(\alpha\theta_1 + (1-\alpha)\tilde{\theta}_1, f(\alpha\theta_1 + (1-\alpha)\tilde{\theta}_1)) = 0 > \psi(\alpha\theta_1 + (1-\alpha)\tilde{\theta}_1, \alpha f(\theta_1) + (1-\alpha)f(\tilde{\theta}_1)).$$

Because $E(Y_1)$ is positive, $\psi(\theta_1, \theta_2)$ attains its minimum when θ_2 is negative for all values of θ_1 in a neighborhood of 0. Therefore, $\psi(\vec{\theta})$ is increasing in its second argument for all

 $\vec{\theta}$ in a neighborhood of $\vec{0}$. Hence, inequality (2) implies

$$f(\alpha\theta_1 + (1-\alpha)\tilde{\theta}_1) > \alpha f(\theta_1) + (1-\alpha)f(\tilde{\theta}_1),$$

i.e., f is strictly concave in a neighborhood of 0. The strict concavity of f implies $-f'(\theta)$ is increasing in a neighborhood of 0, and the image of this neighborhood under -f' is a neighborhood of m_1 . Thus the lemma is proved. \square

We are now ready to prove the large deviation result for the i.i.d. process. We note here that the α of Kuczek (1989) is the same as our m_1 . This can be seen by first noting that there is a subsequence of $\{S_{\tau_n}^{(1)}/n\}$ which is the same as a subsequence of $\{r_n/n\}$ and then comparing their limits. In what follows we will use α instead of m_1 .

Theorem 5 There exists a neighborhood $N(\alpha)$ of α such that for $a \in N(\alpha)$

1. if $a > \alpha$, then

$$P[S_{\tau_n}^{(1)} \ge an] \sim \frac{c_1}{\sqrt{n}} \exp\{-c_2 n\}$$

as $n \to \infty$, and

2. if $a < \alpha$, then

$$P[S_{\tau_n}^{(1)} \le an] \sim \frac{c_3}{\sqrt{n}} \exp\{-c_4 n\}$$

as $n \to \infty$, where c_1 , c_2 , c_3 , and c_4 are positive constants.

Proof: Since we are working with the right edge, we have $\alpha > 0$. Since τ_n is a stopping time having a proper distribution, we have (using Theorem 1.1, on page 4 of Woodroofe (1982))

$$\begin{split} P[S_{\tau_n}^{(1)} \geq an] \\ &= E_{\vec{\theta}}(\exp\{-\theta_1 S_{\tau_n}^{(1)} - \theta_2 S_{\tau_n}^{(2)} + \tau_n \psi(\vec{\theta})\} \chi_{[an,\infty)}(S_{\tau_n}^{(1)})) \\ &= \exp\{-n(\theta_1 a - \theta_2)\} E_{\vec{\theta}}(\exp\{-\theta_1 (S_{\tau_n}^{(1)} - an) - \theta_2 (S_{\tau_n}^{(2)} - n) + \tau_n \psi(\vec{\theta})\} \chi_{[an,\infty)}(S_{\tau_n}^{(1)})). \end{split}$$

Using the $\vec{\theta}$ guaranteed by Lemma 4, we can write the second factor as (remember $\psi(\vec{\theta}) = 0$)

$$\begin{split} E_{\vec{\theta}}(\exp\{-\theta_{1}(S_{\tau_{n}}^{(1)}-an)-\theta_{2}(S_{\tau_{n}}^{(2)}-n)+\tau_{n}\psi(\vec{\theta})\}\chi_{[an,\infty)}(S_{\tau_{n}}^{(1)})) \\ &= \int_{y=n}^{\infty}\int_{x=an}^{\infty}\exp\{-\theta_{1}(x-an)-\theta_{2}(y-n)\}P_{\vec{\theta}}(S_{\tau_{n}}^{(1)}\in dx,S_{\tau_{n}}^{(2)}\in dy) \\ &= \int_{y=n}^{n+n^{\frac{1}{2}}}\int_{x=an}^{an+n^{\frac{1}{2}}}\exp\{-\theta_{1}(x-an)-\theta_{2}(y-n)\}P_{\vec{\theta}}(S_{\tau_{n}}^{(1)}\in dx,S_{\tau_{n}}^{(2)}\in dy) \\ &+ \int_{y=n+n^{\frac{1}{2}}}^{\infty}\int_{x=an}^{\infty}\exp\{-\theta_{1}(x-an)-\theta_{2}(y-n)\}P_{\vec{\theta}}(S_{\tau_{n}}^{(1)}\in dx,S_{\tau_{n}}^{(2)}\in dy) \\ &+ \int_{y=n}^{n+n^{\frac{1}{2}}}\int_{x=an+n^{\frac{1}{2}}}^{\infty}\exp\{-\theta_{1}(x-an)-\theta_{2}(y-n)\}P_{\vec{\theta}}(S_{\tau_{n}}^{(1)}\in dx,S_{\tau_{n}}^{(2)}\in dy) \\ &= I_{1} + I_{2} + I_{3}. \end{split}$$

In the same manner we have

$$P[S_{r_{-}}^{(1)} \le an] = \exp\{-n(a\theta_1 + \theta_2)\}(J_1 + J_2 + J_3),$$

where

$$J_{1} = \int_{y=n}^{n+n^{\frac{1}{2}}} \int_{x=an-n^{\frac{1}{2}}}^{an} \exp\{-\theta_{1}(x-an) - \theta_{2}(y-n)\} P_{\vec{\theta}}(S_{\tau_{n}}^{(1)} \in dx, S_{\tau_{n}}^{(2)} \in dy),$$

$$J_{2} = \int_{y=n+n^{\frac{1}{2}}}^{\infty} \int_{x=-\infty}^{an} \exp\{-\theta_{1}(x-an) - \theta_{2}(y-n)\} P_{\vec{\theta}}(S_{\tau_{n}}^{(1)} \in dx, S_{\tau_{n}}^{(2)} \in dy),$$

and

$$J_3 = \int_{y=n}^{n+n^{\frac{1}{2}}} \int_{x=-\infty}^{an-n^{\frac{1}{2}}} \exp\{-\theta_1(x-an) - \theta_2(y-n)\} P_{\vec{\theta}}(S_{\tau_n}^{(1)} \in dx, S_{\tau_n}^{(2)} \in dy).$$

The proof of the theorem will be complete if we can show (for a on the correct side of α)

- 1. $a\theta_1 + \theta_2 > 0$;
- 2. I_1 and J_1 converge to c/\sqrt{n} for some constant c; and
- 3. I_2 , I_3 , J_2 and J_3 are $o(n^{-\frac{1}{2}})$.

The first statement follows easily from the choice of $\vec{\theta}$ and the concavity of f in lemma 1.

Before proving the other two statements, we need to make a few comments. First, $S_{\tau_n}^{(2)} - n$ converges asymptotically to a proper distribution on the nonnegative integers. In addition, $S_{\tau_n}^{(2)} - n$ has a moment generating function in the same region that Y_1 has a moment generating function.

Second $S_{\tau_n}^{(1)}$ is asymptotically normal. Under $P_{\vec{\theta}}$, the mean is

$$nE_{\vec{\theta}}(X_1)[E_{\vec{\theta}}(Y_1)]^{-1} = n\frac{\psi_1(\vec{\theta})}{\psi_2(\vec{\theta})} = na,$$

and the variance is a finite multiple of n. (We will use the generic $\sigma^2 n$, even though σ^2 depends on a.)

Finally, θ_1 and θ_2 have opposite signs. When $a > \alpha$, we have $\theta_2 < 0 < \theta_1$ and when $a < \alpha$, we have $\theta_1 < 0 < \theta_2$.

In statement two, the proofs for I_1 and J_1 are similar; so we will only do the one for I_1 .

Since the range of integration is finite and $E_{\bar{\theta}}(S_{\tau_n}^{(1)}) = an$, Theorem 3 says we can factor the probability distribution. Thus

$$\begin{split} I_1 \sim \int_{y=n}^{n+n^{\frac{1}{2}}} \exp\{-\theta_2(y-n)\} P_{\vec{\theta}}(S_{\tau_n}^{(2)} \in dy) \int_{x=an}^{an+n^{\frac{1}{2}}} \exp\{-\theta_1(x-an)\} P_{\vec{\theta}}(S_{\tau_n}^{(1)} \in dx) \\ = \int_{y=0}^{n^{\frac{1}{2}}} \exp\{-\theta_2(y)\} P_{\vec{\theta}}(S_{\tau_n}^{(2)} - n \in dy) \int_{x=0}^{n^{\frac{1}{2}}} \exp\{-\theta_1(x)\} P_{\vec{\theta}}(S_{\tau_n}^{(1)} - an \in dx). \end{split}$$

Since $\theta_2 > 0$, $\exp\{-\theta_2(y)\} > 1$ when y > 0. Since the moment generating function for $S_{\tau_n} - n$ exists in a neighborhood of 0, we can always choose our neighborhood $N(\alpha)$ so that $-\theta_2$ is in the region where the moment generating function exists. Thus, in this

region, the first integral converges to a constant. For the second integral, we replace $dP_{\vec{\theta}}$ with the appropriate normal density:

$$\int_{x=0}^{n^{\frac{1}{2}}} \exp\{-\theta_1 x\} P_{\vec{\theta}}(S_{\tau_n}^{(1)} - an \in dx) = \int_0^{n^{\frac{1}{2}}} \exp\{-\theta_1 x\} \frac{1}{\sqrt{2\pi n\sigma^2}} \exp\{-\frac{x^2}{2n\sigma^2}\} dx.$$

Now make the substitution $y = x/\sqrt{n}$ to get

$$\int_0^1 \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\theta_1 \sqrt{n}y - \frac{y^2}{2\sigma^2}\} dy.$$

Then

$$\int_{0}^{1} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\{-(\theta_{1}\sqrt{n} - \frac{1}{2\sigma^{2}})y\} dy$$

$$\leq \int_{0}^{1} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\{-\theta_{1}\sqrt{n}y - \frac{y^{2}}{2\sigma^{2}}\} dy$$

$$\leq \int_{0}^{1} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\{-\theta_{1}\sqrt{n}y\} dy.$$

Since both the upper and lower bounds are asymptotically $1/\sqrt{2\pi\sigma^2n}\theta_1$ plus terms of order smaller than $1/\sqrt{n}$, we have the desired result for I_1 .

In statement three for I_3 and J_3 , we note that over the range of integration $-\theta_1(S_{\tau_n}^{(1)} - an) < 0$ and is a maximum at the finite endpoint. Thus

$$I_3, J_3 \leq (\rho)^{n^{\frac{1}{2}}} \int_n^{n+n^{\frac{1}{2}}} \exp\{-\theta_2(y-n)\} dP_{\vec{\theta}}(S_{\tau_n}^{(2)} \in dy) = o(n^{-\frac{1}{2}}),$$

where

$$1 >
ho = \left\{ egin{array}{ll} e^{- heta_1} & ext{for} & I_3 \ e^{ heta_1} & ext{for} & J_3 \end{array}
ight. .$$

For J_2 , θ_2 and $S_{\tau_n}^{(2)} - n$ are both positive; so

$$J_2 \le (e^{-\theta_2})^{n^{\frac{1}{2}}} \int_{-\infty}^{an} \exp\{-\theta_1(y-an)\} dP_{\vec{\theta}}(S_{\tau_n}^{(1)} \in dy) = o(n^{-\frac{1}{2}}).$$

Finally we come to I_2 .

$$I_{2} = \int_{y=n+n^{\frac{1}{2}}}^{\infty} \int_{x=an}^{\infty} \exp\{-\theta_{1}(x-an) - \theta_{2}(y-n)\} P_{\vec{\theta}}(S_{\tau_{n}}^{(1)} \in dx, S_{\tau_{n}}^{(2)} \in dy)$$

$$\leq \int_{y=n+n^{\frac{1}{2}}}^{\infty} \exp\{-\theta_{2}(y-n)\} P_{\vec{\theta}}(S_{\tau_{n}}^{(2)} \in dy)$$

$$= \sum_{y=\sqrt{n}}^{\infty} \sum_{l=0}^{n-1} \sum_{k=0}^{\infty} \exp\{-\theta_{2}y\} P_{\vec{\theta}}[S_{k}^{(2)} = l, Y_{k+1} = y+n-l]$$

(where the first sum runs over all integers $\geq \sqrt{n}$)

$$= \sum_{y=\sqrt{n}}^{\infty} \sum_{l=0}^{n-1} \sum_{k=0}^{\infty} \exp\{-\theta_2 y\} P_{\vec{\theta}}[S_k^{(2)} = l] P_{\vec{\theta}}[Y_{k+1} = y + n - l]$$

$$= \sum_{y=\sqrt{n}}^{\infty} \exp\{-\theta_2 y\} \sum_{l=0}^{n-1} P_{\vec{\theta}}[Y_1 = y + n - l] \sum_{k=0}^{\infty} P_{\vec{\theta}}[S_k^{(2)} = l]$$

$$\leq C \sum_{y=\sqrt{n}}^{\infty} \exp\{-\theta_2 y\} \sum_{l=0}^{n-1} P_{\vec{\theta}}[Y_1 = y + n - l]$$

$$\leq C \sum_{y=\sqrt{n}}^{\infty} \exp\{-\theta_2 y\} \sum_{x=y}^{\infty} P_{\vec{\theta}}[Y_1 = x]$$

We conclude the proof at this point by noting that

$$P_{\theta}(Y_1 \geq y) \leq Ce^{-\varepsilon y}.$$

4. Conclusion

In this paper we have obtained a large deviation result which can be applied to processes with regeneration type points. Our methods paralleled those of Lalley (1984, sections 2 and 3).

As obtained, the result does not depend on any special properties of a process other than the existence of regeneration points. A non-trivial example of an application is to apply the result to the i.i.d. sequence of Kuczek (1989).

Acknowledgement: We would like to acknowledge the assistance of Professor Steve Lalley who suggested this result to us and provided us with help and encouragement during our research.

References

- [1] Kuczek, Thomas (1989) The Central Limit Theorem for the Right Edge of Supercritical Oriented Percolation. Ann. Prob., 17, to appear.
- [2] Lalley, S.P.(1984) Limit Theorems for First-Passage Times in Linear and Non-linear Renewal Theory. Adv. Appl. Prob., 16, 766-803.
- [3] Spitzer, Frank (1976) Principles of Random Walk, 2nd ed. Springer-Verlag, Berlin.
- [4] Stone, Charles (1967) On Local and Ratio Limit Theorems. Proc. 5th Berkeley Symp.
 Math. Statist. Prob., 2 (2), 217-224.
- [5] Woodroofe, Michael (1982) Nonlinear Renewal Theory in Sequential Analysis, SIAM, Philadelphia.