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Abstract

A large deviation result is proved for processes. The result is applicable when regen-

eration points exist for the sequence. An example of such an application is given.
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1. Introduction

In many stochastic procésses one can find regeneration points, so that the changes in
state and intervals of time between these regeneration points comprise an i.i.d. sequence of
random vectors {(X;,Y;)}. I this is the case, then one can use standard techniques from
the theory of collective risks to study the process of interest. The purpose of this paper is
to apply the results of Lalley (1984) to prove a large deviation result which is applicable
to processes where such regeneration points exist.

In particular, we show the following. If we let
™ = inf{m : é}lY,- >n}
denote the time of the first regeneration after time n, and
S = (50, 50) = ¥ (X0, ¥5),
then we show that, under certain conditions,
P[S’,(.'ll) > an] ~ \6/_15 exp{—can}

and

P[S() < an] ~ 2= exp{~eun)

where the ¢; are positive constants. An example of such a process with regeneration points
may be found in Kuczek (1989), where it was shown that the right edge process of oriented
percolation has such regeneration points. This provides at least one setting where the
results in this paper apply.

2. Notation and Preliminary Results



The purpose of this section is to introduce notation and terminology and to present
the machinery needed to obtain the large deviation results. The theory in this section
parallels special cases of results in Lalley (1984). Throughout the paper {(X;,Y;)} will
denote a sequence of i.i.d. random vectors in Z? with finite first and second moments. We
denote yu; = EX;, p2 = EY1, and let T be the covariance matrix. We assume that pg > 0.
Let 7, and S, be as defined in section 1.

The major result of this section is the following theorem. The proof is somewhat
technical and is not important for understanding the rest of the paper.

Theorem 1 On the set where |ky — nuy|//n remains bounded,
Plrn =k1,S® = o, P —n = Iy
~ P[S®) —n = ky]P[rs = k1, S = o).
as n — oo, uniformly in k; for k2 on compact sets and for {ag)} such that |a$zl) -
npypy 1|//n remains bounded. In particular, (on this same set), the uniform convergence
implies
P[SY) = a(), S —n = ks] ~ P[ST) = oVIP[SE) —n = ko).

Before proving Theorem 1, we need some technical results.

Proposition 1 Let {(as,l),as,z))} be a sequence such that

() -=(2)| /v

remains bounded. Then for any fized integer k > 1,

k
PlYn = jo,... Yook = #|S = o)), 5P = aP] — 11 PA(j)),
1=0

as n — co, where P2)(.) is the marginal probability distribution of Y.
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Proof:

PX,=mo,y..., Xnk =mg;Yn =Joy..., Yok =jk|.5'(1) = af,l),Sff) = a?]

k PSP, =aP —£m;, 5P, | =a? —3j)
= =mi, Y = ji
(iEoP[X’ ™ ”) ( PISD = oD 50 — o )] )

By aresult of Stone (1967, Corollary 1), the ratio on the right converges to 1, uniformly
for (7,7) = (mo,..., Mk, jo,-..,Jjk) in compact sets. Since the joint distribution converges
to what we want, the marginal distributions must also converge to the desired result.

Lemma 2 For each integer ky and for each € > 0 there s an integer k > 1 for which
(1) PSP — 5 | < ka, some Lk <1< kS = oD, 88 —n = k) < e,

for n sufficiently large where ky = ky(u) = [nug! + w(oo2u73n)}]. Purthermore, k can be
chosen so that (1) holds for all k2 in a compact set and all k1(u) for u in a compact set,
provided n i3 sufficiently large.

Proof:

P[S,(cf) - .S',(j) S ko, some LE<IL Kk IS(I) = a(l) 5(2) —n = k]

< P[S® < ky, some I,k <1< k]
P[S(’) aP), 53 —n = ka|S{P < kg, some L,k <1< ki
P[SY =aP, 5P —n =&y

Now

P[Sl(z) <ky somel,k<I<k]< P[S,(Z) < k3, some ! > k]

which — 0 as k& — oo by the strong law and the convergence is uniform in k, since the
probability is an increasing function of k;. By Stone (1967 Corollary 1)

1
P[Sl(ci) = ag),S,(j) —-_n= k2]

= O(ky) = O(n).
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Thus it suffices to show that

MW _ 1)o@ __ _ 1 10@ — (-1
og%i’ilP[sh =al),5;) —n=k|S;” < ko] = O(n™1).

For 0 <1 < k;/2, the result is true by Stone (1967, Corollary 1).

For k1 /2 < 1 < k1, we have

hmax P[S,(c:) = as,l),S',(j) -n= k2|S,(2) < k)
L <1<k,

< max PSP —n=k|SP < ks
H<i<k

< O(k™) = O(nY)
by Chebyshev’s inequality.

That the convergence is uniform on compact sets follows from the fact that compact
sets in Z? are finite. This completes the proof.
We are now ready to prove Theorem 1.
Proof of Theorem 1: For k; > 0, consider the event
A={m = kl,S,(.'ll) = agl),sg.f) —n = ky}
2 2 2
={SP — 5P | > kg, forall 1,1 <1<k, S =al®, 82 —n = ko).
Then
— (2) _ (2 1 _ @) @ __ _
PlA] = P[S;” — S, > k2, forall L1 <1<k, |5y =a,7, 5 —n =kl
x P[SY = aP), 8P —n = k]
= (1-13[5,(,';’) —S®) | < ks, somel, 1T < kg[S =aD, 82 —n = kg])
x P[SY = o, 52 —n = .

By Lemma 2, there is a &k such that

PSP —SP) | < ks, some Lk <1<k, |SY = oD, 82 —n=ki <.
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Thus

(I—P[S',(f) S,(cf) 1 L kg, some [,1 <1<k, IS(I) (1),.5',(:) —n=ky] - e)
x P[SY = o), 52 —n = ky]
< P[4]
< (1—P[s,<j’ — 8P | < kg, some 1,1 << kS = oD, 5P —n = 7;2] + e)

x P[S) = a, 52 —n = ko).
By Proposition 1, for large n
PSP — 53 | < ks, some 1,1 <1< E,|SD = a), 5P —n = &y

~ P[S® < k;, some 1,1 <1< K],
and by the strong law
klim P[S,(z) < k2, for some [ > k] = 0.
Thus for large enough &, n
(1 ~ P[S® < ky, some > 1] - 2e) PIS® = a0, 5P _pn = k,).
< Pl4]
< (1 - P[S,(Z) < kg, somel > 1] + 26) P[S,(e:) = aS,l),S,(j) —n = k.

By Spitzer (1976, Proposition P7.10)
P[S{) = ), 5 —n = k]

-~ 1 exp 1 (a&” —kyp1 )’ $-1 (af,l) —k1p )
2rk; |Z|3 2ki \ n =k n —kips
as k; — oo.

Therefore,
P[A] ~ (1 - P[S,(2) < k3, some [ > 1)

% 1 1 ((1) -—klul)'z—l (ag) —kwl)
27rk1|2|z 2k, —k1p2 n o —kipg



as n — oo. Since the first factor does not depend on as.l) or k; and the second factor

does not depend on k3, the independence is proved. By Corollary 1 of Stone (1967), the
convergence is uniform for k; and as,l) satisfying the conditions of the theorem. [J
3. Large Deviation Results

In this section we will prove a large deviation result which, by using the i.i.d. sequence
of Kuczek (1989), is applicable to the right edge of oriented percolation. We will use the
same notation as in section one. (Our Y; is the same as Kuczek’s 7;.) We will assume
that ¢(8) = E(exp{61X1 + 62Y1}) exists in a neighborhood R of (0,0). We define ¢(§) =
log #(8), and let my = p1/ps (remember that ug > 0).

Our approach will be to imbed the distribution of (X1,Y7) in an exponential family
(as in section 3 of Lalley (1984)) and then choose an appropriate member to obtain our

results. With this in mind we define (for 4 € R)
Pk, k) = exp{b1k1 + 62ks — p(D)}P[X: = k1, Y = k3).

It is easy to see that this is a probability measure on Z2.

The following lemma shows that one of these Pj; has certain properties that we desire.
Lemma 4 There ezists a neighborhood N(my) of my such that for any a € N(m;), there
is a & = Gp(a) € R satisfying

1. %(8o) =0 and

9 8¥@D | _ _ 0%
088, [6=8 86, 5___50'

Proof: Let



Then
E(X;exp{61 X1 + 6:Y1})

E(exp{61X:1 + 6:Y1})
= E(X, exp{61 X1 + 017 — ¢(§)})

$1(01) =

= E(;(X 1),
and similarly 9,(6) = Ez(Y1).
Now %(0,0) = 0; so by the implicit function theorem, there exists a function f(6;),

which has a continuous derivative, such that f(0) = 0 and (4, f(61)) = 0 for 8; in a

neighborhood of 0. Along the curve (8, f(81)), % defines a function of #; which satisfies

P1(61, £(61)) + f'(61)2(61, £(61)) =0,

or

¥1(01, £(61))
(61, (1))’

—f'(61) =
for 6, in a neighborhood of 0.
In particular

_F(0) = -EET((;;{’f)l = m1.

Since 1 is strictly convex, we have
0 = a(6y, f(61)) + (1 — a)(8, f(61))
> (aby + (1 — a)f1,af(61) + (1 — @) f(61)),
which implies

(2) ¥(ab +(1—a)dy, f(ad +(1—-a)by)) =0 > P(ab) +(1—a)dy, af(61)+(1—a)f(6)).

Because E(Y}) is positive, ¥(61,62) attains its minimum when 8, is negative for all values
of 6; in a neighborhood of 0. Therefore, 1(8) is increasing in its second argument for all
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§ in a neighborhood of 0. Hence, inequality (2) implies
flaby + (1 - a)b1) > af(6:) + (1 — @) f(61),

i.e., f is strictly concave in a neighborhood of 0. The strict concavity of f implies —f'(6)
is increasing in a neighborhood of 0, and the image of this neighborhood under —f' is a
neighborhood of my. Thus the lemma is proved. [J

We are now ready to prove the large deviation result for the i.i.d. process. We note
here that the a of Kuczek (1989) is the same as our m;. This can be seen by first noting
that there is a subsequence of {S,(-,l,) /n} which is the same as a subsequence of{r,/n} and
then comparing their limits. In what follows we will use « instead of m;.
Theorem 5 There ezists a neighborhood N(a) of a such that for a € N(a)

1. ifa > a, then

P[sH > an] ~ —cl—exp —con
n ﬁ

as n — oo, and
2. ifa < a, then

P[S,(.:) <an]~ —\C/—-e'_exp{—c,m}
n

as n — oo, where ¢, cg, c3, and c4 are positive constants.
Proof: Since we are working with the right edge, we have a > 0. Since 7, is a stopping
time having a proper distribution, we have (using Theorem 1.1, on page 4 of Woodroofe
(1982))
P(SY) > an]
= Eg(exp{~615%) — 0252 + rup(8)}Xfan,c0)(ST2)))
= exp{—n(61a — 83)} Eg(exp{—61(SL) — an) — 62(S — 1) + Ta ()} X(an,00) (SL))-
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Using the § guaranteed by Lemma 4, we can write the second factor as (remember (6) = 0)

Eg{exp{—61(SY — an) — 62(SP — n) + 7a1(8)} X[an,00)(SL))

= / / exp{—61(z — an) — 02(y — n)}P‘;(S,(.:) € dz,S?) € dy)
y=n Jz=an

n+n* an+dn
= / / exp{—b61(z — an) — O2(y — n)}Pg(S,(.i) € dz, S € dy)
] z

=n =an

+ / exp{—01(z — an) — ba(y — n)}PH(SY € dz, 5P € dy)
¥

=n+n% z=an

n+n'l' oo
+ / / 3 exp{—6:1(z — an) — 62(y — n)}P,;(S’,(.},) € dz, .S'S.f) € dy)
V] r=an+n

=N+ L+ 1.

In the same manner we have
P[SY) < an] = exp{—n(ay + 02)}(J1 + T2 + J3),

where

n+n2 an
Jy = / / , exp{—01(z — an) — 6x(y — n)} P S € dz, 51D € dy),
y z

=n =agn—n32

Ty = / exp{—01(z — an) — Ba(y ~ )} PASY € de, SO € dy),
y

=n+‘n% I=-—00

and

=n =—00

n+n% an—n%
Js = / / exp{~61(z — an) — B(y — n)}P4(S) € dz, SP € dy).
Y z

The proof of the theorem will be complete if we can show (for a on the correct side of

1. afy + 0, > 0;
2. I, and J; converge to ¢//n for some constant c; and
3. I, I3, Jo and J3 are o(n“lz').
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The first statement follows easily from the choice of g and the concavity of f in lemma

Before proving the other two statements, we need to make a few comments. First,
51(—,2,) — n converges asymptotically to a proper distribution on th-e‘nonnega.tive integers.
In addition, 55-,2,) — n has a moment generating function in the same region that ¥; has a
moment generating function.

Second .S',(-,l,) is asymptotically normal. Under Py, the mean is

nm—na

B X E )] =t =

b

2

and the variance is a finite multiple of n. (We will use the generic o%n, even though o2

depends on a.)

Finally, 6, and 02 have opposite signs. When a¢ > a, we have §; < 0 < #; and when
a < a, we have §; < 0 < 8,.

In statement two, the proofs for I; and J; are similar; so we will only do the one for

Iz.

Since the range of integration is finite and E;(.S’g,)) = an, Theorem 3 says we can

factor the probability distribution. Thus

=n r=an

n+n% an+n%
I ~ / exp{=0x(y — n)} Py(SD € dy) exp{—81(z — an)} Py(SY) € dz)
y

n2 n%
= / exp{—62(y)} P5(S2) — n € dy) / exp{—6:(2)} P(S) — an € do).
y z=0

=0

Since 6 > 0,exp{—62(y)} > 1 when y > 0. Since the moment generating function
for Sr, — n exists in a neighborhood of 0, we can always choose our neighborhood N(«)
so that —0; is in the region where the moment generating function exists. Thus, in this
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region, the first integral converges to a constant. For the second integral, we replace dP;
with the appropriate normal density:

n%

nt
/ exp{—@lz}Pg(Sf.:) —an € dz) = /
=0 0

1 z?
eXP{—-ew}\/%——m exp{—o—}dz.

Now make the substitution y = z/4/n to get

Then

1
/0 ’——2;02 exp{—(61v/n —5(17—2)y}dy

1 2
1 y
< -0 - =—1}d
- ./o V2wa? exp{~01v/ny 20‘2} v

1
1

< -6 dy.

_/0 o xp{—f1v/ny}dy

Since both the upper and lower bounds are asymptotically 1/v/27ro2né; plus terms of

order smaller than 1/4/n, we have the desired result for I;.
In statement three for I3 and J3, we note that over the range of integration -91(51(-,{) -

an) < 0 and is a maximum at the finite endpoint. Thus

1 n+n%
i< [ exp{~ta(y— m}dPASP € dy) = ofn ),

n

where

_Je for I
1>p—{e‘91 for J3

For J2, 62 and S-,(-i) — n are both positive; so

an

Ty < (e=%)n* / exp{—b:(y — an)}dPy (5D € dy) = o(n~}).

-0
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Finally we come to I.
L= / , / exp{—61(z — an) — 62(y — n)} P(SY, € dz, S € dy)
=n+n T=an

< [7 ity -mIPASD e )

co n—1 oo

Z ZZexp{ 921/}P“[Sk —lYk+1—‘y+n-——l]

y—\/- =0 k=0

(where the first sum runs over all integers > /n)

> exp{-02y} Py{Sy? = |Pf{Yirs =y +n 1]

2.
y=+/n 1=0 k=
2.

o

n—1

= exp{—fay} Y PylVi=y+n—1] Z P;{S? = z]
y=vn 1=0 k=0
0 n—1
<C Z exp{—62y} ZP;[Yl =y+n-—]
y—«/- =0
<C Z exp{— 02y}ZP[Y1-z]

y=vn

We conclude the proof at this point by noting that

Po(Y12y)<Ce™™

4. Conclusion

In this paper we have obtained a large deviation result which can be applied to pro-
cesses with regeneration type points. Our methods paralleled those of Lalley (1984, sections
2 and 3).

As obtained, the result does not depend on any special properties of a process other
than the existence of regeneration points. A non-trivial example of an application is to
apply the result to the i.i.d. sequence of Kuczek (1989).
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