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1. Introduction

This paper may be viewed as a sequel to that by Bartoszyriski et al (1989) considering
the following model. A population whose rule of development is that of a linear time
homogeneous birth and death process with intensities A and pu is subjected to a sequence
of disasters occurring at random times 7,71 + 72,71 + 72 + 73, ... . Each disaster affects all
members of the population independently, killing an individual with probability e = 1 — 6.
Thus our model constitutes a special case of a branching process with disasters as originally
introduced by Kaplan et al (1975) and further studied by Athreya and Kaplan (1976); -
see also Sankanarayanan and Krishnamoorthy (1978). Recently Altenburg (1986, 1987)
has studied a discrete time version. For more recent work concentrating on the case where
the risk of catastrophes depends on the present population size see e.g. Brockwell (1985),

Pakes (1987, 1988) and the references given there.

By making use of our detailed knowledge of the birth and death process it is possible to
obtain more explicit results than appears possible for the general case. Information about
the general structure of the results can already be extracted from the above mentioned
articles. We derive our results by a systematic use of an embedded Galton-Watson process

with random environments (GWRE process), a technique also implicitely used by Kaplan

et al (1975), Athreya and Kaplan (1976); - see also Neuts (1968).

The probability generating function of this embedded GWRE process describing the
state of the population immediately after the n** disaster (n = 0,1,2,.. .) can be obtained
explicitly (conditionally on the sequence of disaster times). Its limit as » — oo is almost
surely a random variable @ (sometimes degenerate at 1) independent of the dummy variable
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s. This shows that our process shares with other branching and related processes the
property that almost surely only extinction or explosion is possible. Also the explicit
representation of @) as a function of the sequence 7 = (71, 72,...) gives some insight into
the distribution of . In this connection we show that the additional risk of extinction
introduced into the process by the disasters is for small € proportional to the severeness ¢

of the disasters.

Furthermore we investigate the analogues of the classical limit theorems for branching
processes and the behaviour of the integral of processes with disasters which may be
relevant for the study of interacting populations subjected to disasters (see Bartoszynski

et al 1987b).
2. The embedded GWRE process

One aspect complicating the study of processes with disasters is the fact that, as
the progeny of different individuals are subjected to the same disasters, the independence
property of the underlying branching process is lost. Consider, however, the process with
disasters {Z(t),t > 0} at the times 71,7 + 72,..., that is let Z, = Z(n+7m+ ...+ )
be the population size immediately after the n** disaster. Then the independence struc-
ture for the progeny of different individuals is restored. Instead the law of reproduction
changes randomly from one generation to the next. Thus, in fact we have a GWRE process
whose random environments are provided by the random variables 7,,n = 1,2,... . This
embedded GWRE process has at least implicitly already been used in the first papers on
the subject. Its analogue also plays an important role in the Galton-Watson process with
disasters as studied by Altenburg (1986, 1987). It has however not been fully exploited
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e.g. in Bartoszynski et al (1989) in their study of the extinction probability.

Consider the sequence 7 of environments as given and let H,(s,7) be the p.g.f. of Z,,.
Then, given Z1 the process Z; = Zk+1 develops just like the process {Z,,n > 0} except
that its environments are given by T'r = (72, 73,...) and that it starts with Z§ = Zy. Thus

E (SZ"‘H |21> = [Hn (s, T7~')]Z1 which leads to the recursion
Hn+1(sa7,:) = Hl[Hn(SaTZ)ﬂ:]' (21)

Here Hy(s,7) = Es?(") = Fy(6s 4 €,71) where Fy is the p.g.f. of the process undisturbed
by disasters. For the linear birth and death process with time independent intensities A
and p this p.g.f. is explicitly known (see e.g. Goel & Richter-Dyn, 1974) and has a simple

form, namely
(4 — peP=m1) — (X — pe=m)t g

Fo(s, t) = ('u — )\e('\-ﬂ)t) — ()\ — ,\e(A—#)t) A (22)
Replacing s by és + € in (2.2) after some manipulation brings H into the form
(1= 6Ay())s + (= Ae)y(t) — 1)
H(s,t) = 2.3
(1) = o) + (=@ = V) (23)
_. A®)s + B(?)
T C(t)s+D(t)’

where y(t) = 67! exp(—(X — p)t). Composition of fractional linear functions is most easily
done by multiplying the corresponding matrices of coefficients. From the recursion (2.1)

we thus see that H,(s,T) corresponds to the product of matrices

() By (Am) By (A B

C(m) D(m) C(r2) D(r) C(ra) D(rn) (2.4)

It is an elementary but somewhat laborious exercise to carry out these matrix multiplica-

tions. If we introduce the notations
Y; = 51 exp(—(A — p)7;),Un = ﬁ Y; and X, = % U;,
=1 =1
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then the resulting p.g.f. is given as

(b +AeXn)(d = s) + (As — 1)Un

H,(s,7) = A+ AeXR)A —s)+ (As — U,

(2.5)

This explicit representation of the (conditional) p.g.f. of Z, (given the disaster times) is
basic for most of the sequel. We may note that it does not require any assumptions about
the joint distribution of the interarrival times 7; of the disasters.

Versions of the following lemma have been used in the theory of GWRE processes.
Lemma 2.1: If the sequence {Tn,n = 1,2,...} is stationary and ergodic with 1/ := Er
then as n — oo |

a) —logé—1/a<0=U, — 0,
—logé—1/a>0= U, — oo,
—logéd—1/a=0= —c0 :liffi,if}f Un < lifmn—ing = 400,

where as usual we may call these three cases supercritical, subcritical and critical, respec-

tively.

2

b) —log§—1/a>0= % 11 Yi= lim X, = oo,
=1 =1

n—o0
—logéd—-1/a< 0= nli—{%oX" = Xs,
where Xs 1s almost surely positive and finite.

The idea of the proof is to study the limit behaviour of log U,, = ]i}l log Y; instead of
that of Uy, (see also Puri 1987). Here ElogY = —logé—1/a with a = /(X — ) such that
the first two statements in a) follow immediately from the strong law of large numbers.
For the last statement one has to consider the fluctuations of sums of variables around
their expectation. Actually in the cases ElogY < 0 the strong law shows even that the

product of the first n variables Y; tends to zero at a geometric rate which makes the sum
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of these products convergent. We close this section by applying Lemma 2.1 to obtain the
asymptotic behavior of H,,.

Theorem 2.1: If the sequence T is stationary and ergodic, then almost surely

i B 1 if —~logé—1/a >0 06
Am_ Ha(s,7) = phaeXs if logé—1/a <0’ (2:6)

Corollary 2.1: The process {Z,,n =0,1,2,...}, and therefore the process {Z(t),t > 0},

shares the “eztinction or exzplosion” property common to branching process models, i.e.
P(Znp —0o0r Zp — 00) = P(Z; — 0 or Zy — c0) =1 .

This is seen by noting that the limit of H, does not depend on s. Since Corollary 2.1
holds for almost all realizations of the “environmental” sequence 7 it is also true as an
unconditional statement and we have formulated it in that way.
3. The probability of extinction

Bartoszynski et al (1989) have used the renewal property expressed by (2.1) for s = 0
to obtain information about the (random) probability @ of extinction of the process.
By further exploiting the embedded GWRE process we can display additional structure.

Actually Theorem 2.1 gives @) in terms of the sequence of disaster times as
o0 n
with Xs= > I Y;, (3.1)

where Y; = 671 exp(—(X\ — p)7;), and where X5 < oo if and only if —logé — 1/a < 0.
The study of the random variable @ and that of X5 are obviously equivalent activities.

We chose to first investigate the behaviour of X5. A similar series arising in a quite different

context has been studied recently by Todorovic and Gani (1987) by a similar approach.

6



The key step is to assume the sequence {Y7,Y2,...} to be i.i.d. and to see that then

oo} n ~
X; = Y=Y (1+ 5 ,1_11Y,-+1> =vi (1+ %) ,

n=1

18

i

where X and 5(5 have the same distribution and the factors in the last term are indepen-
dent.

If we assume not only that the interarrival times of the disasters are i.i.d. but that
they even are given by a Poisson process with parameter 8, then we get a result that is
explicit enough at least for numerical purposes.

Theorem 3.1: If 7 is the sequence of interarrival times of a time homogeneous Poisson
process with intensity f and X is given by (5.1), then the density h and the distribution

function H of X5 satisfy for z # 0
h(x) = ~{H() - H(ss - 1)} , (32)

with @ = B/(\ — p). Note that H(0) =0 as per the definition of Xs.

Proof: This can be shown by direct calculation from H(z) = P(Y - (1 + X5) < z) =
EP(Xs < (z/Y) — 1|Y). We prefer to use the Laplace transform L(f) = Ee=%Xs. Note
first that in our case Y has the density f(y) = a8(8y)* " 1j0,1/6(y) such that

e} 1/6
L(®) = [ Blesa(-8(X + DVIY =)0y = [ exn(~00) L)1 w)dy

6/6 6/6

=(1/9)/exp(—u)L(u)f(u/G)du =a(5/0)a/e—uua_ll}(u)du,
and therefore 0 0

L/(6) = ~(a/6)L(8) + o(6/6) exp(—8/8)L(8/8) = (a/6){8 exp(~6/6)L(6/6) — L(6)}.
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This equation for the Laplace transform is inverted into —zh(z) = aP((Xs + 1)/ <
z) — aH(z) = a{H(zé — 1) — H(z)}, which is the desired relation (3.2).

Theorem 3.1 gives us two possibilities to find the distribution function G(z) of @ =
(1 + AeX5)/(A + XeX5). The first is to solve (3.2) for H and then determine G(2) =
H[(Az — 1)/ Ae(1 — 2)]. The second way is to substitute the inverse of this relation and the
corresponding transformation of densities into (3.2) to obtain an equation connecting G
with its density g. The results of these two approaches are stated as corollaries; the details
of the calculations are left to the reader.
Corollary 3.1: Under the assumptions of Theorem 3.1, G(z) = H[(Az — p)/Ae(l — 2)]

where H is obtained from (8.2) as

H(z)=cz®* for 0<z<1/§, (3.3a)
H(z) = 2% { H(zp)z; " — a/u_(1+6)H(6u —1)du p, for z, <z < 2py1.(3.3D)

Tn

Here the sequence 23 < z2 < ... has to be chosen in such a manner that z, — oo and
that for each n, if 2, < u < z,4q1, the value H(§u — 1) must already have been determined
in a previous step. It seems natural to use the maximal values that are possible, i.e. to
determine the sequence by ; = 1/6, 25 = §zp41—1, leading to z, = 1/6+1/62+...+1/6™.
Unfortuantely Corollary 3.1 contains the constant ¢ in (3.3a) which can only be determined
as a normalizing constant after the integration has been carried out all the way to infinity.
Corollary 3.2: Under the assumptions of Theorem 8.1 the density g and the distribution

function G of the random probability of extinction satisfy

= B z) — z—€ —€ .
92) = o0 () ~ Gl — /(1= )} (3.4




with G(0) = 0.

Remarks:

1)

2)

The relation (3.4) was obtained by Bartoszynski et al (1989) without the use of the
explicit almost sure structure of @ as given by (3.1). They noted that (3.4) can be
integrated in a manner quite analogous as that described in connection with (3.3)
above.

Remembering the definition of X in (3.1) we see that as a function of § it is nonincreas-

ing. Thus for § — 1, or equivalently € — 0, it converges to X* = °£1 ﬁl exp(—(A —
n=1 j=

©)7;). Further we observe that therefore (Q — p/A)/e = (A — p)Xs/(\ + NeXs) —
(I — p/A)X*. Thus for small € we may consider eX* as the additional risk of extinc-
tion introduced into the process by the disasters. Note that (3.3) remains valid for
6 =1 and even simplifies. Furthermore in this case the equation for L’ in the proof

of Theorem 3.1 becomes an ordinary differential equation, namely

L'(6) = (a/6){exp(—8) — 1}L(6) , (3.5)

which we can solve to yield

L(8) = exp {—a/ [(1—e™) /u] } du . (3.6)

This relation can be used to evaluate the moments of X*. Expectation and variance

may be of interest. They are
EX*=a , V(X*)=«a/2. (3.7)

Going back to the relation X5 = Y1(1 + )NQ;) we can calculate the expectation of X
for 6 > 0 from EXs; = EY1(1 + EXs). It is easily seen that EY; = o/[(1 + a)é].
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3)

As a consequence EXs = oo if o/(1 + o) < § and EXs = (a/8)/(1 — a + a/8) if
a/(1+a) > 6. For § — 1 the first of the relations (3.7) is reproduced. In a similar
manner higher moments of Xs can be obtained. The conditions on the parameters «
and 6 for these moments to be finite become successively more restrictive.

Surprisingly there is no “rate of approach” of @ to 1 when the process approaches

criticality, i.e. when § — exp(—1/«) from above. In fact for any bounded B;

Bs/(1 - Q) = (A+ AeX5)Bs/(A — u) ~ X5 BsA(1 — exp(—1/a)) /(A — )

as 6 — exp(—1/a). Here, again using the monotonicity of X5 as a function of §, we
know that Xs — o0, a.s.. Assume this could be counter-balanced by Bs — 0, such

that BsXs — U. Then
U «— BsXs = BsY1(1 + X;) = BsY1 + BsY1 X5 — 0+ ViU,

where the latter convergence holds in distribution. Equality of the distributions of U
and of Y1U is only possible when U is concentrated in (at most) the two points 0 and

Q.

4. Limit theorems

In this section we study the analogues of the classical branching process theorems in

the present model. In the setup of GWRE processes these limit theorems have been given

by Athreya and Karlin (1972b), see also Kaplan (1972) for limitations to their validity

in full generality. At least for the noncritical cases our special assumptions about the

environmental process lead to much simpler and more explicit formulations of these results

so that it seems justified to present them here. Let us first turn to the supercritical case.
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Theorem 4.1: Let {Z(t),t > 0} be a time homogeneous linear birth and death process
with intensities X and p subjected to disasters of stremgth € = 1 — § arriving according
to a Poisson process N(t) with intensity B. Let Z, = Z(r1 + 12 + ... + Tn). Then, if

—logé~1/a <0,
a) Wy := 6§ N0e=O-mtZ(4) converges almost surely to a nondegenerate limit W.

b) Wy i= § e~ A=w(nt.4m) 7 converges almost surely to a nondegenerate limit
w.
c) W =W almost surely.

d) The conditional distribution of W, given the sequence T, has point mass Q at the

origin and the remaining mass distributed ezponentially with parameter

(L —p/N) (/X + eXs).

Proof: The proof of a) is first given for the general case of branching processes with
disasters by Kaplan et al (1975). It uses the fact that {W;,¢ > 0} is a martingale. We
may note in this connection that the “usual” martingale Z(t)/EZ(t) cannot converge
to a nondegenerate limit because even after long time disasters would force it to jump
again away from such a limit. For b) we first work under the condition of 7 being given.
Then, evaluating the appropriate conditional expectations we see that W, is a martingale
conditionally. Being nonnegative it has to converge a.s.. The nondegeneracy of W can then
be taken from either c¢) with a) or from d). To prove c) note that for all n by definition
N(mm+mn+...4+m)=nand Z(n+...+ 1) = Zn. This embeds W, = Wit rado it
into the process {Wy,t > 0}. As 71 + 72+ ...+ 7n — oo the limits of W; and W,, must be
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the same. The limit distribution is obtained from rewriting (2.5) as

(As —p)+ (1 = U (1 + AeXn)

Ho(s,1) = . 4.1
&) = T U T(A+ XeXn) (1)
Replacing s by exp(—Unrv) in (4.1) shows after an elementary calculation that
7 —p) - A
Ee™""r = H,(exp(—Unv),7) — (A=) = vlp + e Xs) (42)

(A —p)—v(A 4+ AeXs) ’
from which the assertions of part d) of the theorem can be easily extracted.
Theorem 4.2: Consider the same situation as in the previous Theorem except that now
~logé — 1/ > 0 (subcritical case). Then the conditional distribution of Z, given Z, # 0
converges to the geometric distribution with p.g.f. (A — u)s/(As — u) for almost all realiza-
tions of T.

The proof consists in explicitly calculating the conditional p.g.f. (H,(s,7)—
H.(0,7))/(1 — H,(0,7)) and letting n — oco.

Surprisingly the result does not depend on intensity and severity of the disasters
except for the fact that disasters must be sufficiently frequent and strong to turn the
process subcritical.

Turning to the critical case we try to use the information given in Athreya and Karlin
(1971) for the critical GWRE process. “To avoid unimportant technical details” they
work under boundedness conditions of the first three moments of the (random) progeny
distribution. In our case these conditions are satisfied if and only if the interarrival times
T1,T2,... are bounded which excludes the Poisson process case. Even under this possibly
unnecessarily restrictive condition we have so far not succeeded to verify the condition
of Athreya and Karlin (1971, p. 1857). Thus we formulate the expected result only as a
conjecture.
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Conjecture 4.3: In the critical case ElogY = 0, the conditional distribution of population
size Zn after the n'* disaster gwen nonextinction up to this time properly normalized
converges to an erponential distribution.

With some additional effort it should be possible to also show that the corresponding
result holds for the (corresponding) conditional distribution of Z, itself.
5. The integral of the process

In this section we study the process

t

I(t) = /Z(s)ds, t>0. (5.1)

0

Almost surely the realization of {Z(s),s > 0} is a pure step function and thus its
integral is well defined. For the case without disasters its properties have been studied by
e.g. Puri (1966). We restrict our attention to the asymptotic behaviour.

In the critical and subcritical cases almost surely Z(s) tends to zero and thus I(2)
converges almost surely to a finite random variable I.

For the supercritical case we use the following version of de ’Hépital’s rule.
Lemma 5.1: Let f and g be two nonnegative functions such that jf(s)ds and }g(s)ds

0 0

exist and that
0< Jim (7()/g(s)) = e < oo.

Then [ f(s)ds =oco & [ g(s)ds = co and in this case
0 0

zf(s)ds

lim ——=c¢.

t—oo
f g(s)ds
0
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There are two ways of combining this lemma with Theorem 4.1 both of which may be
of some interest.
Theorem 5.1: Under the conditions of Theorem 4.1 we have on [W > 0]
2) (= ) [ 6N Z(s)ds ~ WA (¢ - oo),
0
b) I(t) = zZ(s)ds ~ W}éN(s)e(A"”)"ds (t — o0).
0

Proof: The two parts correspond to two different ways of writing
W, = 5—N(8)e—(z\—u)sz(3)

in the form f(s)/g(s) and applying Lemma 5.1.

Remark: The third decomposition, namely W, = (Z(s)e=A=#)/(§N(2)), cannot be used
in a similar way since here numerator and denominator individually converge to zero fast
enough to have finite integrals.
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