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1. Introduction

Although a large part of financial economic theory is based on models with continuous-time
security trading, it is widely felt that these models are relevant insofar as they characterize
the behavior of models in which trades occur discretely in time. It seems natural to check
that the limit of discrete-time trading as the periods between trades shrink to zero produces

the effect of continuous-time trading. That is one of the principal aims of this paper.

An easier way to describe the purpose of the paper is to recall Cox, Ross, and Rubin-
stein’s (1979) proof that the Black-Scholes (1973) Option Pricing Formula is the limit of
a discrete-time binomial option pricing formula (due to William Sharpe) as the number of
time periods per unit of real time goes to infinity. Aside from providing a simple interpre-
tation of the Black—Scholes formula, this connection between discrete and continuous time
financial models led to a standard technique for estimating continuous-time derivative asset

prices by using numerical methods based on discrete-time reasoning.

In general terms, this approach to asset pricing works because of the following sort of
reasoning. Suppose, in an environment with n trading periods per unit of time, that S$"
is the stochastic security price process and 8" is the trading strategy; that is, 57 is the
price of the asset at time ¢t and 67 is the number of units of the asset held by the investor
at time . The corresponding financial gain process is G = J 07 dS;. At time T, that
is, the cumulative financial gain is the stochastic integral G = foT 6} dS7. Suppose that
(87, 5™) converges weakly to (6, 5). (A precise definition of weak convergence of processes is
given in Section 2.) Under recently developed regularity conditions, the gain G™ converges
in distribution to the continuous-time gain G = [ 0;dS;. This paper is designed to give
simple statements of these regularity conditions, showing how they can be applied in various
" financial models to answer a number of different types of questions.

The results are general: $™ and 6" can be continuous-time processes (defined, for ex-
ample, by an economic environment indexed by n); both S™ and ™ can be path—dependent.
An example of the sort of result one can obtain is the following extension of the Cox-Ross-
Rubinstein result for general price processes (in discrete or continuous time): if the risky
asset price process S™ converges in distribution to exponential Brownian Motion, then there
is a self-financing trading strategy (in the risky asset and a riskless bond) such that the

distribution of the strategy’s payoff at the exercise date of the option converges to the
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corresponding Black-Scholes option payoff, and such that the required initial investment

converges to that of the Black—Scholes formula.

We also present special tools to handle weak convergence of stochastic differential
equations and to deal directly with return processes, rather than price processes. For
example, suppose X ™ is the cumulative return process for énvironment n; the corresponding
price process is S™ = £(X™), the stochastic exponential of X™ (defined in Section 3). We
show that if X™ converges weakly to X in a natural way, then §™ converges weakly to
8§ = &(X). Under regularity conditions directly on X™ and 8", we can then show weak
convergence of [ 607 dS} to [ 6,dS,.

Our general goal is to provide a useful set of tools for exploring the boundaries between
discrete and continuous time financial models, as well as the stability of the financial gain

process [ 6dS with respect to perturbations of the price process S and trading strategy 6.

2. Preliminaries

This section sets out some of the basic definitions and notation. We let ID? denote
the space of IR%-valued cadlag! sample paths on a fixed time interval 7, either [0,7] or
[0,00). The Skorohod topology (as explained by Billingsley (1968), p. 111) on ID? is used
throughout, unless otherwise noted. A cadlag process is a random variable § on some
probability space into ID?. A sequence {S™} of cadlag processes (which may be defined
on different probability spaces) converges in distribution to a cadlag process S, denoted
S®" = S, if E[h(S™)] — E[h(S)] for any bounded continuous real-valued function A on
De.

A famous example is Donsker’s Theorem, whereby a normalized “coin toss” random
walk converges in distribution to Brownian Motion. That is, let {Yx} be a sequence of
independent random variables with equally likely outcomes +1 and —1, and let X7 =
(Y1 +---+Yny)/+/n for any time t, where [t] denotes the smallest integer less than or equal
to t. Then X™ == B, where B is Standard Brownian Motion. Donsker’s Theorem applies

to more general forms of random walk and to certain classes of martingales; Billingsley

! That is, f € ID means that f : 7 — IR has a limit f(i—) = lim,¢; f(s) from the left
for all ¢, and that the limit from the right f(i+) exists and is equal to f(t) for all ¢. By
convention, f(0—) = f(0). The expression “RCLL” (right continuous with left limits) is a
also used in place of cadlag (continue & droit, limites & gauche).
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(1968), Ethier-Kurtz (1986), or Jacod—Shiryayev (1988) are good general references.

In financial models, we are more likely to think of {Yi} as a discrete-time return
process, so that X™ is the normalized cumulative return process. The corresponding price
process S™ is defined by S7* = So&(X™)z, for some initial price Sp > 0, where the stochastic
exponential £(X) of X™ is given in this case by

[n{]

Ex™) =[] (1+§_’;;).

k=1

The definition of the stochastic exponential £(X) for general X is given in Section 3. It is
well known that §™ == S, where §; = SpeB*~*/2. That is, with returns generated by a coin
toss random walk, the asset price process converges in distribution to the solution of the
stochastic differential equation dS; = S¢dB;. This is the claséica.l Black-Scholes example
(leaving out, for simplicity, constants for the interest rate and the mean and variance of
stock returns). We return later in the paper to extend this example, showing that the
Black—Scholes formula can be found as the limit of discrete-time models with a general
class of cumulative return processes X™ converging in distribution to Brownian Motion.

A process X is a semimartingale if there exists a decomposition X = M+Awhere Misa
local martingale and A is an adapted cadlag process with paths of finite variation on compact
time intervals. Semimartingales are the most genera.1~ stochastic “differentials.” Protter
(1989) is an introductory treatment of stochastic integration and differential equations;
Dellacherie-Meyer (1982) is a comprehensive treatment of semimartingales and stochastic

integration.

3. Weak Convergence Results for Stochastic Integrals

This section presents recently demonstrated conditions for weak convergence of stochastic
integrals, as well as simplified versions of these conditions designed for applications in finan-

cial economic models. Readers interested only in our applications could skip to Section 4.

The following setup is fixed for this section. The time set 7 is [0,T ] or {0,00). For each
n, there is a probability space (2", F", P") and a filtration {FP : t € T} of sub-ofields of
F™ (satisfying the usual conditions) on which X™ is a semimartingale and H™ is a cadlag

adapted process. (We can, and do, always fix a cadlag version of any semimartingale.)
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There is also a probability space and filtration on which the corresponding properties hold
for X and H, respectively. Moreover, (H", X™) => (H, X ), where = in this case refers to
convergence in distribution on the Skorohod space ID? of cadlag sample paths on 7, valued
in JR?. Tt is important to realize that convergence in ID? is not convergence in ID! x ID'.
By (H",X™) == (H,X) we mean that there exists one (and not two) sequence of changes
of time A, such that A,(s) converges to s uniformly, and (H3. 5, X3n( 5)) converges in law
uniformly in s to (H,X).

First of all, we need conditions under which [ H? dX7 = [ H,_dX,.

AssuMPTION JC (Jacop’s CONDITION). For a sequence (A™) of cadlag, adapted processes

with paths of finite variation on compact intervals, for each time t,
lim sup P.(] A[+>b) =0,
b—oo p ’

where | A |;= fot | dA | denotes the total variation of A at t. That is, the finite variation

processes (A™) are tight on IR, in total variation.

Comment: By Chebyshev’s Inequality, for (A™) to satisfy Jacod’s Condition, it suffices
that, for any t, sup, E(| A™ |;) is finite. In particular, if A} = fot h%ds, for (JC) it is
enough that, for any ¢, sup,, £ (fot | RT | ds) is finite.

The following condition was introduced by Jakubowski, Mémin, and‘ Pages (1988). For

simple notation, let ~ X denote the distribution of a random variable X.

DerINITION (UNIFORM TENSION). Let H} be the set of processes of the form:

k
HY = Y&+ Yl 0,0(9),

=0

where Y is Fj-measurable, | Y;* |< 1, and {to,%1,...,tx} is a finite partition of [0,1]
with tg = 0 and t; = t. A sequence of semimartingales (X™)n>1 has uniform tension if

{~[H}dX}:n€IN, H" € H}} is tight for each t > 0.

The condition of uniform tension was inspired by the theorem of Bichteler—Dellacherie,
which states that an adapated, cadlag process X has uniform tension (where the “sequence”

consists of X = X for all n) if and only if X is a semimartingale. See Protter (1989).
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THEOREM 1 (JAKUBOWSKI-MEMIN-PAGES). Let (X™) be a sequence of semimartingales
and (K™) a sequence of adapted cadlag processes, where, for each n, (X™, K™) is defined on
(Q”, F,(FP )0, P*). Suppose the sequence (X™) has uniform tension. If (K™, X") =
(K, X), then X is a semimartingale and [K! dX}? = [ K,_dX,.

88—

A precursor of Theorem 1 is due to Strasser (1986). The following is a useful conse-

quence of Theorem 1 which is not given in Jakubowski, Mémin, and Pages (1989).

THEOREM 2. Let (K™, X™) be as in Theorem 1, with (X™) having uniform tension, and
with (K™, X") = (K, X). Then the semimartingales Y™ = [ K} dX7 also have uniform

tension.

PRrOOF: Since K™ converges weakly, we know that for every t > 0, € > 0, there exists ng
and p > 0 such that n > ng implies P, ((K™); > p) < €, where (K™); = sup,¢, | K7 |. Fix
> 0and set TP = inf {t > 0:] K7 |> p}. Then (K™_)T"" is bounded by p, and for large
enough n we have P(T™P < t) < €. Let H™ € H}, where H} is as defined in the definition
of uniform tension. Let Y™ = f K?_dX?, or in the usual shorthand notation that we shall
henceforth adopt, Y™ = K” - X™. To show the uniform tension of Y™ it suffices to show
that {~(H™-Y™)!: n € IN,H" € H}} is tight (see Lemma 1.1 of Jakubowski, Mémin, and
Pages (1989)). That is, we need to show that, given € > 0, for some constant ¢ and some
ng, we have P, [(H™ - Y™); > ¢} < 2¢, all H € H}, all n > no. Since '

*

P[(H" - Y"): > ql < P, [((H" .Y”)T""’)t > q] + Po(T™ < 1).
<P, [((H” -Y”)T""): > q] ‘e,

Without loss of generality we can assume Y™ is stopped at T™?, hence | KZ | < p. But also

1 n nyx* _ n ny*
P (3 Y > 0) = Pa(0 Y7 > 1),

and therefore we can assume without loss of generality that | K | < 1, since g was arbitrary.

It is elementary to show that 7} is dense in the set of left continuous, adapted processes
with right limits that are bounded by one (see Theorem 10 of Chapter II of Protter (1989),
where this is done in detail), with the topology of uniform convergence on compacts in
probability (ucp). Let K™™ € H} converging ucp to K. Then

P [((EmK") -X"): > 2pq]
<P, [((E"K™)- X" - (H"K™™) -X”): > pq| + P [((H"K""") -X"): > pa) .
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Since H"K™™ € ‘H}, the second term on the right is less than /2 for large enough n (and
all m) by the uniform tension of X™. Then, for each n, the first term on the right is less
than €/2 for m > mo(n). This gives the uniform tension of Y.

The hypothesis of uniform tension is difficult to verify in practice. We have the following
simpler version of Theorem 1. For a process Z € ID,let AZ, = Z; — Z;_, the jump of Z

at time t.

TuEOREM 3. Let (X™) be a sequence of semimartingales with decompositions X™ = M™ +
A™, and let K™ be an adapted cadlag processes on Q™ F*, (FM)i>0,Prn), each n € INV.
Suppose that

(a) (A™) satisfies (JC).

(b) For each t, sup,, En (sup,<; | AMJ |) < co.

If (K™, X™) = (K,X), then X is a semimartingale, (X™)n>1 has uniform tension, and
[Kr dX? = [K,_dX,.

ProoF: By Theorem 1 it suffices to show that the sequence (X™) has uniform tension. To
this end, let H™ € H}.

For a process Z, let Z} = sup,<; | Zs |. Since (fot H?dAT)* <| A™ |, condition
(2) implies the (uniform) temsion of Erv [ Hr dAT}, which further implies the tension of
{~ (A™)}. [See Stricker (1985).] Since (M™); < (X"); + (A4");, and since X" = X
implies the tension of {~(X™); : n € IV}, we deduce the tension of {~(M");}.

We next establish the tension of {~ [ H dM}}. We will use Davis’ inequality (Del-
lacherie and Meyer (1982), VII. 90): For any martingale M and any stopping time T, there
exist universal constants @ and 8 such that

E (1M, M}Y?) < aE (M3) < BE (M, MIZ*)

where [M, M] denotes the quadratic variation process of the martingale M.
" Let € > 0. By the tightness of {~ (M™)*}, there exists a constant K such that, if

TK =inf{s <t:| M} |> K} At,
then P,,(T"’K < t) < €. Since

(M™)par < K +sup | AM |,
s<t
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we have
sup E, [(M")}n,x] <K-+supFE, (sup | AM} |> <C.
n n s<t

(We let the constant C vary from place to place in what follows.) Then by Davis’ inequality,

Tn,K

(o), Jen ([ omranan)]

< B (M7, M) < C.

n([rar) >9<
Tk €

However sup,, P,(T™¥ < t) < ¢, and thus

sup Py [(/ H" dM") > Q] < 2,
n ¢ €

which implies the tension of {~ [ H" dM™}. Combined with the tension of {~ [ H" dA"},
this yields the (uniform) tension of {~ [ H*dX"}. |

Eo (IM™, Mk ) < aBa[(M™)3n.x] < C.

Moreover,

Therefore

Comment: If the semimartingales X™ have uniformly bounded jumps, then they are spe-
cial: that is, there exists a unique decomposition X™ = M™ 4+ A", where the finite variation
process A" is taken to be predictably measurable. Such a decomposition is called canonical.
For the canonical decomposition, it can be shown that the jumps of M™ (and hence of A™)
are also bounded, and therefore for the canonical decomposition in the case of bounded
jumps, condition (b) is always satisfied, and one need only check that (JC) holds in order
to conclude the convergence of the stochastic integrals. Of course, if X" = N™ + C" is
- any sequence of decompositions with the jumps of (N™),>; uniformly bounded, then again

clearly condition (a) [(C™) satisfies (JC)] is sufficient for the conclusions of Theorem 2.

LEMMA 1. Suppose (Z™), Z" = M™ + A", is a sequence of special martingales with (A")
satisfying (JC). Then, for the canonical decomposition Z™ = N™ + A", the sequence (A™)
satisfies (JC).

PROOF: Since Z™ is special, A™ is locally of integrable variation [Dellacherie and Meyer
(1982), page 214]. Since A" is the predictable compensator of A™, the result follows from
‘the Corollary of Appendix Lemma Al. [



3.1. Stochastic Differential Equations

We now address the case of stochastic differential equations of the form
t
20 =i+ [ fuls Z2)dXT,
0 .
t
Zo=H + / £(s, Z,-) dX,,
0

where f,, and f are real-valued functions on IRy X IR such that:
(A) x — fo(t,z) is Lipschitz, each n,
(B) t — fu(t,z) is LCRL (left cc;ntinuous with right limits, or “caglad”) for each z,
each n, and
(C) for any sequence (z,) of cadlag functions with z, — z in the Skorohod topology,
(Yn,n) converges to (y,z) (Skorohod), where yn(s) = fn(s+,20(8)), y(s) =
f(s+,2(s))-
(If fu(t,2) = f(t,2), all z, then condition (C) is automatically true.)

TuEOREM 4 (StoMiNski). Let (H™,X™) be as in Theorem 1, and let (fr)n>1 and f satisty
(A), (B), and (C) above. Let Z",Z be solutions® of

t
zZp = H] + / fn(s, Z7_)dXY
0
t
Zt = Ht +/ f(s,Zs_)dX.,.
0
Then (2, H", X™) = (Z, H,X).

The following theorem in not in Slominski, but it is essential for the applications we

have in mind.

THEOREM 5. Let X™ have uniform tension, let Z§ be random variables on Q" which are
F7 measurable, and let (f2)n31, f satisty (A), (B), and ( C) above. Let Z™, Z be solutions
of ;

20 =23+ [ fulo,Z) X

i
Zy = zo+/ (5, 2Z,_)dX, .
0

2 Unique solutions exist. See Protter (1989) or Emery (1979).
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If (Z8,X™) = (Zo, X), then (Z",X™) => (Z,X) and (Z")sn>1 have uniform tension.

PrOOF: By Theorem 4 we have (Z",X") = (Z, X), and therefore (f.(s,2Z7),X") =
(f(s,Z,),X). The theorem now follows from Hypothesis (C) and Theorem 2. i

THEOREM 6 (SLOMINSKI, SIMPLIFIED). Let (H™,X™) be as in Theorem 3, and let (fn)n>1
and f satisfy (A), (B), and (C). Let Z™ and Z be as in Theorem 4. Then (Z",H",X") =
(Z,H,X). Moreover if H® = 2}, with H = Zg as in Theorem 5, then (Z")n»1 has uniform

tension.

An important special case is the stochastic differential equation

t
Zt==14-j[ Z3_¢£¥m
0

which defines the stochastic exponential? Z = £(X) of X. The solution, extending the

special case of the previous section, is

Z, = exp (Xt - %[X, X]f) H (1+ AX,)e 8%
0<s<t

where [X, X]® denotes the continuous part of the quadratic variation [X, X] of X. With a
Standard Brownian Motion B, for example, [B, B = [B, B); = t and £(B); = eB+—*/2,

Note that if AXT = —1 for some finite stopping time T', then Z; = £(X); is identically
zero after T. Also if inf, AX, > —1, then £(X) is always nonnegative. Finally, one can
show that the process V; = ] < [(1+AX s)e~2%s is a well-defined, adapted, cadlag process
with paths of finite variation on compacts. (As is clear from the equation it satisfies, the
stochastic exponential plays a role analogous to the ordinary exponential of elementary
calculus.) _

For a semimartingale X, let £ (£(X)) = £ (X), the exponential of the exponential of
X. In general let EM(X) = £(E(---E(X))---), where £(™)(X) denotes the n-fold iterated
stochastic exponentié.l. We have the following corollary; the case n =1 is originally due to

Avram (1988).

COROLLARY 1. Let (X™) be semimartingales having uniform tension with X" = X.
Then (X", €M (X")) = (X,E0)(X)), each k > 1.

3 This is also known as the Doléans-Dade exponential.
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COROLLARY 2. Let X™ be semimartingales satisfying the hypotheses of Theorem 3. If
X" = X then (X™,EH(X™)) = (X,EH)(X)), each k > 1.

PROOF: Since the hypotheses of Theorem 3 imply that (X™)n>1 have uniform tension, both
corollaries will be proved if £ (k=1)(X) has uniform tension, each k—1. However, this follows
by Theorem 5, taking fn(s,z) = z, each n, and induction on k. 1

4. Convergence of Discrete-Time Strategies

In order to apply our results to “discrete-time” trading strategies 8" and corresponding
price processes S™, we need conditions under which (6™, 8™) = (0,5). We will consider
strategies that are discrete-time with respect to a grid, defined by times {to,...,tx} with
0=1, <t1 <--- <ty = T. The mesh size of the grid is sup; | tx — tk-1 |

The following convergence result is sufficient for many purposes. This result is trivial

if f is uniformly continuous. The content of the lemma is to reduce it to that case.

LEMMA 2. Let (S™) and S be ID%-valued on the same probability space, S be continuous,
and §™ == S in the uniform metric topology. For each n, let the random times {T}'} define
a grid on [0,T] with mesh size converging with n to 0 almost surely. For some continuous
f:R*x[0,T] — IR, let H} = f1s(Ty),Tp), t € [T, T}y,), and Hy = f(S¢,t). Then
(H™,8™) == (H,S) in the uniform metric topology on D4+,

PROOF: Since S is continuous, for each w, there is some bound r(w) for S(w). Since
§" == § (uniform) for each w, there is some N(w) such that, for n > N(w),

sup |57 (w) - Ss(w) < 1,

which implies that

sup sup|ST(w)|< r(w)+1,
n>N(w) 3

and therefore that

sup |SE(w)| ¢ -
> ap |55 ( )l}

sup sup |Sh(w)| £ max {r(w) +1, sup
n s : k<N(w

Thus S™ is uniformly bounded, w by w. For each w, we can therefore assume without loss
of generality that f is defined on a compact set and therefore for each § > 0, there is an
e(w) such that | f(y,t) — f(z,s)| < & whenever |(y,t) - (z,9)] < e(w).
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On {TP <t < TP, }, for each w there is some N(w) such that, for n > N(w),
[($™(T), Ti*) — (5(2), )| < €(w),

implying that
|H™(t) - H(@t)| = |f[S™(T¢), Tl - F[S@), 2] < 6.
It follows that
sup |(8F, H}) - (S, Hi)| =»n 0 as.,
which implies that (§7, H") == (S, H) (uniform metric topology). |

COROLLARY 1. The result follows if the assumption S® = S (uniform) is replaced by
$m == § (Skorohod), provided S™ is continuous for all n or §" is “discrete,” that is,
S™(t) = §™(TF) for t € [Tf, T, ,)-

PrOOF: It is well known that if a is a continuous function, a sequence (an) converges
to « in the Skorohod topology if and only if it converges to o locally uniformly le.g.,
Jacod-Shiryaev (1987), p. 292]. Thus, for S™ continuous, we have 5" => S in the uniform
topology. Alternatively, if S™ is “discrete” as above, and §™ = § Skorohod, then S*"= S
uniform. |

The next corollary is immediate.

COROLLARY 2. Suppose (for d = 1) that S™ = M™ + A™ also satisfies assumptions (a) and
(b) of Theorem 3. Then [ H]' dS;' == [ H;_dS:.

The following corollary allows the function f defining the trading strategies to depend

on n. The proof involves only a slight adjustment.

COROLLARY 3. Suppose f,, : IR? x [0,T] — IR is continuous for each n such that: For any
€ > 0, there is some N large enough that, for any (z,t) and n > N, |fa(z,t) - f(z,t)| < e.
Then, with H} = f,[S(TZ),T¢], t € [TF, T}, ), the same conclusion follows.

5. Example: Convergence to the Black—Scholes Model

The objective of this section is to show that the weak convergence methods presented in this
paper are easy to apply to a standard situation: the Black-Scholes (1973) option pricing

formula. Under standard regularity conditions, the unique arbitrage-free price of a call
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option with time 7 to expiration and exercise price K, when the current stock price is z,

and the continuously compounding interest rate is r > 0, is

C(z,7) = ®(h)z — Ke"""®(h - o/T),

log(z/K)+rT+0%7/2
’

where ® is the standard normal cumulative distribution function and h = T

provided the stock price process S satisfies the stochastic differential equation
_ dS; = /I,St dt 4 oS dBt; So=2z> 0, (1)

for constants p, r and o # 0.4 We will show convergence to the Black—Scholes formula in

two cases:

(a) A fixed stock-price process § satisfying (1) and a sequence of stock trading strategies
{6™} corresponding to djsérete—time trading with trading frequency increasing in =,
with limit equal to the Black—Scholes stock trading strategy 8; = Cz(S:, T — t), where
T is the expiration date of the option and Cy(z,7) = £C(z,7).

(b) A sequence of stock price processes {5} constructed as the stochastic exponentials of
cumulative return processes {X™} converging in distribution to a Brownian Motion X,

and trading strategies {6™} defined by 6™(t) = C(S7,T — t) for discretely chosen .

Case (a) handles applications such as those of Leland (1986); Case (b) handles exten-
sions of the Cox-Ross—Rubinstein (1979) results.

CASE (a) INCREASING TRADING FREQUENCY.

Let T > 0 be fixed, and let the set of stopping times 7, = {T}'} define a sequence
of grids (as in Lemma 2) with mesh size shrinking to zero almost surely. In the n—th
environment, the investor is able to trade only at stopping times in 7. That is, the trading
strategy 6™ must be chosen from the set O™ of square-integrable predictable processes with
(1) = 9°(TP) for t € (TP, T7]. For a simple case, let t} = k/n, or n trades per unit of
time, deterministically.

We take the case r = 0 for simplicity, since this allows us to consider stock gains alone,

bond trading gains being zero. For 7 > 0, a standard trick of Harrison and Kreps (1979)

4 Note that S is the stochastic exponeﬁtial of the semimartingale X, = ut + oB;.
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allows one to normalize to this case without loss of generality. We consider the stock trading

strategy 0™ € ©" defined by §™(0) arbitrary and
07 (t) = Co[S(TY), T - T¢), € (T, Tital (2)

For riskless discount bonds maturing after T', with a face value of one dollar (the unit of
account) and bearing zero interest, we define the bond trading strategy o™ € O™ by the

self-financing restriction

a™(t) = a"(0)+/0 " o7 dS, - 6"(TD)S(T) +OMO)S(0),  te T TEL  (3)

where

a”(O) = C(So,T) - 0"’(0)50

The total initial investment o + 67 So is the Black-Scholes option price C(So,T). (Note
that, a® € ©".) The total payoff of this self-financing strategy (a™,6") at time T is
C(S50,0) + fOT 67 dS,. For our purposes, it is therefore enough to show that

T
C(S6,0) + / 67 dS, => (St - K)*,
0

the payoff of the option. This can be done by direct (tedious) calculation (as in, say, Leland),

but our general weak convergence results are quite simple to apply here.

ProrosiTiON 1. In the limit, the discrete-time self-financing strategy 6™ pays off the op-
tion. That is, C(S5,0) + [, 67 dS; = (St — K)*.

. Proor: For X® = X = § and HP = C5(S;,1),t € [T?, T ), the conditions of Theorem
2 are satisfied: Assumption (a) is satisfied because, since §* = §, all n, we have A" = A4,
all n (the finite variation terms) and obviously limy_,co P(| A |¢> b) = 0. Assumption (b)
is also satisfied because §™ = § is continuous and therefore [as is well known—see Protter
(1989) or Dellacherie-Meyer (1982)] all decompositions of § = M + A are such that M and
A are continuous.

Since 7 = H and C; is continuous, Corollary 2 of Lemma 2 implies that C(So,0) +
X 07dS, = C(S6,0) + J7 6.dS;. By Black and Scholes (1973), C(S0,0) + [y 6:dS; =
(S7—K)* as. [For the details, see, for example, Duffie (1988), Section 22.] Thus C(So,0)+
S ordSs, = (Sr - K)*. |
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We can generalize the result as follows. We can allow S to be any diffusion process of the
form dS; = p(St,t)dt +0(St,t)dB;. Then, subject to technical restrictions, for any terminal
payoff g(S), there is a sequence of discrete-time trading strategies whose terminal payoff
converges in distribution to g(S1). The following technical regularity conditions are far in
excess of the minimum known sufficient conditions. For weaker conditions, see, for example,

the references cited in Section 21 of Duffie (1988).

CoNDITION A. The functions p : IR x [0,T} - IR, o : Rx [0,T] — IR, and g : IR —
IR together satisfy Condition A if they are Lipschitz and have Lipschitz first and second

derivatives.

PrOPOSITION 2. Let (u,0,9g) satisfy Condition A. Suppose dS; = p(St, t)dt + o( S, t)dBy,
and S™ => S (uniform topology), where S™ = M™+ A™ satisfies assumption (a) and (b) of

Theorem 3. Then there exist (discrete-time self-financing) strategies (§") in ©™ such that
T
ElgCtn)+ [ 07 dst = ofSr),
0

where X; = So + [, 0(Xs,8)dBs, t € [0,T].

ProOF: Let F(z,t) = E [g(X3")], where X2 =z + J o(X%*, s)dB,, 7 >t Then,
as in Duffie (1988) Section 22, the partial Fy is a well-defined continuous function and
0; = F.(S:,1) satisfies E [g(XT)] + fOT 8, dS; = g(St) a.s. For the trading strategies 6} =
FIS(TR),TP), t € (T, TE,4], the result then follows as in the proof of Proposition 1. i

Of course, one can extend the result much further.

CASE (b) (CUMULATIVE RETURNS THAT ARE APPROXIMATELY BROWNIAN MOTION).

The cumulative return process X corresponding to the price process S of (1) is the
Brownian Motion X defined by
X: = pt+ oB;. 4)

That is, § = So&(X), where £(X) is the stochastic exponential of X as defined in Section 2.

We now consider a sequence of cumulative return processes {X™} with X" == X.

Example 1. (Binomial Returns)

15



A classical example is the coin-toss walk “with drift” used by Cox, Ross, and Rubinstein

(1979). That is, let
Xy = Z Yr, (5)
where, for each n, {Y*} is a sequence of mdependent and identically distributed binomial

trials with /7 E[Y?*] — p and /nvar(Y) — o2, It is easy to show that X" = X. (See,
for example, Duffie (1988), Section 22.)

Let us show that the assumptions of Theorem 3 (for example) are satisfied in this case.
For any number £, recall that [t] denotes the largest integer less than or equal to t. Since

the (Y?)k>1 are independent and have finite means, we know that

[n]

M} = Z [Y? - E(YM)]
is a martingale, and thus a decomposition of X™ is
[n1]
X7 =— > % ~ BT+ B () = M 4 47
P 7
Clearly the jumps of M™ are bounded. As for (JC), we have
blin;os%pP(I A" > b) bllxgosghpP (—\/l.-ﬁn | E(Y") | > b) ,
and since lim, oo v7 | E(Y7") | =| 1 | < 00, (JC) is satisfied.
Therefore, if $" = SFE(X™) and §§ — So, then § = § by the Corollaries of The-
orems 5 and 6, or by direct calculation (and an application of Billingsley (1968), Theorem
5.1, if S™ # So). This ends Example 1.

We consider the discrete-time stock—trading strategy 8™ € O™ defined by
;= Co[S™(TE), T, te (TI:L,TI?+1]’
where S™ = SpE(X™). To show that Black-Scholes applies in the limit, we must show
that C(Sg,0) + fOT 97 dS? => (Sp — K)*. [The self-financing bond trading strategy o™
is defined by the obvious analogue to (3), and the initial investment is the Black-Scholes

value of the option, C(SF,T).] It is implicit in the following statement that all processes

are defined on the same probability space unless the stopping times {7} are deterministic.
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PROPOSITION 3. Suppose S§ — So > 0, (X™)np1 satisfles the hypotheses of Theorem
5, and X™ = X, where X is the Black-Scholes cumulative return process (4). Then
§™ = £(X™)8F = £(X)So = S. If {X™} satisfies the conditions of Theorem 1, then
C(83,0) + [ 67 dSp = (ST - K)*.

PrOOF: To apply Corollary 2 of Lemma 2, we need only show that §™ = S and that S™
satisfies the conditions of Theorem 1. This is true by the Corollary to Theorem 6. Since
C(S0,0) + foT 0;dS; = (S — K)* as., we are done. [

What examples, in addition to the coin—toss random walks { X"} satisfy the hypotheses

of Proposition 3?

Example 2. (iid Returns). Suppose {X"} is a sequence of stock return processes defined

by (5), where:
(i) {Y*} are uniformly bounded,
(ii) for each n, {Y*} is iid., -
(ili) v/n E[Y?] —n p, and
(iv) /7 var(YQ) —n o2,
Then, using Lindeberg’s Central Limit in the proof of Donsker’s Theorem, we have X™ —

X, where X is given by (4). Furthermore, {X"} satisfies the hypotheses of Theorem 6.
Thus, the hypotheses of Proposition 3 are satisfied. This ends Example 2.

Example 3. (Mixing returns). Let the sequence {X"} of cumulative return processes be

defined by (5), where the following conditions apply:
(i) {Y;*} are uniformly bounded, IR-valued, and stationary in k (for each n).
(i) For F& = o{Y7:k < m}, 7 = o{¥5k > m}, and j(m) = @3(G7* | F7),
where v
pp(A|B) = sup |Pa(A | B) = Pr(A)[ze,

Cn = T2, [¢R(m)]* < 0o, each n, where p = 342, a = 145, for some & > 0.

(i) VRE(Y?) — p and, for UP =Y — En[Y[], sup, VRC UM | L2+s < 0.
(iv) 02 = B [(UP)?] + 252, En(UPU}) is well-defined and o —n ol.

17



Under (i)-(iv), for X™ defined by (5), we have X" = X. [See Ethier-Kurtz (1986),
pp. 350-353, for calculations not given here.]

We wish to invoke the Corollaries to Theorems 5 and 6 and thus Proposition 3. To
verify the jump condition and (JC) we need to find suitable semimartingale decompositions
of X™.

To this end, following Ethier-Kurtz (1986) (p. 350 ff), define:

¢ oo
Mp=) Ur+ > En(Upkm|F7).
k=1 m=1
The series on the right is convergent as a consequence of the mixing hypotheses (see Ethier-

Kurtz (1986), p. 351), and M} is a martingale with bounded jumps with respect to the
filtration (F})¢>1. We have

n 1 k(3 n

where
1 [n1]

n n 1 n
A} = Wkl + 7 kZEn(Yk )
=1

with
[o ]
Ve == Ea(Ufim | F2).
m=1
Note that the total variation of the paths of the process V" are majorized in that

).

and using a standard estimate [Ethier-Kurtz (1986), p. 351], this expression is

14

Eo(|V™|e) < En (Z

k=1

[o o]
> En(Um | FR)

m=1

£ oo
<y (Z 6¢£"+”(m)) |UP|[ 245 < £8Cw||UT|La+s.
k=1 \m=1 .

Then
li P i|V"| >b) <l L g (V™ lng)
Jim sup P (721 V™ lig> b) < Jim sup g 1Vl
< blim sup lﬁ-ﬁt Cn U |L2+¢ = 0,

by hypothesis (iii). Thus (V[:t]/ ﬁ) satisfies (JC). Since v/RE.(Y?) —n i, (A™) satisfies
(JC), and the hypotheses of Proposition 3 are met. This ends Example 3.
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Appendix

The following Lemma allows one to work with the canonical decompositions of special

semimartingales for purposes of checking (JC).

LEMMA Al. Suppose (A™) satisfies (JC) and A™ is of integrable variation for all n. If A"
is the predictable compensator of A™, then (Z") satisfies (JC).

PRrOOF: Let _
: dA}

d| A | ’

where | A" |;= I dA7 | denotes the total variation of the process of the paths of An,

Then H™ is predictable and, for any stopping time T,

T T _
E[/.H;‘dA;‘ =E / HP dAD
0 0

E[ A3 I]ZE[/OTHNA?] =E[ A 1s].

By the Lenglart Domination Theorem [Jacod and Shiryaev (1987), Lemma 3.30 (b), page
35, with € = b and 5 = V/b),

lim sup P, (| A" |7> b) < lim sup {l [\/5+ E, (sup | AAT ])] + P, (l A% |> \/l_))} =
b—oo p b—oo o b t<T

Since (A") satisfies (JC), it follows that A™ satisfies (JC). |

n _
t =

=E[|A'"|T].

Since | H |=1

COROLLARY. Suppose (A™) satisfies (JC) and A™ is locally of integrable variation for all
n. If A™ is the predictable compensator for A™, then (A™) satisfies (JC).

Proor: For given b, let T = inf{t > 0: |A"|; > b}. The stopped process (A™)T= is of
bounded total variation. For given to > 0 and € > 0, there exists b large enough that

sup Po(T™ < tp) <sup Py (| A" [;,2 b) < ¢, (6)
since (A") satisfies (JC). It follows that
lim sup P (| A 12 8) < fim sup {Pu ({1 £ o2 0} (HT" > t0}) + Pa(T" < )}
Sblim sup{ ( 2 >+Pn(T”_<_to)}=0

by the lemma and (6). Thus (A™) satisfies (JC). [

COR)
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