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Abstract

ABSTRACT. Let X7, X,,... be i.i.d. random points in R? with distribution v, and
let L, be the length of the shortest path through X;,..., X,. The exact almost sure rate
of growth of L, is obtained under the assumption that v is self-similar in an appropriate
sense. This extends a well known theorem of Beardwood, Halton, and Hammersley.

SHORT TITLE. Travelling Salesman with a Self-Similar Itinerary.



1. The Beardwood-Halton-Hammersley Theorem

Theorem 0: If X1, X,... are i.i.d. random vectors in R? from a probability distribution
with compact support and if Ly, is the length of the shortest path through X1, Xs,. .., X,,
then I

" (d-1)/d

—a—nja cd/f(:v) dr a.s.,
where ¢g > 0 13 a constant and f(z) is the density of the absolutely continuous compo-
nent of the distribution of X,.

This theorem was discovered by Beardwood, Halton, and Hammersley [1]. It is of
interest in the study of probabilistic algorithms for the travelling salesman problem [5], [7].

If the distribution of X, is singular then Th. 0 implies that Ln/n(d_l)/d — 0 a.s. It
is natural to inquire about the rate of growth of L, in such cases. The purpose of this note
is to exhibit the exact rate of growth of L,, when the distribution of X,, and its support are
“self-similar” in an appropriate sense. For simplicity, we shall consider only distributions
in R2.

The Beardwood-Halton-Hammersley theorem is ultimately a consequence of the local
self—éimilarity of the ambient space, because this forces a degree of hierarchical organization
upon the shortest path (see Lemmas 4 and 8 below). It is easy to find singular distributions
lacking self-similarity for which the growth of L, is highly erratic. Beardwood-Halton-
Hammersley-type theorems undoubtedly hold for distributions not considered in this paper,
provided some approximate, local self-similarity is present (e.g., normalized Hausdorff

measures on Julia sets).

2. A BHH Theorem for Self-Similar Probability Distributions

Let K be a compact subset of R? satisfying K = gl ¥i(K), where +; is a con-
tractive similarity transformation of R? with similarity ratziz) ri€(0,1) (i.e., for any points
z,yeR2, ||[vi(z) — ¥i(y)l] = rillz — y|]). Say that K is strongly self-similar if there ex-
ists a bounded, connected, open set V' whose boundary dV is a simple, closed, rectifiable
curve and such that VN K # &,4;(V)Nyi(V) =3 Vi # j, and z_;LTJL1 vi(V) V. If
Y1(K),...,¥m(K) are pairwise disjoint, say that K is strongly disconnected.

Examples: (1) K = the closed unit square; V = the open unit square; 1, ¥s, s, 14
are the affine mappings that take V to the four nonoverlapping subsquares of side r; =
T =73 - r4 = 1/2, each with one vertex at a vertex of V. |

(2) K = {(z1,22) : z;¢C}, where C is the usual Cantor set; V = the open unit square;
¥1,%2, 3,94 are the affine mappings that take V to the four nonoverlapping subsquares .
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of side r1l= rg = rg = ry = 1/3, each with one vertex at a vertex of V. This set K is
strongly disconnected.

(3) K = the Sierpinski gasket ([6], plate 141); V = an open equilateral triangle of side
1; v1,%2, 3 are the affine mappings that take V to the three equilateral (sub)triangles of

side 11 =res = rg = 1/2, each with a vertex at a vertex of V.

Assume henceforth that K is a strongly self-similar set and that r1,73,...,r, are the
similarity ratios. It is known [4] that the Hausdorff dimension § of K is the unique positive
real number such that 3, r$ = 1. Note that § < 1 iff r; < 1.

=1

Theorem 1: Assume that § < 1. Let Xy,Xa,... be i.i.d. with distribution v, where
v(K) =1, and let L, be the length of the shortest path through X1,Xs,...,X,. Then

there 18 a constant C < oco such that

(2.1) lim L,=C a.s.

n

The cases 6 > 1 and § = 1 are more interesting. Let v be a probability measure on
K; say that v is self-similar if there exist positive real numbers py, ps, ..., pm satisfying

p1+...+pnp=1and
v(thi, 0tpi, 0...0%; (K)) = pi,piy - - - Di,,

for all finite sequences i34y .. .1, of indices from {1,2,...,m}. (If p; = rf then v is the
normalized é-dimensional Hausdorff measure on K.) Define the similarity exponent 8 of v

to be the unique real number such that
Tzn 'I‘ip? =1.
1=1
Observe that § > 0 iff § > 1 and § = 0 iff § = 1. In general, (1 — §)~! is the Hausdorff

dimension of the set of generic points of v.

Theorem 2: Let X1, Xs,... be i.i.d. with distribution v, where v is a self-similar probabil-
ity measure on K with similarity exponent 6 > 0. Let L, be the length of the shortest
path through Xi,...,X,.

(e) (Nonarithmetic case) If logp,...,logpm are contained in no discrete additive sub-

group of R then there is a constant 0 < u < oo such that
(2.2) lim L,/n’=p a.s.
n—oo
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(b) (Arithmetic case) If logpi,...,logpm are contained in hZ but in no proper subgroup
of hZ then there exists a continuous, positive, h-periodic function C(t) such that

L
9. i -
(2:3) 0o n9C(logn)

=1a.s.

Notice that (K,r) may have more than one self-similarity structure. Consider, for
example K = [0,1] x [0,1] and v = Lebesgue measure on K. One self-similarity struc-
ture is given by V = open unit square; 11, %2,%s3,%s = the affine mappings that take
V' to the four nonoverlapping subsquares (%, (Z%l—)-) X (%, g%l)) ,,,3 = 0 or 1; and
P1 = p2 = p3 = py = 1/4. Another self-similarity structure is given by V = open

unit square; ¥1,...,%y = the affine mappings taking V to the nine nonoverlapping sub-
squares (%, —-—(143'1)) X (g;,———("gl)) 8,7 = 0,1, or 2; and p; = pp = ... = pg = %. Ob-
serve that § = % for each of the structures, and that the closed additive group gen-

erated by log (i) and log (;—) is R. Consequently, (2.3) applied to each of the struc-
tures separately implies that (2.2) must hold, because if C(t) is log4-periodic and log9-
periodic it must be constant. In general, if there exist distinct self-similarity structures
($15-- -y Pm;P1y-- -, Pm) and (P1,...,%m;B1,... , Pin) such that the smallest closed sub-
group of R containing log pi,...,l0gpm,logp1,...,logfa is R, then (2.2) holds.

One might wonder if the periodic function C(#) in (2.3) is ever non-constant. I am
convinced that in general it is, for reasons that I will explain in sec. 9.

The case § = 1 occurs iff ;r; = 1. One example is K = any closed line segment
in R2. In this instance L, — constant a.s. as n —» oo; thus, one might expect that, in

general, if 6 = 1 then L, is bounded. This is false.

Theorem 3: Let X1,Xs,... be i.i.d. with distribution v, where v is a self-similar probabil-
ity measure on K, and let Ly, be the length of the shortest path through X1, X,,..., Xn.
Assume that K is strongly disconnected and strongly self-similar, with dimension § = 1.

Then there 1s a constant 0 < u < oo such that
(2.4) lim L,/logn=pu a.s.
n-——oo

"The proof of Th. 1 will be given in sec. 4; the proofs of Th. 2-3 occupy sec. 5-8. Section

3 is a resumé of some important facts about self-similar sets and self-similar distributions.



3. The Structure of Self-Similar Sets and Distributions
The elements of a strongly self-similar set K may be represented as infinite sequences

in the following way. Let 714... be an infinite sequence of indices from {1,2,...,m};

define
Ki iy, = %i, 0%, 0., 09 (K),

Wliz...in - ¢i1 o ¢i2 0...0 ¢in (V)) a'nd
o0
ki1i2... = ngl Kiliz...i,, .

Observe that K D K;, D Kj,5, D ... is a nested sequence of nonempty, compact sets, so

the intersection is nonempty. Moreover,
diameter (Kj,i,..i,) = T, Ti, - - - 73, diameter (K),

so ki, i,... is a single point. Conversely, each point z € K has the form z = ki, :,.. for some
sequence of indices, because there is a nested chain K D K;;, D K;,;, O ... containing z.
Notice that some points may have multiple representations.

Recall that V' is a bounded open set satisfying igl Pi(V)CVand p;(V)NY;(V) =D
if 2+ # j. It follows that for any sequence 41%3...,V D Vi, D Vii, D ... 1is a nested

sequence of nonempty, compact sets with diameters converging to zero, hence N $182.0in
n

is a single point. This point must be k;, ;,..., because for each n, K ip.5, N _17,'1,-2___,-” #* O,
since K NV # &. It follows that each k;,;,... is an element of V; thus

(3.1) K CV and Kivigoin CViiigin

for any n and any sequence i1i3... . Note that for any finite sequences i1i5...4, and

3315 ... 1y, that do not agree in all of the first (n A n') entries,

(32) “/ili2---in N I/z'lz’zz;, = .

Lemma 1: There exist a finite sequence j1Jjs ... je of indices such that Kjj.;0CV.

Proof: By hypothesis K NV # &, so there is a point kj, j,.. € V. But the sets Kj, j,..j.
shrink to k;, j,.. as n — oo (the diameters converge to zero) and V is open; hence, for £

sufficiently large, K;, j,...;, C V. O

Proposition 1: Let p1,pa,...,pm be positive real numbers satisfying p1 + ...+ pm = 1.

There 1s a unique probability measure v = vy, p, . o satisfying v(K) =1 and

(3.3) V(Kiis.in) = DirPiy - - - Pin

)



for every finite sequence i1a...%, from {1,2,...,m}. This probability measure also

satisfies
(3.4) V(Kiyi..in N Kigiy,) =0

for all sequences t1%3...1, and i\dy . ..1l, that do not agree in each of the first (n An')

entries.

Proof: It follows from (3.1)—(3.2) and Lemma 1 that

(3.5) Kirigoingyje N Kitir 51, =D

unless iy = ¢, for ¢ = 1,2,...,(n An’).
Let v be a probability measure satisfying (3.3) for all finite sequences 143 ...%,. Since

P Pj, - - - Pj, > 0, a simple calculation shows that for any sequence 4175 ...,

V(Kiyig..in) = ”(L,-g Kgiz,..2,)

where X is the set of all finite sequences 2122 ... 24 suchthat ¢ > n+£,2, =i, for1 < s <
n, and Tg4_p4s = js for 1 < s < £. Note that if z12,.. .24 € X then Kiizgzg C Kijiy..iy
It now follows from (3.5) that (3.4) must hold unless i, = i’ for s = 1,2,...,(n A n'),
because for any sequence z1z2...z4 € X, Kgy..z, N Ki'1~--i'n/ = . Consequently, v assigns
probability 1 to the set of points in K with unique representations kiji,... .

Let X be a random point of K with distribution v, where v is a probability measure
satisfying (3.3). By the preceding paragraph, X has a unique representation kr,1,... where
I, I,... are random variables valued in {1,2,...,m}. But (3.3) requires that I, I, ...

be i.i.d. with
(3.6) P{l,=1i}=p;, 1=1,2,...,m.

This uniquely determines v.
Finally, let Iy, Iy, . .. be i.i.d. with distribution (3.6), let X = kz,7,..., and let » be the
distribution of X. With probability one, the finite sequence j;js ... js occurs somewhere

in the infinite sequence I1I..., so kr,r,... is the unique representation of X. Hence, v
satisfies (3.4). It follows that

V(I{iliz...in) = P{I1 = il, e ,In = Zn}
= Di, Piy - - - Piy,
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for any finite sequence %113 ...1%,; this proves that there is a probability measure on K
satisfying (3.3). O

4, Haus.dorff Dimension < 1

Recall that the similarity exponent 6 is the unique real number such that Sr;p? = 1.
If 6 < 0 then clearly ¥r; < 1, so the Hausdorff dimension of K is less than 1.

Lemma 2: If ¥r; < 1 then there exists a rectifiable path that visits every point of K.

Proof: Let d = diameter (K) and let £ € K. For each finite sequence 145 ... 1, of indices
define z(i192 .. .495) = %, 0th;, 0...0%;,(z). There is obviously a closed path v; beginning
and ending at z that visits 2(1),...,2(m) in that order, such that length (11) < (m+ 1)d.
Define closed paths 72, vs,.. ., each beginning and ending at z, recursively, as follows. To
obtain yn+1, follow 41 from z to z(1); then follow t(v,) from z(1) back to z(1); then
follow v; from z(1) to 2(2); then follow ¥2(vs) from z(2) back to z(2); .. .; finally, follow
11 from z(m) back to z. Note that v, visits z and each z(3132...1%), k < n. Also

length (yn+1) = length (1) + _gl r; length (v,)

k
= length (v,) = ( 5 (gl rz-> ) length (1)

k=0 \1=

<A-=%r) Y m+1)d Vn.

Assume that each v, is parametrized by arclength. It is easy to see that as n — oo
the paths v, converge uniformly to a path v with arclength < (1 — Zr;)~}(m + 1)d. (In
fact, all we need is a subsequence «,, converging uniformly to a path v, and this follows
from the Arzela-Ascoli theorem, since vy,,n > 1, are uniformly equicontinuous.) The path
v must visit every point (%122 ... %), since -, does for every n > k; consequently, v visits
every point of K since {z(¢1¢2...2¢) : ¢1...4x any finite sequence} is dense in K(because

w(ilig zk) € Ki1i2...ik)- O

Proof of Th. 1: By hypothesis, the support of v is a closed subset of K. Define C =
infyer length v, where I' is the set of all continuous paths which visit every point of
support (). By Lemma 2, C < oo.

Let {, be a minimal path through Xji,...,X,. Then L, = length ¢, < C, since
X1,Xa,...,Xne support (v). Assume that ¢, is parametrized by arc length; then {¢n}n>1
is a uniformly equicontinuous family of functions, so there exists a subsequence n; T oo such
that (,, converges uniformly to a continuous path (. With probability one, ¢ visits every

point of support (), because ¢ visits Xy, X5,... and {X;, X»,...} is dense in support (v).
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Hence, length ({) > C a.s. But since (5, converges uniformly to ¢ and (,, is parametrized
by arc length, length ((,,) — length (¢). Finally, since length (¢,) is nondecreasing in n,
we must have L, T C. O

5. The Circle Freeway Lemma

The proofs of Th. 2 and Th. 3 use a “Poissonization” argument. Let X7, X,,... be
ii.d. with distribution v = vy, ., . (cf. Prop. 1), and let L, be the length of the shortest
path through X;,...,X,. Let N(t),t > 0, be a rate 1 Poisson process independent of
X1,X2,... . Then N(t)/t - 1 a.s. as t — oo. Since L, is nondecreasing in n, we can
easily recover the asymptotic behavior of L, as n — oo from the asymptotic behavior of
Ly as t — co. The advantage of introducing N(t) is that if U;,Us,. .., U,, are pairwise
disjoint then the random sets U; N {X1,..., XN}, ¢ = 1,2,...,m, are independent.

For each ¢ > 0 and each finite sequence 4143 ... i, of indices from {1,2,...,m}, define
At 212 . in) to be the length of the shortest path through {X;, X,, ..., XnwINKis,..in,
and define A(t) = Ly y).

Lemma 3: Let igs)igs) e iff()a), s =1,2,...,q be finite sequences of indices from {1,2,...,
m} such that no two sequences satisfy igs) = ig-sl) for 3 =1,2,...,(n(s) An(s')). Then
for each t > 0 the random variables \ (t; igs)z’gs) e iEf(L)) ,$=1,...,q are independent.

Moreover, for any t > 0 and any sequence iyis .. .4y, the random variable At i192 ... 1,)

has the same distribution as v4,7i, ... 7, X(Pi, Diy - - - Pi, ).
Proof: This is a routine consequence of (3.4) and the self-similarity of K and v. (]

Lemma 4: There ezists a constant C < co such that for every t > 0

(5.1) 3 AH) - C <A@ < El A(t8) + C.
=1 1=

Proof: Construct a path through X;,..., X N(p) as follows. First construct the shortest
path through {Xi,..., Xy }NK; foreachi = 1,2,..., m, then join these m paths together
in sequence. The length of this path is < 7, A(¢;1) + C for some C < oo independent of
t (by the compactness of Ki,...,Ky). This proves the upper bound.

Next, consider the shortest path v through X3, X5,..., X N(t)- The initial and terminal
points of v lie in V;, Vi, say; extend + from its endpoints to a path 7 whose initial and
terminal points lie on 8V;,0Vi for some 4,i/. This may be done in such a way that
length () < length (v) + 2maxi<i<m diameter (V;). Now for any ¢ € {1,2,...,m]},
the intersection of ¥ with V; consists of a finite collection of paths v;,7 = 1,2,...,q

in V;, each having its endpoints on dV;.  Since 8V; is a simple, closed, rectifiable curve,
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Lemma 5 below implies that 41, 72, . .., 74 may be joined together to form a single path ~v(?)
satisfying length (y()) < Zq) length (y;) + 2 length (8V;). This path ¥ goes through
Jj=1

each point in {X1,Xs,..., XN} N K;, because K; C V; and the original path 7 goes
through Xi,..., Xy(). Thus

T .q < 1 .
i§1 A1) < A(E) +2 \max diam (V;)

+2 % length (V;). [l
=1

Corollary 1: If C' < co is as in Lemma 4 then for every t < co and every finite sequence

1122 ... tn of indices,

(5.2) 5 A(tyi1ia .. . 6nd) — Criyri, - .75,
i=1
< B Atyivia...ind) + Criyry, .14
i=1

n

Proof: The self-similarity of K and v imply that the joint distribution of A(¢;4145 ... tn), A
(t;212...101),..., AM($;%1%2 . . . 4,m) is the same as that of ( ﬁ r,-j> A(?), < ﬁ rij> A(t; 1),
j=1 j=1

ceny ( I r,-j) A(t;m). Thus, (5.2) follows from (5.1). O
j=1

Lemma 5 (Circle Freeway Lemma): Let Y1,Y2y---,Yg De precewise smooth paths in a
domain U whose boundary OU is a simple, closed, rectifiable curve. Assume that for

each ¢ the endpoints of v; are on OU. Then there is a path v in (8U) U (_Equ 71-) that

) q
goes through every point of _U1 ~; such that
7=

(5.3) length () < '§)1 length (7;) + 2 length (8U).

Proof: The 2 endpoints of 71,...,7, all lie on 8U; label these points @1, Qq, ... y Q24 sO
that they appear in clockwise order around 8U. The paths 7;, v; may meet inside U at
“trafic lights” and may coincide on road segments between traffic lights. Define a graph G
whose vertices are the traffic lights and the points Q, ..., ()24 and with edges as follows.
For vertices V' and V' there is one edge between V and V' for each path 5; that goes
through V and V' without going through any other vertex in between. Also, there is one
edge between Q2;—1 and Q9; and two edges between Q2; and Qqi41 for each i = 1,2,...,¢q
(here Q2g+1 = Q1) in addition to any edges between Q;,Q; already in place because of
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paths v, that connect @;, Q; without going through any vertex in between. The graph G
is connected and each vertex has even degree. Therefore, by Euler’s “Konigsburg bridges”
theorem ([2], Ch. 1, Th. 10) there is an Eulerian circuit. The Eulerian circuit determines
a path v with the desired property.

(Note: It is possible that some of the points Q; may coincide. If this is the case, they
should be listed according to multiplicity, and in the construction of the graph G each
should be counted as a separate vertex. Thus, some of the edges in G may correspond to

paths of length zero in (0U) U <.L_qu 7,‘). This does not affect the validity of (5.3).) O
6. Expectation of A\(t) when § > 1

Recall that the similarity exponent 8§ of v = v,,, ... p,. is the unique real number such
that § ripf = 1. Observe that § >0 iff Zr; > 1iff § > 1.
=1

Lemma 6: If§ > 0 then EX(t) T co as t — oo.
Proof: EX(t) is clearly monotone in t. Let i(®) = iﬁ”ig") ... igf),s =1,2,...,m" be all the
finite sequences of indices of length n from {1,2,...,m}. Then

Lm P{{X1, Xs,..., Xy} N Ki) #D Vs=1,2,...,m"} =1

consequently, it suffices to prove that the length of the shortest path through Ku),...,
K;(mn) converges to co as n — oo.

Any path through all the sets K;.),s = 1,2,...,m™ must pass through each set of the
subcollection K;u)y,s = 1,2,...,m" ¢ in which i(®) has the form i(®) = 4115...4n_gj172...
Je, where ¢1,,...,i,—¢ are arbitrary and jy 72 ... js is the sequence constructed in Lemma

1. By (3.1)~(3.2) and Lemma 1,
distance (Kje), Kjou)) = T4, Tiy -« - Ti,_, 0,y

where d = distance (Kj,..j,,0V) and i® = 4yiy ... in—gfi ... fo, 100 = ifdh ... 4" _ 1. ..
Je are distinct sequences. Now any path that goes through all the sets Kj.), where
i(®) =4y ... in_gj1...Je, must exit each on its way to another, with at most one exception.

Therefore, its length must be at least

n—{
) rilriz"'rin-zd_d: (_2 Ti) d—d.
2122082 3

Since Xr; > 1, this becomes large as n — oo. 0

Proposition 2: Assume that 6 > 0.
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(a) (Nonarithmetic case) If logpy,logps,...,logpm are not contained
in any discrete additive subgroup of R then there is a constant pu > 0
such that

(6.1) Jim EX®)/t = p.

(b) (Arithmetic case) If log py,log ps,...,log pym are contained in hZ but
not in a proper subgroup of hZ then there is a continuous monotone

function u(B),0 < B < h, such that u(B) > 0 and

62 Jlim_EX(exp{nh + 8))/e" = u(p)

uneformly for 0 < g < h.

Proof: Consider first the nonarithmetic case. Let C be the constant in the inequalities
(5.3)—(5.4). Fix t, (large). Then Lemma 4 and Corollary 1 imply that

LeA(ty 182 ... 0n) — 20T, 14y .oy
<A(%)
LAt t102 .. in) + 250 T, .1y

n

n

where the sum ¥; ranges over all finite sequences i1%3...%,,n > 1, satisfying
n—1 n
— X logpi; <log(t/t) < — % logpy
j= j=

and the sum X} ranges over all finite sequences i173...7,,n > 0(n = 0 is the empty
sequence), satisfying

— f}l log pi; < log(t/t.).
]=
It follows from Lemma 3 that

PIFELTI FI TinE/\(Pil .. Di, t) — Z‘ICHI Pig oo Tq
< EA(%)
< ByriyTiy .- Tz'nE)\(Pil ... Di, t) + E:C'I‘il Tig - Tq

n

Define G(t) and H(t) by
G(t) =X;Cryriy ... 75 and
H(t) =%4riyriy .- 1i, EX(Diy Diy - - - Pi, t)

11



For each of these there is a functional equation, which may be obtained by conditioning

on the first coordinate 71:
G(t) = ,-gl riG(pit) + C1{t > t,}
and
H(t) = 5 riH(pit) + R(Y),
where

R(t) = )"3‘1 ri EX(pit)1{t« > pit > pit.}.

Each of these may be rewritten as a renewal equation, using the fact that Sr;pf = 1:
™ ‘
G(e) = B (rip)(pGpie”)) + Ce1{s > log.}

and
O H(e?) = e R(e’) + B (rin!) (o7 e H(pie))
Therefore, the renewal theorem for R implies that

lim G@®)/t® =C e %ds/y = Cy(t.)
t—o0 log t.

Jim H(@)/t® = / e R(e*)ds/y = Ca(ts)

where y = 5 (rip?)(—log p;) > 0.
i=1
Now observe that for any € > 0, if ¢, is chosen sufficiently large then C1(t.) < eCa(t).
This is because EA(t) T oo (Lemma 6) and

Ca(te) g 5 T; fllogt* e~9sEX(p;e®)ds
i=1

og Pitls

We have already shown that
—G(t) K EX(t) — H(t) < G(¥)

Since € > 0 is arbitrary, (6.1) follows.
The arithmetic case is similar — it uses the renewal theorem for Z. The details are
omitted. |:|

7. Expectation of A\(¢) when § =1 and K is Strongly Disconnected
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"The set K is strongly disconnected if K, Ks,...,K,, are pairwise disjoint. When
this is the case, the open set V may be chosen so that the compact sets V1,Va,...,Vm
are pairwise disjoint. Recall that § = 1 iff E r; = 1. Assume throughout this section that

=1
6 =1 and that K 1is strongly disconnected.
Lemma 7: For n > 1, let B, be the length of the shortest path that visits each of the m™

sets Viiy..i,. Then lLim (B, = oco.
’ n—>00

Proof: Let 7, be the shortest path, and let 7,, be the closed curve obtained by connecting
the endpoints of «,. Then length (7,) < length (v,) + diameter (V'), so to show that v,
is long it suffices to show that 7,, is long.

Define d = 1’:.’11? distance (V;,V;) > 0. If 4143 ..., and 4,4} ...4" are any two distinct

sequences of indices from {1,2,...,m} then

(7.1) _ distance (V,-liz_._,-n,v,-ll,-lz,_,,-;) > T Ty oo Tidy

-1

where k£ = max {¢ : ; = i; V1< 5 < g}, by self-similarity and the nesting property
VoViyDdViiD.... Let iV i@ i(™") be the distinct sequences of length n. Each

Vi) has a segment of ¥,, going out; hence (7.1) implies that

]

n—1
(7.2) length (7,,)> X ryriy...ri,_,d= ( X 'r'z-> md = md.
i1 5enrin=1 =1

i1 yeenyin=

But this is a rather crude estimate, since some V) may have an outgoing segment
connecting it to some V., where i) differs from i) in some coordinate before the
nt*. Thus, some of the terms TiTiy ---Ti,_,d in the above sum may be upgraded to
T3 Tiy ... Tid for some k < n — 1. In fact, for each sequence i173...17x,k < n, there
is at least one sequence tg41%k+t2...%, such that _51,-2__,,-" has an outgoing segment to
some Vi;_i;"'i;l where #12...%r # ij15...7}. For any such sequence i1i3...%, the term
T3, Tiy - .- Ti,_,d in the estimate (7.2) may be upgraded to r;, 74, ... r;, _,d. This upgrading
may be done one step at a time, first from n — 1 ton — 2, then n — 2 to n — 3, etc. At
each step the size of the deleted term is no more than 7 times the upgraded term, where

7 = max (r1,72,...,"m) < 1. Thus (7.2) may be improved to

length (7,,) > k% E ) TiyTiy -« Tip_,d(1 —TF)

=1 el =
o NG 25
=% ( z ri) md(l —7) = nmd(1 — 7).
k=1 =1
It follows that length (¥,,) — oo as n — oo. : O
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Lemma 8; Let pa(t) = P{{X1,Xa,..., Xn@}N vi1i2---in = @ for some sequence 1113 ...
in}. Then for anyt>0andn=1,2,...,

(7.3) Y ity i, EXApiy ... piy) + Br(l — pa(t)) — 2 length (OV)
< EX(t)
< % ryri T, EA(Epi, ... piy) + Bn + 2 diam (V)

Proof: This is a refinement of Lemma 4 and may be proved in a similar manner. The
difference here is that the sets Vi), ..., Vimn), where i),... i(™") are the distinct se-
quences of length n, are pairwise disjoint and therefore are separated by positive distances.
Construct the shortest path through {Xi,...,Xn@} N Vi) for each sequence i(s)
of length n, then join these together. This may be done in such a way that the length
of the resulting path is < X; 4,0, {A(#81...25) + 2 diam (7,-1i2__,,-n)} + Br. By Lemma
3, EX(t;t102 .. .%n) = TiyTiy .. -Ti, EA(piy - .. pi,, ). Moreover, L i,. 4, diam (Vilz‘z...in) =
YiyinTiy - --1i, diam (V) = diam (V), since ¥r; = 1. This proves the upper bound.
The proof of the lower bound is virtually the same as the proof of the lower bound in
Lemma 4. 0

Proposition 3: There exists a constant 0 < C < oo depending only on K (not on
P1,D2,- - ,Pm) such that
EX(t)

t—oo logt

(7.4)

=C/ 72”) rilogpi_l
i=1

Proof: Choose ¢ > 0 small. By Lemma 7 there is an n > 1 such that 2 length
(0V) + 2 diam (V) < €fa. Fix t. so large that p,(t) < € for all ¢ > pt., where p =
min(p1,...,Ppm)" > 0. By Lemma 8, if £ > ¢, then
ZeEAEDiy -« Pipy )iy -+ Tine + (1 —26)BrE5rs, ... Ti,
< EA(Y)
S EEADiy -+ - Pipg )iy -+ Tine + (L +€)BrEi7iy - Ty
where the sum 3; ranges over all sequences 2123 ... %,k, k > 1, satisfying
nk—1 nk
= I logpi; <log(t/tu) < ~ % logp;,
J: J=

and the sum 3} ranges over all sequences 2113 ... ik, K > 1, satisfying
nk
- _21 log p;; < log(t/ts).
]=

14



Define G(t) and H(t) by

G(t) = Xiryriy...14,, and
H(t) = 3T Ty - - TinkE/\(Pil .. -Pinkt)-

We have shown that
H(t) + (1 —2€)B.G(t) < EX(t) < H(t) + (1 + €)G(2).

The function H(t) satisfies a functional equation equivalent to a renewal equation; so the
renewal theorem implies that H(¢) = 0(1) as t — co. On the other hand, the “elementary
renewal theorem” ([3], Th. 5.52) implies that

Jlim G()/logt=1/ 1y ...ri, log(p, ... pi,) "

=1/nEr;logp;!.
?

Therefore

(1—2¢)8, < li{n_y(ixr)lf EX) < lim sup EA(t) < (14 €)Bn

nzri logp;—l - ].Ogt f—oo ].Ogt - ani ].ng;—l '
Since € > 0 is arbitrary, (7.4) follows, with C = lim (8./n). O
n—eo

8. Almost Sure Convergence

Theorems 2-3 follow from Props. 2-3 and Lemma 4 by routine arguments. The key
is the following,.

Lemma 9: If 0 < 6§ < 2 then var (A(¢)) = 0(1) as t — oco. If § = 2 then var (A(2)) =
O(logt) as t — co.

Note: In fact, Steele [7] has shown that var (A(¢)) is 0(1) even when § = 2. This is not
needed for the proofs of Th. 2-3, however.

Proof: Lerﬁmas 3—4 1mply that
(8.1) var (A()) < 3 r2var (A(tpi)) + C
i=1

for a suitable constant C < co. If 0 < § < 2 then Y™ . r? < 1; consequently, iteration of
(8.1) gives

k
var (A(%)) < Ckgo (El r,z) < 00.
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If 6 = 2 then E r? = 1. Let P = max(p1,...,pm) < 1, and let k be the smallest integer
larger than (log t) [(logp~'). Iterating (8.1) k times gives

var (A(t)) < % r2r2 2 var A(tpi, ... DPiy)

. . 1" 12 (33
215000yt =1

k—1 m
+ xC > riry ...Ts

. P . 12 23
Jj=0 21,224...525 =1 ’

m k k—1 m J
< (2 r3> EX1?+C % (2 rf)
i=1 =0 \i=1

= EX(1)? + Ck;
thus var (A(¢)) = 0(logt) as t — oo. O

Proof of Th. 2: Consider first the nonarithmetic case. By Lemma 9, var (A(¢)) = 0(logt),
and by Prop. 2, EX(t) ~ put® as t — co. Chebychev’s inequality implies that for any
a>0,e>0,

P{M(1+a)™)/(1 + a)"o —pl>€e} < (constant)e2n/(1 + a)zno;

consequently, the Borel-Cantelli Lemma implies that A((1+a)™)/(1+ o)™ — p a.s. Since
a > 0 is arbitrary and A(%) is nondecreasing in ¢ it follows that A(¢)/t’ — p a.s. as t — oo.
Finally, recall that A(t) = Ly where N(t) is a rate 1 Poisson process; since N(t)/t — 1
a.s., we must have

L,/n® — u as. as n — oo.

A similar argument applies in the arithmetic case. L

Proof of Th. 3: By Lemma 8, var (A(¢)) = 0(1), and by Prop. 3, EX(t) ~ ulogt.
Consequently, Chebychev’s inequality implies that for any € > 0

P{|M\(e")/n — u| > €} < (constant)e? /n?

from which it follows, by the Borel-Cantelli Lemma, that A(e™)/n — u a.s. Since A(t) is
monotone in t, A(t)/logt — p a.s. as t — co. Since A(t) = Ly where N(t) is a standard

Poisson process, it follows that L,/logn — u a.s. as n — oco. O

9. Periodicity
The purpose of this section is to give a heuristic argument explaining why the function
C(t) occurring in (2.3) may, in general, be non-constant. For simplicity we shall restrict

our attention to the special case in which K = C x C, where C is the usual Cantor set,
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and ¥ = pc X pe, where pe is the Cantor measure. The self-similarity structure is as
follows: V' = open unit square; 1,2, 93,14 are the affine mappings taking V onto the
four disjoint squares (%, '—"3;1-) X (13—, -7%) 6,7 € {0,2}s71 = re = r3 = ry = 1/3; and
pr=pr=p3=ps=1/4

The arguments of secs. 5-8 suggest that a nearly minimal path through X, X5,..., X,
may be constructed as follows. Fix a large (an integer), and let k£ = [a(logn)/(log4)]. For
each of the 4* sets K;,;,. i, , assemble the minimal path through {Xi,..., Xo} N Kiiy. 5,
then connect these 4% paths to form a single path. The connection of the 4% subpaths may
be done by joining the sets K;,;,. s, in lexicographic order, e.g., if k =2,11 — 12 — 13 —

. — 43 — 44. It doesn’t matter if the lexicographic ordering is suboptimal, because most
of the length of the complete path comes from the 4% subpaths, not from the connections
(provided the constant a is large).

NOTE: This is where the cases § = 1 and § > 1 differ. When § = 1 the hierarchical
connections make up most of the total length of the path. This is why the periodicity
phenomenon does not occur in Theorem 3.

The lengths of the 4% paths through the sets {X1,..., X} N K;uy,s = 1,...,4%, are
nearly i.i.d. random variables whose sum is the primary contribution to L,. These lengths,
after rescaling by a factor of 3%, are determined by the relative configuration of the points
{X1,...,X,} in the “squares” K;u). As n goes from 4*/¢ to 4(k+1/e the distribution of
the configuration of points in a square changes (but notice that this distribution is the
same at 4F/¢ and 4(+1)/ ). When n is somewhat greater than 4%/¢ the probability of
a configuration like that shown in Fig. 1 may be high, whereas when n is slightly less
than 4(k+1/2 the probability of a configuration like that shown in Fig. 2 may be high.
Thus, the distribution of the length of the shortest path through {Xj,...,X,} N K;e)
multiplied by 3% should be genuinely periodic in logn/ log 4, and therefore EL, /n? (where
6 =1 —log 3/ log4) should also be genuinely periodic in logn/ log 4.

Figure 1 here
Figure 2 here
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