Travelling Salesman with a Self-Similar Itinerary

by Steven P. Lalley* Purdue University

Technical Report # 89-01

Department of Statistics Purdue University

January, 1989

^{*}Supported by NSF grant.

TRAVELLING SALESMAN WITH A SELF-SIMILAR ITINERARY

by

Steven P. Lalley
Dept. of Statistics
Math. Sci. Bldg
Purdue University
West Lafayette, IN 47907
(317) 494-6030

Abstract

ABSTRACT. Let X_1, X_2, \ldots be i.i.d. random points in \mathbb{R}^2 with distribution ν , and let L_n be the length of the shortest path through X_1, \ldots, X_n . The exact almost sure rate of growth of L_n is obtained under the assumption that ν is self-similar in an appropriate sense. This extends a well known theorem of Beardwood, Halton, and Hammersley.

SHORT TITLE. Travelling Salesman with a Self-Similar Itinerary.

1. The Beardwood-Halton-Hammersley Theorem

Theorem 0: If X_1, X_2, \ldots are i.i.d. random vectors in \mathbb{R}^d from a probability distribution with compact support and if L_n is the length of the shortest path through X_1, X_2, \ldots, X_n , then

$$\frac{L_n}{n^{(d-1)/d}} \longrightarrow c_d \int f(x)^{(d-1)/d} dx \quad a.s.,$$

where $c_d > 0$ is a constant and f(x) is the density of the absolutely continuous component of the distribution of X_n .

This theorem was discovered by Beardwood, Halton, and Hammersley [1]. It is of interest in the study of probabilistic algorithms for the travelling salesman problem [5], [7].

If the distribution of X_n is singular then Th. 0 implies that $L_n/n^{(d-1)/d} \longrightarrow 0$ a.s. It is natural to inquire about the rate of growth of L_n in such cases. The purpose of this note is to exhibit the exact rate of growth of L_n when the distribution of X_n and its support are "self-similar" in an appropriate sense. For simplicity, we shall consider only distributions in \mathbb{R}^2 .

The Beardwood-Halton-Hammersley theorem is ultimately a consequence of the local self-similarity of the ambient space, because this forces a degree of hierarchical organization upon the shortest path (see Lemmas 4 and 8 below). It is easy to find singular distributions lacking self-similarity for which the growth of L_n is highly erratic. Beardwood-Halton-Hammersley-type theorems undoubtedly hold for distributions not considered in this paper, provided some approximate, local self-similarity is present (e.g., normalized Hausdorff measures on Julia sets).

2. A BHH Theorem for Self-Similar Probability Distributions

Let K be a compact subset of \mathbb{R}^2 satisfying $K = \bigcup_{i=1}^m \psi_i(K)$, where ψ_i is a contractive similarity transformation of \mathbb{R}^2 with similarity ratio $r_i \epsilon(0,1)$ (i.e., for any points $x, y \in \mathbb{R}^2$, $||\psi_i(x) - \psi_i(y)|| = |r_i||x - y||$). Say that K is strongly self-similar if there exists a bounded, connected, open set V whose boundary ∂V is a simple, closed, rectifiable curve and such that $V \cap K \neq \emptyset, \psi_i(V) \cap \psi_j(V) = \emptyset \quad \forall i \neq j$, and $\bigcup_{i=1}^m \psi_i(V) \subset V$. If $\psi_1(K), \ldots, \psi_m(K)$ are pairwise disjoint, say that K is strongly disconnected.

Examples: (1) K = the closed unit square; V = the open unit square; $\psi_1, \psi_2, \psi_3, \psi_4$ are the affine mappings that take V to the four nonoverlapping subsquares of side $r_1 = r_2 = r_3 = r_4 = 1/2$, each with one vertex at a vertex of V.

(2) $K = \{(x_1, x_2) : x_i \in C\}$, where C is the usual Cantor set; V = the open unit square; $\psi_1, \psi_2, \psi_3, \psi_4$ are the affine mappings that take V to the four nonoverlapping subsquares

of side $r_1 = r_2 = r_3 = r_4 = 1/3$, each with one vertex at a vertex of V. This set K is strongly disconnected.

(3) K =the Sierpinski gasket ([6], plate 141); V =an open equilateral triangle of side 1; ψ_1, ψ_2, ψ_3 are the affine mappings that take V to the three equilateral (sub)triangles of side $r_1 = r_2 = r_3 = 1/2$, each with a vertex at a vertex of V.

Assume henceforth that K is a strongly self-similar set and that r_1, r_2, \ldots, r_n are the similarity ratios. It is known [4] that the Hausdorff dimension δ of K is the unique positive real number such that $\sum_{i=1}^{m} r_i^{\delta} = 1$. Note that $\delta < 1$ iff $\Sigma r_i < 1$.

Theorem 1: Assume that $\delta < 1$. Let X_1, X_2, \ldots be i.i.d. with distribution ν , where $\nu(K) = 1$, and let L_n be the length of the shortest path through X_1, X_2, \ldots, X_n . Then there is a constant $C < \infty$ such that

$$\lim_{n \to \infty} L_n = C \quad a.s.$$

The cases $\delta > 1$ and $\delta = 1$ are more interesting. Let ν be a probability measure on K; say that ν is self-similar if there exist positive real numbers p_1, p_2, \ldots, p_m satisfying $p_1 + \ldots + p_m = 1$ and

$$\nu(\psi_{i_1} \circ \psi_{i_2} \circ \ldots \circ \psi_{i_n}(K)) = p_{i_1} p_{i_2} \ldots p_{i_n}$$

for all finite sequences $i_1 i_2 \dots i_n$ of indices from $\{1, 2, \dots, m\}$. (If $p_i = r_i^{\delta}$ then ν is the normalized δ -dimensional Hausdorff measure on K.) Define the *similarity exponent* θ of ν to be the unique real number such that

$$\sum_{i=1}^{m} r_i p_i^{\theta} = 1.$$

Observe that $\theta > 0$ iff $\delta > 1$ and $\theta = 0$ iff $\delta = 1$. In general, $(1 - \theta)^{-1}$ is the Hausdorff dimension of the set of generic points of ν .

- **Theorem 2**: Let X_1, X_2, \ldots be i.i.d. with distribution ν , where ν is a self-similar probability measure on K with similarity exponent $\theta > 0$. Let L_n be the length of the shortest path through X_1, \ldots, X_n .
- (a) (Nonarithmetic case) If $\log p_1, \ldots, \log p_m$ are contained in no discrete additive subgroup of $\mathbb R$ then there is a constant $0 < \mu < \infty$ such that

$$\lim_{n \to \infty} L_n/n^{\theta} = \mu \quad a.s.$$

(b) (Arithmetic case) If $\log p_1, \ldots, \log p_m$ are contained in $h\mathbb{Z}$ but in no proper subgroup of $h\mathbb{Z}$ then there exists a continuous, positive, h-periodic function C(t) such that

(2.3)
$$\lim_{n \to \infty} \frac{L_n}{n^{\theta} C(\log n)} = 1 \ a.s.$$

Notice that (K, ν) may have more than one self-similarity structure. Consider, for example $K = [0,1] \times [0,1]$ and $\nu = \text{Lebesgue measure on } K$. One self-similarity structure is given by V = open unit square; $\psi_1, \psi_2, \psi_3, \psi_4 = \text{the affine mappings that take } V$ to the four nonoverlapping subsquares $\left(\frac{i}{2}, \frac{(i+1)}{2}\right) \times \left(\frac{j}{2}, \frac{(j+1)}{2}\right), i, j = 0 \text{ or } 1$; and $p_1 = p_2 = p_3 = p_4 = 1/4$. Another self-similarity structure is given by V = open unit square; $\psi_1, \ldots, \psi_9 = \text{the affine mappings taking } V$ to the nine nonoverlapping subsquares $\left(\frac{i}{3}, \frac{(i+1)}{3}\right) \times \left(\frac{j}{3}, \frac{(j+1)}{3}\right), i, j = 0, 1$, or 2; and $p_1 = p_2 = \ldots = p_9 = \frac{1}{9}$. Observe that $\theta = \frac{1}{2}$ for each of the structures, and that the closed additive group generated by $\log\left(\frac{1}{4}\right)$ and $\log\left(\frac{1}{9}\right)$ is \mathbb{R} . Consequently, (2.3) applied to each of the structures separately implies that (2.2) must hold, because if C(t) is $\log 4$ -periodic and $\log 9$ -periodic it must be constant. In general, if there exist distinct self-similarity structures $(\psi_1, \ldots, \psi_m; p_1, \ldots, p_m)$ and $(\tilde{\psi}_1, \ldots, \tilde{\psi}_{\tilde{m}}; \tilde{p}_1, \ldots, \tilde{p}_{\tilde{m}})$ such that the smallest closed subgroup of \mathbb{R} containing $\log p_1, \ldots, \log p_m, \log \tilde{p}_1, \ldots, \log \tilde{p}_{\tilde{m}}$ is \mathbb{R} , then (2.2) holds.

One might wonder if the periodic function C(t) in (2.3) is ever non-constant. I am convinced that in general it is, for reasons that I will explain in sec. 9.

The case $\delta = 1$ occurs iff $\sum_{i=1}^{m} r_i = 1$. One example is K = any closed line segment in \mathbb{R}^2 . In this instance $L_n \longrightarrow$ constant a.s. as $n \longrightarrow \infty$; thus, one might expect that, in general, if $\delta = 1$ then L_n is bounded. This is false.

Theorem 3: Let X_1, X_2, \ldots be i.i.d. with distribution ν , where ν is a self-similar probability measure on K, and let L_n be the length of the shortest path through X_1, X_2, \ldots, X_n . Assume that K is strongly disconnected and strongly self-similar, with dimension $\delta = 1$. Then there is a constant $0 < \mu < \infty$ such that

(2.4)
$$\lim_{n \to \infty} L_n / \log n = \mu \quad a.s.$$

The proof of Th. 1 will be given in sec. 4; the proofs of Th. 2–3 occupy sec. 5–8. Section 3 is a resumé of some important facts about self-similar sets and self-similar distributions.

3. The Structure of Self-Similar Sets and Distributions

The elements of a strongly self-similar set K may be represented as infinite sequences in the following way. Let $i_1i_2...$ be an infinite sequence of indices from $\{1, 2, ..., m\}$; define

$$K_{i_{1}i_{2}...i_{n}} = \psi_{i_{1}} \circ \psi_{i_{2}} \circ ... \circ \psi_{i_{n}}(K),$$

$$V_{i_{1}i_{2}...i_{n}} = \psi_{i_{1}} \circ \psi_{i_{2}} \circ ... \circ \psi_{i_{n}}(V), \text{ and}$$

$$k_{i_{1}i_{2}...} = \bigcap_{n=1}^{\infty} K_{i_{1}i_{2}...i_{n}}.$$

Observe that $K \supset K_{i_1} \supset K_{i_1 i_2} \supset \dots$ is a nested sequence of nonempty, compact sets, so the intersection is nonempty. Moreover,

diameter
$$(K_{i_1 i_2 \dots i_n}) = r_{i_1} r_{i_2} \dots r_{i_n}$$
 diameter (K) ,

so $k_{i_1i_2...}$ is a single point. Conversely, each point $x \in K$ has the form $x = k_{i_1i_2...}$ for some sequence of indices, because there is a nested chain $K \supset K_{i_1} \supset K_{i_1i_2} \supset \ldots$ containing x. Notice that some points may have multiple representations.

Recall that V is a bounded open set satisfying $\bigcup_{i=1}^{m} \psi_i(V) \subset V$ and $\psi_i(V) \cap \psi_j(V) = \emptyset$ if $i \neq j$. It follows that for any sequence $i_1 i_2 \ldots, \overline{V} \supset \overline{V}_{i_1} \supset \overline{V}_{i_1 i_2} \supset \ldots$ is a nested sequence of nonempty, compact sets with diameters converging to zero, hence $\bigcap_{n} \overline{V}_{i_1 i_2 \ldots i_n}$ is a single point. This point must be $k_{i_1 i_2 \ldots}$, because for each $n, K_{i_1 i_2 \ldots i_n} \cap \overline{V}_{i_1 i_2 \ldots i_n} \neq \emptyset$, since $K \cap V \neq \emptyset$. It follows that each $k_{i_1 i_2 \ldots}$ is an element of \overline{V} ; thus

(3.1)
$$K \subset \overline{V} \text{ and } K_{i_1 i_2 \dots i_n} \subset \overline{V}_{i_1 i_2 \dots i_n}$$

for any n and any sequence $i_1 i_2 \ldots$. Note that for any finite sequences $i_1 i_2 \ldots i_n$ and $i'_1 i'_2 \ldots i'_{n'}$ that do not agree in all of the first $(n \wedge n')$ entries,

$$(3.2) V_{i_1 i_2 \dots i_n} \cap V_{i'_1 i'_2 \dots i'_{n'}} = \emptyset.$$

Lemma 1: There exist a finite sequence $j_1 j_2 ... j_\ell$ of indices such that $K_{j_1 j_2 ... j_\ell} \subset V$.

Proof: By hypothesis $K \cap V \neq \emptyset$, so there is a point $k_{j_1 j_2 \dots} \in V$. But the sets $K_{j_1 j_2 \dots j_n}$ shrink to $k_{j_1 j_2 \dots}$ as $n \to \infty$ (the diameters converge to zero) and V is open; hence, for ℓ sufficiently large, $K_{j_1 j_2 \dots j_\ell} \subset V$.

Proposition 1: Let $p_1, p_2, ..., p_m$ be positive real numbers satisfying $p_1 + ... + p_m = 1$. There is a unique probability measure $\nu = \nu_{p_1, p_2, ..., p_m}$ satisfying $\nu(K) = 1$ and

(3.3)
$$\nu(K_{i_1 i_2 \dots i_n}) = p_{i_1} p_{i_2} \dots p_{i_n}$$

for every finite sequence $i_1 i_2 ... i_n$ from $\{1, 2, ..., m\}$. This probability measure also satisfies

$$(3.4) \nu(K_{i_1 i_2 \dots i_n} \cap K_{i'_1 i'_2 \dots i'_{n'}}) = 0$$

for all sequences $i_1 i_2 ... i_n$ and $i'_1 i'_2 ... i'_n$, that do not agree in each of the first $(n \wedge n')$ entries.

Proof: It follows from (3.1)–(3.2) and Lemma 1 that

(3.5)
$$K_{i_1 i_2 \dots i_n j_1 \dots j_{\ell}} \cap K_{i'_1 i'_2 \dots i'_{n'}} = \emptyset$$

unless $i_q = i'_q$ for $q = 1, 2, \dots, (n \wedge n')$.

Let ν be a probability measure satisfying (3.3) for all finite sequences $i_1 i_2 \dots i_n$. Since $p_{j_1} p_{j_2} \dots p_{j_\ell} > 0$, a simple calculation shows that for any sequence $i_1 i_2 \dots i_n$

$$\nu(K_{i_1 i_2 \dots i_n}) = \nu(\bigcup_{\mathbf{X}} K_{x_1 x_2 \dots x_q})$$

where X is the set of all finite sequences $x_1x_2 \ldots x_q$ such that $q \geq n + \ell$, $x_s = i_s$ for $1 \leq s \leq n$, and $x_{q-\ell+s} = j_s$ for $1 \leq s \leq \ell$. Note that if $x_1x_2 \ldots x_q \in X$ then $K_{x_1x_2\ldots x_q} \subset K_{i_1i_2\ldots i_n}$. It now follows from (3.5) that (3.4) must hold unless $i_s = i'_s$ for $s = 1, 2, \ldots, (n \wedge n')$, because for any sequence $x_1x_2 \ldots x_q \in X$, $K_{x_1\ldots x_q} \cap K_{i'_1\ldots i'_{n'}} = \emptyset$. Consequently, ν assigns probability 1 to the set of points in K with unique representations $k_{i_1i_2\ldots}$.

Let X be a random point of K with distribution ν , where ν is a probability measure satisfying (3.3). By the preceding paragraph, X has a unique representation $k_{I_1I_2...}$ where $I_1, I_2, ...$ are random variables valued in $\{1, 2, ..., m\}$. But (3.3) requires that $I_1, I_2, ...$ be i.i.d. with

(3.6)
$$P\{I_n = i\} = p_i, \quad i = 1, 2, \dots, m.$$

This uniquely determines ν .

Finally, let $I_1, I_2, ...$ be i.i.d. with distribution (3.6), let $X = k_{I_1 I_2...}$, and let ν be the distribution of X. With probability one, the finite sequence $j_1 j_2 ... j_\ell$ occurs somewhere in the infinite sequence $I_1 I_2 ...$, so $k_{I_1 I_2...}$ is the unique representation of X. Hence, ν satisfies (3.4). It follows that

$$\nu(K_{i_1 i_2 \dots i_n}) = P\{I_1 = i_1, \dots, I_n = i_n\}$$

= $p_{i_1} p_{i_2} \dots p_{i_n}$

for any finite sequence $i_1 i_2 ... i_n$; this proves that there is a probability measure on K satisfying (3.3).

4. Hausdorff Dimension < 1

Recall that the similarity exponent θ is the unique real number such that $\sum r_i p_i^{\theta} = 1$. If $\theta < 0$ then clearly $\sum r_i < 1$, so the Hausdorff dimension of K is less than 1.

Lemma 2: If $\Sigma r_i < 1$ then there exists a rectifiable path that visits every point of K.

Proof: Let d = diameter (K) and let $x \in K$. For each finite sequence $i_1 i_2 \ldots i_n$ of indices define $x(i_1 i_2 \ldots i_n) = \psi_{i_1} \circ \psi_{i_2} \circ \ldots \circ \psi_{i_n}(x)$. There is obviously a closed path γ_1 beginning and ending at x that visits $x(1), \ldots, x(m)$ in that order, such that length $(\gamma_1) \leq (m+1)d$. Define closed paths $\gamma_2, \gamma_3, \ldots$, each beginning and ending at x, recursively, as follows. To obtain γ_{n+1} , follow γ_1 from x to x(1); then follow $\psi_1(\gamma_n)$ from x(1) back to x(1); then follow γ_1 from x(1) to x(2); then follow $\gamma_2(\gamma_n)$ from x(2) back to x(2); ...; finally, follow γ_1 from x(m) back to x. Note that y_n visits x and each $x(i_1 i_2 \ldots i_k), k \leq n$. Also

length
$$(\gamma_{n+1}) = \text{ length } (\gamma_1) + \sum_{i=1}^{m} r_i \text{ length } (\gamma_n)$$

 $\implies \text{ length } (\gamma_n) = \left(\sum_{k=0}^{n} \left(\sum_{i=1}^{m} r_i\right)^k\right) \text{ length } (\gamma_1)$
 $\leq (1 - \sum r_i)^{-1} (m+1)d \quad \forall n.$

Assume that each γ_n is parametrized by arclength. It is easy to see that as $n \to \infty$ the paths γ_n converge uniformly to a path γ with arclength $\leq (1 - \sum r_i)^{-1}(m+1)d$. (In fact, all we need is a subsequence γ_{n_k} converging uniformly to a path γ , and this follows from the Arzela-Ascoli theorem, since $\gamma_n, n \geq 1$, are uniformly equicontinuous.) The path γ must visit every point $x(i_1i_2...i_k)$, since γ_n does for every $n \geq k$; consequently, γ visits every point of K since $\{x(i_1i_2...i_k): i_1...i_k \text{ any finite sequence}\}$ is dense in K(because $x(i_1i_2...i_k) \in K_{i_1i_2...i_k}$).

Proof of Th. 1: By hypothesis, the support of ν is a closed subset of K. Define $C = \inf_{\gamma \in \Gamma} \text{ length } \gamma$, where Γ is the set of all continuous paths which visit every point of support (ν) . By Lemma 2, $C < \infty$.

Let ζ_n be a minimal path through X_1, \ldots, X_n . Then $L_n = \text{length } \zeta_n \leq C$, since $X_1, X_2, \ldots, X_n \epsilon$ support (ν) . Assume that ζ_n is parametrized by arc length; then $\{\zeta_n\}_{n\geq 1}$ is a uniformly equicontinuous family of functions, so there exists a subsequence $n_k \uparrow \infty$ such that ζ_{n_k} converges uniformly to a continuous path ζ . With probability one, ζ visits every point of support (ν) , because ζ visits X_1, X_2, \ldots and $\{X_1, X_2, \ldots\}$ is dense in support (ν) .

Hence, length $(\zeta) \geq C$ a.s. But since ζ_{n_k} converges uniformly to ζ and ζ_{n_k} is parametrized by arc length, length $(\zeta_{n_k}) \to \text{ length } (\zeta)$. Finally, since length (ζ_n) is nondecreasing in n, we must have $L_n \uparrow C$.

5. The Circle Freeway Lemma

The proofs of Th. 2 and Th. 3 use a "Poissonization" argument. Let X_1, X_2, \ldots be i.i.d. with distribution $\nu = \nu_{p_1, \ldots, p_m}$ (cf. Prop. 1), and let L_n be the length of the shortest path through X_1, \ldots, X_n . Let $N(t), t \geq 0$, be a rate 1 Poisson process independent of X_1, X_2, \ldots . Then $N(t)/t \to 1$ a.s. as $t \to \infty$. Since L_n is nondecreasing in n, we can easily recover the asymptotic behavior of L_n as $n \to \infty$ from the asymptotic behavior of $L_{N(t)}$ as $t \to \infty$. The advantage of introducing N(t) is that if U_1, U_2, \ldots, U_m are pairwise disjoint then the random sets $U_i \cap \{X_1, \ldots, X_{N(t)}\}, i = 1, 2, \ldots, m$, are independent.

For each t > 0 and each finite sequence $i_1 i_2 \dots i_n$ of indices from $\{1, 2, \dots, m\}$, define $\lambda(t; i_1 i_2 \dots i_n)$ to be the length of the shortest path through $\{X_1, X_2, \dots, X_{N(t)}\} \cap K_{i_1 i_2 \dots i_n}$, and define $\lambda(t) = L_{N(t)}$.

Lemma 3: Let $i_1^{(s)}i_2^{(s)}\dots i_{n(s)}^{(s)}$, $s=1,2,\dots,q$ be finite sequences of indices from $\{1,2,\dots,m\}$ such that no two sequences satisfy $i_j^{(s)}=i_j^{(s')}$ for $j=1,2,\dots,(n(s)\wedge n(s'))$. Then for each t>0 the random variables $\lambda\left(t;i_1^{(s)}i_2^{(s)}\dots i_{n(s)}^{(s)}\right)$, $s=1,\dots,q$ are independent. Moreover, for any t>0 and any sequence $i_1i_2\dots i_n$, the random variable $\lambda(t;i_1i_2\dots i_n)$ has the same distribution as $r_{i_1}r_{i_2}\dots r_{i_n}\lambda(p_{i_1}p_{i_2}\dots p_{i_n}t)$.

Proof: This is a routine consequence of (3.4) and the self-similarity of K and ν .

Lemma 4: There exists a constant $C < \infty$ such that for every t > 0

(5.1)
$$\sum_{i=1}^{m} \lambda(t;i) - C \le \lambda(t) \le \sum_{i=1}^{m} \lambda(t;i) + C.$$

Proof: Construct a path through $X_1, \ldots, X_{N(t)}$ as follows. First construct the shortest path through $\{X_1, \ldots, X_{N(t)}\} \cap K_i$ for each $i = 1, 2, \ldots, m$, then join these m paths together in sequence. The length of this path is $\leq \sum_{i=1}^{m} \lambda(t; i) + C$ for some $C < \infty$ independent of t (by the compactness of K_1, \ldots, K_m). This proves the upper bound.

Next, consider the shortest path γ through $X_1, X_2, \ldots, X_{N(i)}$. The initial and terminal points of γ lie in $V_i, V_{i'}$, say; extend γ from its endpoints to a path $\overline{\gamma}$ whose initial and terminal points lie on $\partial V_i, \partial V_{i'}$ for some i, i'. This may be done in such a way that length $(\overline{\gamma}) \leq \text{length } (\gamma) + 2 \max_{1 \leq i \leq m} \text{diameter } (V_i)$. Now for any $i \in \{1, 2, \ldots, m\}$, the intersection of $\overline{\gamma}$ with \overline{V}_i consists of a finite collection of paths $\gamma_j, j = 1, 2, \ldots, q$ in \overline{V}_i , each having its endpoints on ∂V_i . Since ∂V_i is a simple, closed, rectifiable curve,

Lemma 5 below implies that $\gamma_1, \gamma_2, \ldots, \gamma_q$ may be joined together to form a single path $\gamma^{(i)}$ satisfying length $(\gamma^{(i)}) \leq \sum\limits_{j=1}^q \text{length } (\gamma_j) + 2 \text{ length } (\partial V_i)$. This path $\gamma^{(i)}$ goes through each point in $\{X_1, X_2, \ldots, X_{N(t)}\} \cap K_i$, because $K_i \subset \overline{V}_i$ and the original path $\overline{\gamma}$ goes through $X_1, \ldots, X_{N(t)}$. Thus

$$\sum_{i=1}^{m} \lambda(t; i) \leq \lambda(t) + 2 \max_{1 \leq i \leq m} \operatorname{diam}(V_i) + 2 \sum_{i=1}^{m} \operatorname{length}(\partial V_i).$$

Corollary 1: If $C < \infty$ is as in Lemma 4 then for every $t < \infty$ and every finite sequence $i_1 i_2 \dots i_n$ of indices,

(5.2)
$$\sum_{i=1}^{m} \lambda(t; i_{1}i_{2} \dots i_{n}i) - Cr_{i_{1}}r_{i_{2}} \dots r_{i_{n}}$$

$$\leq \lambda(t; i_{1}i_{2} \dots i_{n})$$

$$\leq \sum_{i=1}^{m} \lambda(t; i_{1}i_{2} \dots i_{n}i) + Cr_{i_{1}}r_{i_{2}} \dots r_{i_{n}}$$

Proof: The self-similarity of K and ν imply that the joint distribution of $\lambda(t; i_1 i_2 \dots i_n), \lambda(t; i_1 i_2 \dots i_n 1), \dots, \lambda(t; i_1 i_2 \dots i_n m)$ is the same as that of $\begin{pmatrix} n \\ \prod j=1 \\ j=1 \end{pmatrix} \lambda(t), \begin{pmatrix} n \\ \prod j=1 \\ j=1 \end{pmatrix} \lambda(t; 1), \dots, \begin{pmatrix} n \\ \prod j=1 \\ j=1 \end{pmatrix} \lambda(t; m)$. Thus, (5.2) follows from (5.1).

Lemma 5 (Circle Freeway Lemma): Let $\gamma_1, \gamma_2, \ldots, \gamma_q$ be piecewise smooth paths in a domain U whose boundary ∂U is a simple, closed, rectifiable curve. Assume that for each i the endpoints of γ_i are on ∂U . Then there is a path γ in $(\partial U) \cup \left(\bigcup_{i=1}^q \gamma_i\right)$ that goes through every point of $\bigcup_{i=1}^q \gamma_i$ such that

(5.3)
$$\operatorname{length}(\gamma) \leq \sum_{i=1}^{q} \operatorname{length}(\gamma_i) + 2 \operatorname{length}(\partial U).$$

Proof: The 2q endpoints of $\gamma_1, \ldots, \gamma_q$ all lie on ∂U ; label these points Q_1, Q_2, \ldots, Q_{2q} so that they appear in clockwise order around ∂U . The paths γ_i, γ_j may meet inside U at "traffic lights" and may coincide on road segments between traffic lights. Define a graph G whose vertices are the traffic lights and the points Q_1, \ldots, Q_{2q} and with edges as follows. For vertices V and V' there is one edge between V and V' for each path γ_i that goes through V and V' without going through any other vertex in between. Also, there is one edge between Q_{2i-1} and Q_{2i} and Q_{2i} and Q_{2i+1} for each Q_{2i+1} for each Q_{2i+1} and Q_{2i+1} and Q_{2i} and Q_{2i+1} for each Q_{2i+1} for each Q_{2i+1} for each Q_{2i+1} and Q_{2i+1} in addition to any edges between Q_{2i} already in place because of

paths γ_s that connect Q_i, Q_j without going through any vertex in between. The graph G is connected and each vertex has even degree. Therefore, by Euler's "Konigsburg bridges" theorem ([2], Ch. 1, Th. 10) there is an Eulerian circuit. The Eulerian circuit determines a path γ with the desired property.

(Note: It is possible that some of the points Q_i may coincide. If this is the case, they should be listed according to multiplicity, and in the construction of the graph G each should be counted as a separate vertex. Thus, some of the edges in G may correspond to paths of length zero in $(\partial U) \cup \left(\bigcup_{i=1}^q \gamma_i\right)$. This does not affect the validity of (5.3).)

6. Expectation of $\lambda(t)$ when $\delta > 1$

Recall that the similarity exponent θ of $\nu = \nu_{p_1,\dots,p_m}$ is the unique real number such that $\sum_{i=1}^m r_i p_i^{\theta} = 1$. Observe that $\theta > 0$ iff $\Sigma r_i > 1$ iff $\delta > 1$.

Lemma 6: If $\theta > 0$ then $E\lambda(t) \uparrow \infty$ as $t \to \infty$.

Proof: $E\lambda(t)$ is clearly monotone in t. Let $\mathbf{i}^{(s)} = i_1^{(s)} i_2^{(s)} \dots i_n^{(s)}, s = 1, 2, \dots, m^n$ be all the finite sequences of indices of length n from $\{1, 2, \dots, m\}$. Then

$$\lim_{t\to\infty} P\{\{X_1, X_2, \dots, X_{N(t)}\} \cap K_{\mathbf{i}^{(s)}} \neq \emptyset \ \forall s = 1, 2, \dots, m^n\} = 1;$$

consequently, it suffices to prove that the length of the shortest path through $K_{\mathbf{i}^{(1)}}, \ldots, K_{\mathbf{i}^{(m^n)}}$ converges to ∞ as $n \to \infty$.

Any path through all the sets $K_{\mathbf{i}(s)}$, $s = 1, 2, ..., m^n$ must pass through each set of the subcollection $K_{\mathbf{i}(s)}$, $s = 1, 2, ..., m^{n-\ell}$ in which $\mathbf{i}^{(s)}$ has the form $\mathbf{i}^{(s)} = i_1 i_2 ... i_{n-\ell} j_1 j_2 ...$ j_ℓ , where $i_1, i_2, ..., i_{n-\ell}$ are arbitrary and $j_1 j_2 ... j_\ell$ is the sequence constructed in Lemma 1. By (3.1)–(3.2) and Lemma 1,

distance
$$(K_{\mathbf{i}^{(s)}}, K_{\mathbf{i}^{(s_*)}}) \ge r_{i_1} r_{i_2} \dots r_{i_{n-\ell}} d$$
,

where $d = \text{distance}(K_{j_1...j_\ell}, \partial V)$ and $\mathbf{i}^{(s)} = i_1 i_2 ... i_{n-\ell} j_1 ... j_\ell, \mathbf{i}^{(s_*)} = i'_1 i'_2 ... i'_{n-\ell} j_1 ... j_\ell$ are distinct sequences. Now any path that goes through all the sets $K_{\mathbf{i}^{(s)}}$, where $\mathbf{i}^{(s)} = i_1 ... i_{n-\ell} j_1 ... j_\ell$, must exit each on its way to another, with at most one exception. Therefore, its length must be at least

$$\sum_{i_1 i_2 \dots i_{n-\ell}} r_{i_1} r_{i_2} \dots r_{i_{n-\ell}} d - d = \left(\sum_{i=1}^m r_i\right)^{n-\ell} d - d.$$

Since $\Sigma r_i > 1$, this becomes large as $n \to \infty$.

Proposition 2: Assume that $\theta > 0$.

(a) (Nonarithmetic case) If $\log p_1, \log p_2, \ldots, \log p_m$ are not contained in any discrete additive subgroup of \mathbb{R} then there is a constant $\mu > 0$ such that

(6.1)
$$\lim_{t \to \infty} E\lambda(t)/t^{\theta} = \mu.$$

(b) (Arithmetic case) If $\log p_1, \log p_2, \ldots, \log p_m$ are contained in $h\mathbb{Z}$ but not in a proper subgroup of $h\mathbb{Z}$ then there is a continuous monotone function $\mu(\beta), 0 \leq \beta \leq h$, such that $\mu(\beta) > 0$ and

(6.2)
$$\lim_{n \to \infty} E\lambda(\exp\{nh + \beta\})/e^{nh\theta} = \mu(\beta)$$

uniformly for $0 \le \beta \le h$.

Proof: Consider first the nonarithmetic case. Let C be the constant in the inequalities (5.3)–(5.4). Fix t_* (large). Then Lemma 4 and Corollary 1 imply that

$$\Sigma_t \lambda(t; i_1 i_2 \dots i_n) - \Sigma_t^* C r_{i_1} r_{i_2} \dots r_{i_n}$$

$$\leq \lambda(t)$$

$$\Sigma_t \lambda(t; i_1 i_2 \dots i_n) + \Sigma_t^* C r_{i_1} r_{i_2} \dots r_{i_n}$$

where the sum Σ_t ranges over all finite sequences $i_1 i_2 \dots i_n, n \geq 1$, satisfying

$$-\sum_{j=1}^{n-1} \log p_{i_j} < \log(t/t_*) \le -\sum_{j=1}^{n} \log p_{i_j}$$

and the sum Σ_t^* ranges over all finite sequences $i_1 i_2 \dots i_n, n \geq 0 (n = 0)$ is the empty sequence), satisfying

$$-\sum_{i=1}^n \log p_{i_j} < \log(t/t_*).$$

It follows from Lemma 3 that

$$\Sigma_{t} r_{i_{1}} r_{i_{2}} \dots r_{i_{n}} E \lambda(p_{i_{1}} \dots p_{i_{n}} t) - \Sigma_{t}^{*} C r_{i_{1}} r_{i_{2}} \dots r_{i_{n}}$$

$$\leq E \lambda(t)$$

$$\leq \Sigma_{t} r_{i_{1}} r_{i_{2}} \dots r_{i_{n}} E \lambda(p_{i_{1}} \dots p_{i_{n}} t) + \Sigma_{t}^{*} C r_{i_{1}} r_{i_{2}} \dots r_{i_{n}}.$$

Define G(t) and H(t) by

$$G(t) = \sum_{t=0}^{\infty} Cr_{i_1}r_{i_2} \dots r_{i_n} \text{ and}$$

$$H(t) = \sum_{t=0}^{\infty} r_{i_1}r_{i_2} \dots r_{i_n} E\lambda(p_{i_1}p_{i_2} \dots p_{i_n}t)$$

For each of these there is a functional equation, which may be obtained by conditioning on the first coordinate i_1 :

$$G(t) = \sum_{i=1}^{m} r_i G(p_i t) + C1\{t > t_*\}$$

and

$$H(t) = \sum_{i=1}^{m} r_i H(p_i t) + R(t),$$

where

$$R(t) = \sum_{i=1}^{m} r_i E \lambda(p_i t) 1\{t_* \ge p_i t > p_i t_*\}.$$

Each of these may be rewritten as a renewal equation, using the fact that $\sum r_i p_i^{\theta} = 1$:

$$e^{-\theta s}G(e^s) = \sum_{i=1}^{m} (r_i p_i^{\theta})(p_i^{-\theta}G(p_i e^s)) + Ce^{-\theta s}1\{s > \log t_*\}$$

and

$$e^{-\theta s}H(e^s) = e^{-\theta s}R(e^s) + \sum_{i=1}^m (r_i p_i^{\theta}) \left(p_i^{-\theta} e^{-\theta s}H(p_i e^s)\right).$$

Therefore, the renewal theorem for \mathbb{R} implies that

$$\lim_{t \to \infty} G(t)/t^{\theta} = C \int_{\log t_*}^{\infty} e^{-\theta s} ds/\gamma = C_1(t_*)$$
$$\lim_{t \to \infty} H(t)/t^{\theta} = \int e^{-\theta s} R(e^s) ds/\gamma = C_2(t_*)$$

where $\gamma = \sum_{i=1}^{m} (r_i p_i^{\theta}) (-\log p_i) > 0$.

Now observe that for any $\epsilon > 0$, if t_* is chosen sufficiently large then $C_1(t_*) < \epsilon C_2(t_*)$. This is because $E\lambda(t) \uparrow \infty$ (Lemma 6) and

$$\frac{C_1(t_*)}{C_2(t_*)} = \frac{Ct_*^{-\theta}}{\theta \sum_{i=1}^{m} r_i \int_{\log p_i t_*}^{\log t_*} e^{-\theta s} E \lambda(p_i e^s) ds}.$$

We have already shown that

$$-G(t) \le E\lambda(t) - H(t) \le G(t)$$

Since $\epsilon > 0$ is arbitrary, (6.1) follows.

The arithmetic case is similar – it uses the renewal theorem for \mathbb{Z} . The details are omitted.

7. Expectation of $\lambda(t)$ when $\delta = 1$ and K is Strongly Disconnected

The set K is strongly disconnected if K_1, K_2, \ldots, K_m are pairwise disjoint. When this is the case, the open set V may be chosen so that the compact sets $\overline{V}_1, \overline{V}_2, \ldots, \overline{V}_m$ are pairwise disjoint. Recall that $\delta = 1$ iff $\sum_{i=1}^m r_i = 1$. Assume throughout this section that $\delta = 1$ and that K is strongly disconnected.

Lemma 7: For $n \geq 1$, let β_n be the length of the shortest path that visits each of the m^n sets $\overline{V}_{i_1 i_2 \dots i_n}$. Then $\lim_{n \to \infty} \beta_n = \infty$.

Proof: Let γ_n be the shortest path, and let $\overline{\gamma}_n$ be the closed curve obtained by connecting the endpoints of γ_n . Then length $(\overline{\gamma}_n) \leq \text{length } (\gamma_n) + \text{diameter } (V)$, so to show that γ_n is long it suffices to show that $\overline{\gamma}_n$ is long.

Define $d = \min_{i \neq j} \text{ distance } (\overline{V}_i, \overline{V}_j) > 0$. If $i_1 i_2 \dots i_n$ and $i'_1 i'_2 \dots i'_n$ are any two distinct sequences of indices from $\{1, 2, \dots, m\}$ then

(7.1)
$$\operatorname{distance}\left(\overline{V}_{i_{1}i_{2}\dots i_{n}}, \overline{V}_{i'_{1}i'_{2}\dots i'_{n}}\right) \geq r_{i_{1}}r_{i_{2}}\dots r_{i_{k}}d,$$

where $k = \max \{q : i_j = i'_j \ \forall \ 1 \leq j \leq q \}$, by self-similarity and the nesting property $\overline{V} \supset \overline{V}_{i_1} \supset \overline{V}_{i_1 i_2} \supset \dots$. Let $\mathbf{i}^{(1)}, \mathbf{i}^{(2)}, \dots, \mathbf{i}^{(m^n)}$ be the distinct sequences of length n. Each $\overline{V}_{\mathbf{i}^{(s)}}$ has a segment of $\overline{\gamma}_n$ going out; hence (7.1) implies that

(7.2)
$$\operatorname{length}(\overline{\gamma}_n) \ge \sum_{i_1,\dots,i_n=1}^m r_{i_1} r_{i_2} \dots r_{i_{n-1}} d = \left(\sum_{i=1}^m r_i\right)^{n-1} m d = m d.$$

But this is a rather crude estimate, since some $\overline{V}_{\mathbf{i}^{(s)}}$ may have an outgoing segment connecting it to some $\overline{V}_{\mathbf{i}^{(s')}}$ where $\mathbf{i}^{(s')}$ differs from $\mathbf{i}^{(s)}$ in some coordinate before the \mathbf{n}^{th} . Thus, some of the terms $r_{i_1}r_{i_2}\dots r_{i_{n-1}}d$ in the above sum may be upgraded to $r_{i_1}r_{i_2}\dots r_{i_k}d$ for some k< n-1. In fact, for each sequence $i_1i_2\dots i_k, k< n$, there is at least one sequence $i_{k+1}i_{k+2}\dots i_n$ such that $\overline{V}_{i_1i_2\dots i_n}$ has an outgoing segment to some $\overline{V}_{i'_1i'_2\dots i'_n}$ where $i_1i_2\dots i_k\neq i'_1i'_2\dots i'_k$. For any such sequence $i_1i_2\dots i_n$ the term $r_{i_1}r_{i_2}\dots r_{i_{n-1}}d$ in the estimate (7.2) may be upgraded to $r_{i_1}r_{i_2}\dots r_{i_{k-1}}d$. This upgrading may be done one step at a time, first from n-1 to n-2, then n-2 to n-3, etc. At each step the size of the deleted term is no more than \overline{r} times the upgraded term, where $\overline{r} = \max(r_1, r_2, \dots, r_m) < 1$. Thus (7.2) may be improved to

length
$$(\overline{\gamma}_n) \ge \sum_{k=1}^n \sum_{i_1,\dots,i_k=1}^m r_{i_1} r_{i_2} \dots r_{i_{k-1}} d(1-\overline{r})$$

$$= \sum_{k=1}^n \left(\sum_{i=1}^m r_i\right)^{k-1} m d(1-\overline{r}) = n m d(1-\overline{r}).$$

It follows that length $(\overline{\gamma}_n) \longrightarrow \infty$ as $n \longrightarrow \infty$.

Lemma 8: Let $p_n(t) = P\{\{X_1, X_2, \ldots, X_{N(t)}\} \cap \overline{V}_{i_1 i_2 \ldots i_n} = \emptyset$ for some sequence $i_1 i_2 \ldots i_n\}$. Then for any t > 0 and $n = 1, 2, \ldots$,

(7.3)
$$\sum_{i_1 i_2 \dots i_n} r_{i_1} r_{i_2} \dots r_{i_n} E \lambda(t p_{i_1} \dots p_{i_n}) + \beta_n (1 - p_n(t)) - 2 \operatorname{length} (\partial V)$$

$$\leq E \lambda(t)$$

$$\leq \sum_{i_1 i_2 \dots i_n} r_{i_1} r_{i_2} \dots r_{i_n} E \lambda(t p_{i_1} \dots p_{i_n}) + \beta_n + 2 \operatorname{diam} (V)$$

Proof: This is a refinement of Lemma 4 and may be proved in a similar manner. The difference here is that the sets $\overline{V}_{\mathbf{i}^{(1)}}, \dots, \overline{V}_{\mathbf{i}^{(m^n)}}$, where $\mathbf{i}^{(1)}, \dots, \mathbf{i}^{(m^n)}$ are the distinct sequences of length n, are pairwise disjoint and therefore are separated by positive distances.

Construct the shortest path through $\{X_1, \ldots, X_{N(t)}\} \cap \overline{V}_{\mathbf{i}^{(s)}}$ for each sequence $\mathbf{i}^{(s)}$ of length n, then join these together. This may be done in such a way that the length of the resulting path is $\leq \sum_{i_1 i_2 \dots i_n} \{\lambda(t; i_1 \dots i_n) + 2 \operatorname{diam}(\overline{V}_{i_1 i_2 \dots i_n})\} + \beta_n$. By Lemma 3, $E\lambda(t; i_1 i_2 \dots i_n) = r_{i_1} r_{i_2} \dots r_{i_n} E\lambda(t p_{i_1} \dots p_{i_n})$. Moreover, $\sum_{i_1 i_2 \dots i_n} \operatorname{diam}(\overline{V}_{i_1 i_2 \dots i_n}) = \sum_{i_1 \dots i_n} r_{i_1} \dots r_{i_n} \operatorname{diam}(V) = \operatorname{diam}(V)$, since $\sum r_i = 1$. This proves the upper bound.

The proof of the lower bound is virtually the same as the proof of the lower bound in Lemma 4. \Box

Proposition 3: There exists a constant $0 < C < \infty$ depending only on K (not on p_1, p_2, \ldots, p_m) such that

(7.4)
$$\lim_{t \to \infty} \frac{E\lambda(t)}{\log t} = C/\sum_{i=1}^{m} r_i \log p_i^{-1}$$

Proof: Choose $\epsilon > 0$ small. By Lemma 7 there is an $n \geq 1$ such that 2 length $(\partial V) + 2 \operatorname{diam}(V) < \epsilon \beta_n$. Fix t_* so large that $p_n(t) < \epsilon$ for all $t \geq \underline{p}t_*$, where $\underline{p} = \min(p_1, \ldots, p_m)^n > 0$. By Lemma 8, if $t \geq t_*$ then

$$\Sigma_t E \lambda(t p_{i_1} \dots p_{i_{nk}}) r_{i_1} \dots r_{i_{nk}} + (1 - 2\epsilon) \beta_n \Sigma_t^* r_{i_1} \dots r_{i_{nk}}$$

$$\leq E \lambda(t)$$

$$\leq \Sigma_t E \lambda(t p_{i_1} \dots p_{i_{nk}}) r_{i_1} \dots r_{i_{nk}} + (1 + \epsilon) \beta_n \Sigma_t^* r_{i_1} \dots r_{i_{nk}}$$

where the sum Σ_t ranges over all sequences $i_1 i_2 \dots i_{nk}, k \geq 1$, satisfying

$$-\sum_{j=1}^{nk-1} \log p_{i_j} < \log(t/t_*) \le -\sum_{j=1}^{nk} \log p_{i_j}$$

and the sum Σ_t^* ranges over all sequences $i_1 i_2 \dots i_{nk}, k \geq 1$, satisfying

$$-\sum_{j=1}^{nk}\log p_{i_j}<\log(t/t_*).$$

Define G(t) and H(t) by

$$G(t) = \sum_{t=1}^{\infty} r_{i_1} r_{i_2} \dots r_{i_{n_k}} \text{ and}$$

$$H(t) = \sum_{t=1}^{\infty} r_{i_1} r_{i_2} \dots r_{i_{n_k}} E\lambda(p_{i_1} \dots p_{i_{n_k}} t).$$

We have shown that

$$H(t) + (1 - 2\epsilon)\beta_n G(t) \le E\lambda(t) \le H(t) + (1 + \epsilon)G(t).$$

The function H(t) satisfies a functional equation equivalent to a renewal equation; so the renewal theorem implies that H(t) = 0(1) as $t \to \infty$. On the other hand, the "elementary renewal theorem" ([3], Th. 5.52) implies that

$$\lim_{t \to \infty} \frac{G(t)}{\log t} = 1/\sum_{i_1 \dots i_n} r_{i_1} \dots r_{i_n} \log(p_{i_1} \dots p_{i_n})^{-1}$$
$$= 1/n \sum_i r_i \log p_i^{-1}.$$

Therefore

$$\frac{(1-2\epsilon)\beta_n}{n\Sigma r_i \log p_i^{-1}} \leq \lim_{t \to \infty} \inf \frac{E\lambda(t)}{\log t} \leq \lim_{t \to \infty} \sup \frac{E\lambda(t)}{\log t} \leq \frac{(1+\epsilon)\beta_n}{n\Sigma r_i \log p_i^{-1}}.$$

Since $\epsilon > 0$ is arbitrary, (7.4) follows, with $C = \lim_{n \to \infty} (\beta_n/n)$.

8. Almost Sure Convergence

Theorems 2–3 follow from Props. 2–3 and Lemma 4 by routine arguments. The key is the following.

Lemma 9: If $0 < \delta < 2$ then $var(\lambda(t)) = 0(1)$ as $t \to \infty$. If $\delta = 2$ then $var(\lambda(t)) = 0(\log t)$ as $t \to \infty$.

Note: In fact, Steele [7] has shown that var $(\lambda(t))$ is 0(1) even when $\delta = 2$. This is not needed for the proofs of Th. 2–3, however.

Proof: Lemmas 3–4 imply that

(8.1)
$$\operatorname{var}(\lambda(t)) \leq \sum_{i=1}^{m} r_i^2 \operatorname{var}(\lambda(tp_i)) + C$$

for a suitable constant $C < \infty$. If $0 < \delta < 2$ then $\sum_{i=1}^{m} r_i^2 < 1$; consequently, iteration of (8.1) gives

$$\operatorname{var}\left(\lambda(t)\right) \leq C \sum_{k=0}^{\infty} \left(\sum_{i=1}^{m} r_i^2\right)^k < \infty.$$

If $\delta = 2$ then $\sum_{i=1}^{m} r_i^2 = 1$. Let $\overline{p} = \max(p_1, \ldots, p_m) < 1$, and let k be the smallest integer larger than $(\log t)/(\log \overline{p}^{-1})$. Iterating (8.1) k times gives

$$\operatorname{var}(\lambda(t)) \leq \sum_{i_{1}, \dots, i_{k}=1}^{m} r_{i_{1}}^{2} r_{i_{2}}^{2} \dots r_{i_{k}}^{2} \operatorname{var} \lambda(t p_{i_{1}} \dots p_{i_{k}})$$

$$+ \sum_{j=0}^{k-1} C \sum_{i_{1}, i_{2}, \dots, i_{j}=1}^{m} r_{i_{1}}^{2} r_{i_{2}}^{2} \dots r_{i_{j}}^{2}$$

$$\leq \left(\sum_{i=1}^{m} r_{i}^{2}\right)^{k} E \lambda(1)^{2} + C \sum_{j=0}^{k-1} \left(\sum_{i=1}^{m} r_{i}^{2}\right)^{j}$$

$$= E \lambda(1)^{2} + C k;$$

thus var $(\lambda(t)) = 0(\log t)$ as $t \to \infty$.

Proof of Th. 2: Consider first the nonarithmetic case. By Lemma 9, var $(\lambda(t)) = 0(\log t)$, and by Prop. 2, $E\lambda(t) \sim \mu t^{\theta}$ as $t \to \infty$. Chebychev's inequality implies that for any $\alpha > 0$, $\epsilon > 0$,

$$P\{|\lambda((1+\alpha)^n)/(1+\alpha)^{n\theta} - \mu| > \epsilon\} \le (\text{constant})\epsilon^2 n/(1+\alpha)^{2n\theta};$$

consequently, the Borel-Cantelli Lemma implies that $\lambda((1+\alpha)^n)/(1+\alpha)^{n\theta} \to \mu$ a.s. Since $\alpha > 0$ is arbitrary and $\lambda(t)$ is nondecreasing in t it follows that $\lambda(t)/t^{\theta} \to \mu$ a.s. as $t \to \infty$. Finally, recall that $\lambda(t) = L_{N(t)}$ where N(t) is a rate 1 Poisson process; since $N(t)/t \to 1$ a.s., we must have

$$L_n/n^{\theta} \longrightarrow \mu$$
 a.s. as $n \longrightarrow \infty$.

A similar argument applies in the arithmetic case.

Proof of Th. 3: By Lemma 8, var $(\lambda(t)) = 0(1)$, and by Prop. 3, $E\lambda(t) \sim \mu \log t$. Consequently, Chebychev's inequality implies that for any $\epsilon > 0$

$$P\{|\lambda(e^n)/n - \mu| > \epsilon\} \le (\text{constant})\epsilon^2/n^2$$

from which it follows, by the Borel-Cantelli Lemma, that $\lambda(e^n)/n \to \mu$ a.s. Since $\lambda(t)$ is monotone in $t, \lambda(t)/\log t \to \mu$ a.s. as $t \to \infty$. Since $\lambda(t) = L_{N(t)}$ where N(t) is a standard Poisson process, it follows that $L_n/\log n \to \mu$ a.s. as $n \to \infty$.

9. Periodicity

The purpose of this section is to give a heuristic argument explaining why the function C(t) occurring in (2.3) may, in general, be non-constant. For simplicity we shall restrict our attention to the special case in which $K = C \times C$, where C is the usual Cantor set,

and $\nu = \mu_C \times \mu_C$, where μ_C is the Cantor measure. The self-similarity structure is as follows: V = open unit square; $\psi_1, \psi_2, \psi_3, \psi_4$ are the affine mappings taking V onto the four disjoint squares $\left(\frac{i}{3}, \frac{i+1}{3}\right) \times \left(\frac{j}{3}, \frac{j+1}{3}\right), i, j \in \{0, 2\}; r_1 = r_2 = r_3 = r_4 = 1/3;$ and $p_1 = p_2 = p_3 = p_4 = 1/4$.

The arguments of secs. 5–8 suggest that a nearly minimal path through X_1, X_2, \ldots, X_n may be constructed as follows. Fix a large (an integer), and let $k = [a(\log n)/(\log 4)]$. For each of the 4^k sets $K_{i_1i_2...i_k}$, assemble the minimal path through $\{X_1, \ldots, X_n\} \cap K_{i_1i_2...i_k}$, then connect these 4^k paths to form a single path. The connection of the 4^k subpaths may be done by joining the sets $K_{i_1i_2...i_k}$ in lexicographic order, e.g., if $k = 2, 11 \rightarrow 12 \rightarrow 13 \rightarrow \ldots \rightarrow 43 \rightarrow 44$. It doesn't matter if the lexicographic ordering is suboptimal, because most of the length of the complete path comes from the 4^k subpaths, not from the connections (provided the constant a is large).

NOTE: This is where the cases $\delta = 1$ and $\delta > 1$ differ. When $\delta = 1$ the hierarchical connections make up most of the total length of the path. This is why the periodicity phenomenon does not occur in Theorem 3.

The lengths of the 4^k paths through the sets $\{X_1, \ldots, X_n\} \cap K_{\mathbf{i}(s)}, s = 1, \ldots, 4^k$, are nearly i.i.d. random variables whose sum is the primary contribution to L_n . These lengths, after rescaling by a factor of 3^k , are determined by the relative configuration of the points $\{X_1, \ldots, X_n\}$ in the "squares" $K_{\mathbf{i}(s)}$. As n goes from $4^{k/a}$ to $4^{(k+1)/a}$ the distribution of the configuration of points in a square changes (but notice that this distribution is the same at $4^{k/a}$ and $4^{(k+1)/a}$). When n is somewhat greater than $4^{k/a}$ the probability of a configuration like that shown in Fig. 1 may be high, whereas when n is slightly less than $4^{(k+1)/a}$ the probability of a configuration like that shown in Fig. 2 may be high. Thus, the distribution of the length of the shortest path through $\{X_1, \ldots, X_n\} \cap K_{\mathbf{i}(s)}$ multiplied by 3^k should be genuinely periodic in $\log n/\log 4$, and therefore EL_n/n^{θ} (where $\theta = 1 - \log 3/\log 4$) should also be genuinely periodic in $\log n/\log 4$.

Figure 1 here Figure 2 here

References

- [1.] Beardwood, J., Halton, J.H., & Hammersley, J.M. (1959). The shortest path through many points. *Proc. Cambridge Phil. Soc.*, 55: 299–327.
- [2.] Bollobas, B. (1979). Graph Theory. Springer, New York.
- [3.] Chung, K.L. (1974). A Course in Probability Theory, 2nd ed. Academic Press, New York.
- [4.] Hutchinson, J. (1981). Fractals and self-similarity. Indiana U. Math. J. 30: 713-747.
- [5.] Karp, R.M. (1976). The probabilistic analysis of some combinatorial search algorithms. In Proc. Symp. New Directions and Recent Results in Algorithms and Complexity (F. Taub, ed.). Academic Press, San Francisco.
- [6.] Mandelbrot, B. (1983). The Fractal Geometry of Nature. Freeman, New York.
- [7.] Steele, J.M. (1981). Complete convergence of short paths and Karp's algorithm for the TSP. *Math. Oper. Res.* 6: 374–378.

Figure 1

Figure 2