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SUMMARY

Constructing release targets for drug products in the pharmaceutical industry is con-
sidered. To account for the cost and profit of the drug company, a useful decision theory
approach is proposed. The release targets are constructed by minimizing the company’s
expected loss (or maximizing the expected gain). An example from a pharmaceutical company

concerning the decision of releasing a batch of drug product is presented.
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1. INTRODUCTION

In a pharmaceutical company, before a batch of a drug product can be released for sale, it
is necessary to test whether the drug meets some United States Pharmacopiea (USP)
specifications, such as drug potency, dissolution and disintegration. For example, for drug
potency, the Food and Drug Administration (FDA) requires that the average drug potency of
the batch is within an interval (L,U), where O<L <U are USP specification limits. Since the
average potency is unknown, the test is based on the potency assay result of a sample (or the
average potency results of n samples) from the batch. A batch might be released for sale if its
potency assay result is within (L,U). However, a released batch according to such a test cri-
terion could have average potency outside (L,U) with a high chance. A batch having average
potency outside USP specifications during the expiration date period is subject to recall. To
have a certain degree of assurance that the average potency of a released batch is within (L,U),
a set of limits, denoted by a and b, is usually selected as an in-house guide for releasing a
batch. We will refer to @ and b as release targets. Thus, a batch is released for sale if its

potency assay result is within (a,b).

Assuming that the potency assay result is normally distributed, customarily used release

targets are
a. =L +1.6456/n" +s and b, =U — 1.6450/n'", (1.1)

where s is the estimated stability loss in potency over the expiration period, » is the number of
assays and o2 is the estimated variability of an assay. The release targets (1.1) are commonly

used, yet the following are some disadvantages:

(i) The idea behind the release targets (1.1) is that if all future batches have the same average
potency, then the use of release targets (1.1) guarantees that among all the future batches
released for sale, 95% of them have the average potency within (L,U). However, usually the
average potencies for different batches are different (more precisely, they should be considered

as random variables). Hence this 95% assurance does not hold and the use of release targets



(1.1) lacks statistical basis.

(ii) The use of release targets (1.1) does not take into account the company’s costs and profits.
The interval (a.,b.) could be too narrow and the chance of passing is extremely low (only a
few batches can be released). Also, even if one has 95% assurance that the average potency is
within (L,U), with a 5% chance of the true average potency being outside (L,U), the pay off

for recall and possible penalty could be a disaster for the company.

In this paper we propose an alternative for constructing release targets using a statistical
decision theory approach. The release targets @ and b are viewed as the company’s action
(decision). After establishing an appropriate loss function, which takes into account the
company’s profits and possible costs, an action is chosen to minimize the company’s expected
loss over all the possible actions (release targets) that the company may have. Such an action
is referred to as an optimal action. The decision theory approach is shown to be successful,
both in theory and in practice. For details, see Ferguson (1967) and Berger (1985), which also

provide many other useful references.

Procedures for constructing release targets (optimal action) are described in Sections 2-4,
where Section 2 contains a general description, Section 3 studies the distribution of the average
drug characteristics and other parameters, and Section 4 shows an example of constructing loss
function through the company’s utility analysis. As an illustration, Section 5 presents some

numerical results for an example from a pharmaceutical company.

2. CONSTRUCTION OF THE OPTIMAL ACTION

Let U be a k-vector of averages of drug characteristics (e.g., potency, dissolution and
disintegration) for a batch and y be the k-vector of corresponding assay results of a sample
from the batch (y can be the average of n assay results). Assume that the density of y,

denoted by f (y IW,V), is known when | and v are given, where v is a g-vector of nuisance



parameters. In practice, f (y I|L,v) is often the density of a normal distribution. Since usually
there is batch-to-batch variation, p is considered to be random. Let p(u,v) be the believed
joint density of |t and v at the time of decision making. The construction of p (u,v) will be

discussed in Section 3.

Let a and b be release targets and L and U be the USP specification limits. a, b, L and
U are k-vectors. Denote the ith component of @ (b, L or U) by a; (b;, L; or U;). The pair
d=(a,b) is called an action or a decision of the company. d will be chosen from the collection
(action space)

D={d'L,Sa,SblSU, for all i }
For a particular batch with assay result y, the batch is released for sale if
a,-S y,S bi for all i, (21)

where y; is the ith component of y. Otherwise the batch has to be disposed of or recovered

for future use. Then the utility of the company depends on L, y and the action d.

Let u(u,y,d) be the utility of the company if the action d is taken and p turns out to be
the zrue average (of the drug characteristic) of the batch. Then the loss of the company is
I(Wy,d)=—u(Ly,d). The function I[(U,y.d) can usually be determined through a utility
analysis (see Section 4). The average (over all the future batches) loss of the company when
the action d is taken is then

p(@) = E®I(uy d)],
where E®Y) is the expectation taken under the joint distribution of  and y. Thus,

p(d) = [[fiwy.a)f & 1wvIp @vidydpdv.

p(d) is often called the expected loss in the statistical literature. An optimal action is an action

d* eD such that

p(@*) =min _ p(d). (22)



Usually the function p(d) does not have a closed form. A numerical method for solving
(2.2) is required. Shao (1988) proposed the following Monte Carlo method for approximating
the optimal action d*. Generate independent and identically distributed random (k+q )-vectors
{ (u(i) vi)y, j=1,2,....m } from a density A (u,v) which has the same support as pl(u,v) It
MY v@) can be easily generated from p (W,v), then & is chosen to be p (i,v)). Approximate
p(d) by
T2 @Dy d)f ¢ 1OV WO VD) D v

>rf O LD vOyp (O VD) B (U y0y

Pm(d) =

and d* be d,, satisfying
Pm(dy) =min o, (d). 2.3)
For solving (2.3), algorithms from nonlinear programming and optimization can be used.
The convergence of d,, to d* (as m—ec) was shown in Shao (1988). Thus, we can use
dn=(a,,,b,,) as an optimal action.

For some characteristics, such as drug potency, stability loss should also be taken into
account. That is, at the expiration date (e.g, 60 months after the drug is produced), the drug
characteristic may not be [t but p—s, where s is a k-vector of stability losses. In this case, the
loss function depends on s, say /(s 1,y ,d). If s is believed to be equal for all the batches and
is estimated by 5 based on some other data through a stability analysis (FDA, 1987; Chow and
Shao, 1988), then the expected loss is

p@) = E®I[IE 1y d)].

If different batches have different stability losses, then s is random and the expected loss is
p) = ECHI (s uy )], (24)

where E¢#7) is the expectation taken under the joint distribution of s, [L and y.



3. THE DISTRIBUTION OF PARAMETERS

The joint distribution of L and v (and s if the stability loss is considered) can be obtained
from (i) an accuracy and precision study from an assay validation; (ii) the stability data of the
drug.

Let the distribution obtained from past experience be (s ,[1,v). For example, i may have
a normal distribution with mean (L+U)/2 (the center of (L,U)) and the conditional distribution
of s given U has mean 0.05u. A noninformative distribution (Berger, 1985, Chapter 3) can be

used for v if there is no information available.

The data collected from a stability analysis often are
Xy, i=l,..n,t=0,tq,...tr,
where x;, is the i th replication (assay result) for a sample batch after ¢ months from the pro-
duction date. For given [ and s, x;, are independently distributed with mean U—(@/ty)s. Let

g (x Is,u,v) be the joint distribution of x;, for given p, v and s. Then an updated distribution

of i, v and s is given by
p(s,1,V) = g (x |5 W,V)T(s .11, v)/m (x), (3.1)

where
mx) = [[Jg o 15 .mv)mGs pvidsdpdv.

From a Bayesian point of view (Berger, 1985, Chapter 4), n(s ,1,v) is the prior density of
s, W and v and p (s,4,v) is their posterior density.

Typically, the conditional distribution of X is normal. That is, for given W and s,

Xy =U—(tltr)s + e, |

where e;, are independently N (0, 6%I ), I kxk 18 the kxk identity matrix and o7 is a nuisance
parameter. As an example, we consider the case where k=1, L=90 and U=110. Assume that

for given 0%, H and s have a joint normal distribution with mean (100 100r)® and covariance

matrix
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where r is the expected percentage of stability loss. Note that for given g and o2
E(s 1u,0%)=r u. The distribution for 6% can be chosen to be a noninformative distribution with
n(c?) = 672 Let v=0"2, n=(100t]! 0),
4 T n .
§=(Xx —tr Xt 2Xi)s
it v=l i=1

and

T
-1

(14T) —tr Xt
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=1

v=1
Then p (s ,1,v) defined in (3.1) is equal to

P1(s.1V) pa(v), (3.2)

where p,(V) is the density of a gamma distribution with shape parameter (14T )n/2 and scale

parameter 2[3x2—~(E+n) (M +G 11 (E+m)+10,000/t,]7Y, and pi(s.ulv) is the density of a

i

bivariate normal with mean (M +G'1)“1(§+n) and covariance matrix v_1(M +G7 1,

4. THE LOSS FUNCTION

Another crucial step is to construct an appropriate loss function, which usually can be
done by a utility analysis (Berger, 1985, Chapter 2). Information about the company’s costs
involved for releasing a batch is essential. In this section, we derive a loss function, which
may be useful in practice, through an analysis of the company’s profits and costs. Typically,

the company’s costs include the following:



(i) Costs when the batch is not released. When it is decided not to release a batch for sale, the
batch is either disposed of or the active ingredient is recovered for future use. Let C be the
cost of a batch due to disposal or recovery when the batch fails to pass the USP test (i.e, (2.1)

does not hold).

(ii) Costs when the batch is released. When a batch is released for sale, the batch will be
packaged and distributed. Let C, be the sum of the packaging cost, distribution cost and
storage cost, and D be the cost and penalty of a recall by the FDA. Then the company’s cost

is C; if a released batch has i within the USP specification limits and is C +D otherwise.

(iii) Fixed costs. The fixed costs include the production and laboratory testing cost. Let C be

the total fixed costs.

Let B be the company’s profit from a released batch. From the above considerations, we

derive the following loss function:

k k k
I(s gy d) = Co+ C(A-TIL) + (C#+D)TL(=T;) + (C =B L @.1)

i=1 i=1 i=1
where ;= ; <. <ty Ji=I (L45,<u;<U;) @04 I is the indicator function of the set A. Assume that

the components of (y s |t V) are independent. The expected loss is then

pd)=Co+C [l—Il"c[E M)

i=l

+(C+D )IE[E("”"’)[p,- (1-J)1+(C-B )lkIE CE D),

i=1 i=1

where p;=P ( a;<y;<b; ). If y; follows a normal distribution N (i;,67), then

where ®(¢) is the standard normal distribution function.



5. AN EXAMPLE

We present the following example to illustrate the use of the proposed decision approach
for constructing a set of release targets. For simplicity, we consider the potency test only. The
USP specifications for the product under consideration are 90-110 (% of claim). The following
table gives the information about the cost, profit and penalty for the batch of drug product to

be released:

Item Description Amount (in dollars)
Co Total fixed costs 2,000
C Packaging, distribution and storage costs 1,000

C Disposal or recovery cost c

B Profit 3c

D Cost and penalty of a recall 40c - 150c

where ¢ is a fixed constant. Note that from (4.1), only the ratios D/C and B/C affect the

selection of d. Hence the actual value of ¢ is not relevant to the construction of release targets.

The loss function (4.1) is used. To account for stability loss, the following stability data

(% of claim) from a released batch are collected:

Age (month) 0 6 12 24 36 60
X 104.0 104.9 100.5 92.2 99.2 94.4

The joint distribution of s, p and v is given by (3.2) with r=0.05, 7,=10 and t,=1. Since
the densities p(s,lL!v) and p,(v) have known forms, p(d) in (2.4) is approximated by Monte
Carlo with 20,000 samples (s uU) V(j)) from p;(s,uiv)p,(v). The release targets @ and b
are obtained by minimizing p(d) over d=(a,b)e{ L<a<b<U }. Table 1 gives the constructed
release targets for various D ’s ranging from 40c to 150c. For example, if the cost and penalty
of a recall is 125c, to account for the stability loss; the recommended release targets are 97.0
and 107.5, ie., the batch is released if the mean potency assay result is between 97.0 and
107.5. It can also be seen that the width of the release targets becomes narrow when the cost

and penalty of a recall increases (Figure 1). For example, the width of the release targets is



reduced by 6.5 (from 17.4 to 10.9) as the cost and penalty increases from 60c to 120c.
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