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ABSTRACT

A class of delete-d jackknife estimators of the asymptotic variances of point estimators
are shown to be consistent when d, the number of observations removed from the original
sample, is a fraction of n and the point estimators are generated from a statistical functional
which possesses a weak differentiability property. The computation of the delete-d jackknife
estimators is almost as easy as the traditional delete-1 jackknife estimator. The results are

applied to problems in robust M-estimation.
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1. Introduction

The traditional jackknife estimator of the asymptotic variance of a point estimator 6
(which is based on n ii.d. observations from a population and is used to estimate an unknown
population parameter 0) is obtained by averaging the squared differences between point estima-
tors calculated after removing one observation from the original sample and their average
(Tukey, 1958). Although it is asymptotically valid in many cases, there are situations where
the jackknife variance estimator is inconsistent (see Efron, 1982, Chapter 3). Shao and Wu
(1989) studies the general delete-d jackknife, which is obtained by removing d observations at

a time with d diverging to infinity at a certain rate, and explains why jackknife works or fails.

In particular, they proved that when isa sample quantile, the delete-d jackknife variance esti-
mator is consistent while the traditional delete-1 jackknife estimator is not. Wu (1987) shows

that the delete-d jackknife histograms are consistent estimators of the sampling distribution of
6 if and only if d diverges to infinity. It seems that the delete-d jackknife with a larger d

requires less stringent smoothness condition on 0.

Shao and Wu (1989) established the consistency of delete-d jackknife variance estimator

for a class of point estimators under several regularity conditions. One of these conditions is
that the variance of O converges to the variance of the asymptotic distribution of 6. This

- . A . . . A
excludes the situation where the variance of 0 does not exist (the asymptotic variance of 9

exists under weak conditions). Furthermore, even if the variance of 9 exists, it may be hard to

check whether it converges to the asymptotic variance. In this paper, we show that for a class

A
of point estimators O generated by a statistical functional admitting a certain differential, the

delete-d jackknife variance estimator with d being a fraction of n is consistent without any

A
moment condition on O (Section 2). A heuristic argument shows that the traditional delete-1

jackknife variance estimator may not work in this case, although its asymptotic property is still

unknown. The result is applied to the situation where 6 is the commonly used M-estimator

(Section 3).



2. The main results

Let F be an unknown population distribution and X ,,..., X,, be i.i.d. observations from F.
In many application problems the parameter of interest is 6=T (F), where T is a functional

defined on F, a convex set of distribution functions containing F and all degenerate distribu-
tions. A point estimator of 0 is 6=T (F,), where F, is the empirical distribution function of

X1,..., X,,. Under some regularity condition on T, 60 is asymptotically normal, i.e.,
n"*@-08) > N, c® in distribution, 2.1)

where o2 is usually unknown and 6%/n is called the asymptotic variance of 6.

For various purposes in statistical analysis, one needs a consistent estimator of 6% The
delete-d jackknife estimator of 6%/n is defined as follows. Let d =d,<n be an integer and S,
be the collection of all the subsets of {1,...,n } which have size n—d. . For

s={i1,..., 1,4 }€84, let F,; be the empirical distribution function of X;,.., X; = and

éS=T (F,s). The delete-d jackknife estimator of 0%/n is

2 _ (n—d) A 1 A \2
Sa = dN ZseSd(eS - stes,,es) ’

where N=(}). When d=1, s12 becomes the traditional jackknife variance estimator. In this

paper, we focus on the following choice of d:
d = the integer part of An (2.2)

for a fixed Ae(0,1). If d satisfies (2.2), N is very large for large n and therefore the computa-
tion of s dz is impractical. We consider the following alternative. Draw a simple random sam-
ple (with or without replacement) { 54, ..., s, } from S;, where m satisfies m/n %1 for a

constant 8>0. Then define the delete-d jackknife estimator of 6%/n to be

s2(m) = (Lal;li)-zv"l: (6, - %Z;';lésv)% (2.3)

Note that when 8 is nearly one, the amount of computation required for s 3(m) is almost the

same as that for s 2.



For an estimator 52 of 6%/n, s is said to be consistent if
ns? >, 0%,
where —, denotes convergence in probability. To establish the consistency of s 3 (m), we

need to assume some smoothness condition on 7.

Definition. Let Il |l be the sup-norm on F.

(i) A functional T defined on F is Fréchet differentiable at FeF if there is a real-valued func-
tion ¢, on R such that E¢,(X;)=0, E (X ;)<eo and

ITG)-TF) - I¢F(x)d[G (x)-F x)]1
-0

2.4)
IG—F I

as IG-FIl -0,GeF.

(i) A functional T is weakly differentiable at F if (2.4) holds as IG-F I — 0 and
IT(G)>-TF) —0.

The weak differentiability of T is substantially weaker than the Fréchet differentiability of
T, since it requires (2.4) holds only for G satisfying both T(G)—T(F) and IIG-F —=0.
Note that the differentiability of T does not imply the continuity of T (T(G)—T(F) as
1G—F I —0). Many commonly used estimators, such as L- and M-estimators, are generated
by differentiable functionals (Boos, 1979; Clarke, 1983; Shao, 1988). See also Section 3. The

function ¢, is called the influence curve, which is a measure of influence toward the estimation
error 60 (Hampel, 1974).

A direct consequence from the differentiability of T at F is the asymptotic normality of
TF),). Hdwever, the existence of a differential asserts more, since it provides a useful tool of
robust statistics through an analysis of the influence curve (see Huber, 1981). Furthermore, it

ensures the consistency of the jackknife estimator s 3 (m).

Proposition 1. (i) If T is Fréchet differentiable at F, then (2.1) holds with o = E q)FZ(X 1)



(ii) The same conclusion as in (i) holds if T is weakly differentiable at F and T (F w) 2 T(F).
We now establish the main result.

Theorem 1. Let 6?>=E$2(X;) and s2(m) be defined as in (2.3) with d satisfying (2.2) and

m/n®>1.
(i) If T is Fréchet differentiable at F, then
ns 2 (m) —p o2 (2.5)
() If T is weakly &ifferentiable at F and
maxygy, |[T(F,) —TF)l —,0, (2.6)

then (2.5) holds.

Compared with the results in Shao and Wu (1989), Theorem 1 does not require any con-

dition on the moment of 6 but requires more on the smoothness of 6. We prove the following

lemmas first.

Lemma 1. Let{ sy,..., s, } be a simple random sample from S; with m/n 1. Then
max, g, 1Fy — F I —,0.
Proof. Let a>min(1, 20) be a constant and E« be the expectation taken under the probability
distribution corresponding to the random selection of s,. Note that
E (max, <, 1F,; — F I?) = E[E« (max, g, | F,;, —F lI%)]

SEEY NFy —FU1%)=mE(Ex |F,, — F19)

=mEWN"'Y, g WFus —FI1°)=mE IF, — F 1%,
where r=n—d and F, is the empirical distribution of X,..., X,. From Dvoretzky, Kiefer and

Wolfowitz inequality,
EG"IF,~F 1)* = aft*\P (r'BIF,~F 1>t )t < ¢ 1%~ 1e~%"ds,



where c is a constant. Hence mE |F,—F 1% = O (mr—*'2) = 0 (1), since n%/r*>—0 under 2.2)

and a >28. Thus, max, g, 1 F,,~F I* —,0 and the result follows. O

Lemma 2. Let z; be ii.d. with Ez;=0 and Ez*=0i<eo, Z=n" Z * % and z;=(n—d)~ Zles ;o If
m—o0 as n—oo and d satisfies (2.2), then
2
n -
W seSd(zS - 2_)4 —>p0.
Proof. Since Ez;=0 and Ez =01, 1z > 0 (1). Hence it suffices to show
2
n =4
—mwzses Z, —) 0.
Note that
n_2 74 )2
mN se€S,”S s€Sy j, i,jES Zi J
Q.7
2 2,
+ ZNZseSdZH*J l]GSzl j ZseSleGs i-

The first and second terms on the right hand side of (2.7) are o, (1) since

1
El nZsteSd(Zi#,i,jeszizf)z] = ZseSdZ#] ijes?i 12)
_ (n—d)(nz—d—l) o < a.
n

The result follows from the fact that the third term on the right hand side of (2.7) is bounded
by

1 n 4
E £ B
mn2_ i=1

~ which converges to zero almost surely by Marcinkiewicz strong law of large numbers. U

Lemma 3. Let z; and z; be the same as in Lemma 2 and { s4,..., s, } be a simple random

sample from S; with m satisfying m/n ®_51. Then
n(n—d 1 -
( )Z ( Sy — ;l_zvm=lzs“)2 —)pa.

Proof. Let P« be the probability corresponding to the random selection of s, and Ex and Vi

be the expectation and variance taken under Px, respectively. Note that
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nin—d) — 1 n(n—d)

B[ =G~ — % 5 = — =% o5, — I

= m(n 1)Z_l(z -2 >0 as.

by the strong law of large numbers. From
n(n —d) 1
2, — _Zv=1zsv =G,
2n(n—d — = -
S AR N R R

and the Cauchy-Schwartz inequality, the result follows from

n=n(n d)Z _ 2_)a

n(n n(—d)

+Ln—_d_)_(;_i

d g+

A

From the sampling theory and (2.2), there is a constant ¢ >0 such that
2

n —
V«@,) < szsesd(zs — z_)4.
From Lemma 2, V«(4,,) —p 0. Then for any £>0,
P«( 14, —Ex(4,)1>€) <eVa(4,) —,0
and therefore
P(IA, —E«(A,))I>e)=E[P«( 1A, —Ex(A,)]1>€)] - 0.

Thatis, A, — Ex(A,) = 0p (1). The result follows from

Ex(A,) = %Zsesd(z_s -7 = (nil)

O
—)p Q.

Proof of Theorem 1. (i) From the Fréchet differentiability of T at F, for any £>0, there is a
t>0 such that R(G,F)=T(G )—T(F)—I¢FdG satisfies |IR(G,F)I<elG—F Il for any GeF

satisfying l|G—F ll<t. Then for any £,>0,

(2l ‘”z RYF, F)>ey)

<P(

—”(Z D) 5 I Fpy—F 125e0/e? ) + P max,cp | Fog,—F 1>1).

From Lemma 1, P ( max,, IF,, —F I >t )—0. Also,

n(n—d)

2 _
Y WP ~F 12 = 0, (1)



since

n(n —d)

E[——=3" IF, -F1I*]=0()

from the proof of Lemma 1. Thus,

2Od) 5 RAFn ) = 0, (1. 2.8)

Let z; = ¢,(X;). Then
B, =0+ (1-1)"'Ficoz + R(Fps F)
and from (2.8), Lemma 3 and Cauchy-Schwartz inequality,

2D 5 G = B T+ 0y (.

”sd (m) =

Then (2.5) follows from Lemma 3.

(ii) The result in this part can be proved using condition (2.6) and the same argument as in (i).
a

In many application problems the parameter of interest is a function of several population

parameters: O=g[T(F)], where T = (Ty,..., T})", Tj are functionals on F and g is a real-

valued differentiable function on R¥. Let § = gIT(F,)] and 9 =gIT(F,)] for seS,.
are differentiable at F with influence functions ¢j, Jj=1,....,k, then (2.1) holds with

o? = [Vg (to)"Z[Vg (2 )], .9)

where Vg is the gradient of g, t(=T'(F) and I is a kxk matrix whose (i,j)th element is
E¢;(X1)9;(X,). The delete-d jackknife estimator of 02/n is defined the same as in (2.3). The

following result shows the consistency of s 2 (m) in this case.

Theorem 2. Assume that Tj, J=1,...k, are weakly differentiable at F and satisfy condition
(2.6) and Vg is continuous at T (F). Then (2.5) holds with o2 given by (2.9).

Proof. Let t,=T (F,) and t,,,=m‘12‘,v”‘= T (Fp,). From the mean-value theorem,

és, = g(tm) + Vg (tm)(tsv - tm) + st’



where W, = [Vg (&,)-Vg (z,,)1°¢t; —t,,) and &, is a point on the line segment between t, and
ty. LetW =m™'$™ W, . Then
n(n—d)

nsf(m) = T

[VE @)X (5,1 )t~ ) IV E (1,,)]
(2.10)

n(n—d) )
+ 3" (W W) +

2n(n—d)
dm dm

(V8 @ )I"E™ (b~ YW~ W),

Undgr (2.6), ¢, —>pT(F ) and therefore the first term on the right hand side of (2.10) converges
to 62 in probability. It remains to show that the second term on the right hand side of (2.10) is
0,(1). But this follows from (2.6) and the continuity of Vg at T (F). O

We end this section with a remark about consistency of the traditional delete-1 jackknife
variance estimator. It was shown that if T is differentiable uniformly in a neighborhood of F,
then the delete-1 jackknife estimator s12 is consistent (Parr, 1985; Shao, 1988). There are func-
tionals which are differentiable at F but not uniformly differentiable. The following heuristic
argument shows that Fréchet differentiability is not enough to guarantee the consistency of slz.
Let F,;=F, with s={ 1,...,i-Li+l,...,n }, R,,,-=T(Fm-)—T(F)—(n—l)‘lzj#(])F(Xj) and
- R=R,;. Following the proof of Theorem 1, we need

(=X Ry=R)? = 0,(1)
for the consistency of s12. This requires (Rm-——R_ )2 =0, (n~?). However, Fréchet differentiabil-

ity of T only guarantees that R,E =0, (n7h.

3. Applications to M-estimators

We apply the results in Section 2 to the problems involving commonly used M-
estimators. Results for another type of commonly used estimators, the L-estimators, can be

found in Parr and Schucany (1982) and Shao (1988).

An M-functional T (F) is defined to be a solution 8 of
Jotx, ©)4F @) = min, fp@x, n)dF @), 3.1)

where p(x, t) is a real-valued function on R?, and the corresponding estimator T (F,)) is called

the M-estimator of 6. Examples of M-estimators can be found in Serfling (1980, Chapter 7).
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Assume that y(x, t) = 9p(x, t)/ot and A;(t) = J-w(x, t)dG (x) exist and A, is differentiable at
0 with A7(0)#0. Shao (1988) showed that T is weakly differentiable at F with
Op(x) = —y(x, 0)/A7(0), if Ny(-, 0)ly < oo and ly( -, t) —w(-, O)Il, = 0 as t—8, where
Il 1y, is the total variation norm. To apply Theorems 1 and 2, we need to check condition
(2.6). If T is continuous, (2.6) follows from Lemma 1. However, an M-functional need not to
be continuous. Under some conditions, we may establish the continuity of T or (2.6) directly

(Proposition 2) and therefore Theorems 1 and 2 apply for these M-estimators.

Proposition 2. Let T be an M-functional defined in (3.1).

(i) Suppose that y is nondecreasing in ¢ and there is a neighborhood N of 6 such that for each
fixed x, w(x, t) is continuous on N, ly(x, )1® <M (x) for teN, where a>2 and M(x)
satisfies ,[M (x)dF (x) < eo. If m is chosen so that m/n%—1 with 8<a /2, then (2.6) holds.

(i) Assume that (3.1) has a unique solution. If y is continuous in ¢z and bounded and p

satisfies that for any ¢ > 0,
lim,_,.p(x, t) = o uniformly in x satisfying x| <c, (3.2)
where Jp(x, 19)dF (x) < o < oo, then T is continuous.

Proof. We give a proof for (i) only. Under the conditions in (i) and A;(0)=0, there is a neigh-
borhood NycN such that I\y(x, t)dF (x) is continuous and strictly decreasing on Nj. Then
(2.6) follows from

max, < | fy0c, T(Fpe DAF ()1 —,0. (3.3)

By using a similar proof to that of Lemma 1, we can show that
MAX, £ SUP e, WO, D)ALF g, (0)-F (011 —,,0.
This and the fact that Iw(x, t)dF (x) is decreasing in ¢ imply that
P(TF,)eNyforallv ) —>0

and therefore (3.3) holds. O

Note that for certain types of M-estimators, the computation of T(F,,) is faster than that
of T(F,;) when d is larger than one. Therefore, the computation of the delete-d jackknife
9



estimator (2.3) is faster than the computation of the delete-1 jackknife estimator.
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