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ABSTRACT

Using a functional calculus approach, we study asymptotic properties of statistics obtained
by evaluating some functionals at the empirical distribution function. Asymptotic properties of
the corresponding bootstrap statistics are also obtained. The results are applied to robust M-

estimation and L-estimation problems.

Keywords: Bahadur representation, bootstrap, convergence rate, Lipschitz continuity and dif-

ferentiability, L- and M-estimators.



1. Introduction

Let F be a convex class of distribution functions on R containing all degenerate distribu-
tions and T be a functional defined on F. The unknown quantity of interest is T (F), where
FeF is an unknown population distribution function. Statistical inferences for T (F ) are based
on n independent and identically distributed (i.i.d.) samples X,..., X,, from F and the statistic
T(F »), where F,(x) = "_12,-';11 X;<x) is the empirical distribution function. Asymptotic pro-
perties of T'(F,,) depend on the smoothness of the functional T. Von Mises (1947) introduced
a functional calculus approach for studying properties of T'(F,). Consistency, asymptotic nor-
mality and law of iterated logarithm (LIL) for T (F,) were established in many situations by
using this approach (e.g., Reeds, 1976; Boos, 1979; Boos and Serfling, 1980; Serfling, 1980;
Huber, 1981; Clarke, 1983). Note that the functional calculus approach not only establishes
asymptotic normality and LIL for T'(F,), but also provides a useful tool for robust statistical
and sensitivity analyses (Huber, 1981) and for studying other asymptotic properties of T (F,)

(which is the objective of this paper) such as
(1) exponential-rate bounds for P ( IT (F,)-T (F)|>t ), which gives estimates of
deviation probabilities;
(2) Bahadur representations;
(3) convergence rate of T (F, )~T (F) to the normal distribution; and
(4) asymptotic representations for bootstrap (Efron, 1979) type of statistics.

In this paper, we study (1)-(4) for two classes of functionals corresponding to commonly
used estimators of 7 (F') in robust estimation (Huber, 1981): the M- and L-estimators. In Sec-
tion 2, we introduce basic tools and prove some general results. The M- and L-estimators are
studied in Sections 3 and 4, respectively, as applications of the general results obtained in Sec-

tion 2.



2. General Results

Let r be a metric on F, e.g., the Lévy distance, the Prohorov distance, the Kolmogorov
distance and L, -distance (Huber, 1981). The following definitions are with respect to (w.r.t.)

the metric r.

Definition. A functional T on F is

(i) continuous at F if
T(G)-T(F)=o(l) as r(G.F)—0,GeF;
(ii) locally Lipschitz continuous at F if
T(G)-T(F)=OI[r(G,F)] as r(G,F)—0,GeF;
(iii) differentiable at F if there is a real-valued function ¢, on R such that

T(G) - T(F) - [0,)A[Gx)-F 1) = o[r G .F)] as r(G.F) =0, GeF;

(iv) locally Lipschitz differentiable at F if
TG)-TF)- j¢p(x)d[G @)~F(x)] =O[r¥G,F)] as r(G,F)—0,GeF.

The differentiability of T in the above definition is referred to as Fréchet differentiability
in the literature. The function ¢, is called the influence curve of T, a measure of "influence"
toward the estimation error T (F, )~T (F ) (Hampel, 1974). The influence curve is a useful tool
of robust statistics and sensitivity analysis (see Huber, 1981; Serfling, 1980, Section 6.6).
Without loss of generality, we assume that J([)F x)dF (x) =0. If we write

T(G) - T(F) = [6,()d[G (x)-F (x)] + R (G .F),
f¢pd (G—F) is then the differential of T at F, a linear functional presenting the linear com-
ponent of T (G )-T (F), and R (G ,F) is the remainder.

We now establish some asymptotic properties of T (F,) using the Kolmogorov distance:

r(GF)=IG-Fll_,=sup, 1Gx)-Fx)I.
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If T is continuous at F, Huber (1981) showed that T(F,) is consistent
(T(F,) > T(F)as.) and robust in the sense that if G, is the empirical distribution
corresponding to ii.d. samples from GeF, then for any €>0, there is a >0 such that
r(Hy g, yHrr,) < € for sufficiently large n whenever r (G ,F) < 8, where Hr g,y is the distri-
bution function of T(G,,). The following result gives an exponential-rate bound for the error in

approximating T (F') by T'(F,,).

Theorem 2.1. If T is locally Lipschitz continuous at F w.r.t. I| I, then for any 7 >0,

POITFE,) -TF)>t )< C(e K™ 4 2%
where K and 0 are constants depending only on T and F (K is the Lipschitz constant) and C
is a constant independent of n, T and F.
Remarks. (i) The result in Theorem 2.1 implies that T (F,) converges. to T (F) completely
(Hsu and Robbins, 1947).
(ii) The value of ¢ in the above inequality may depend on n if desired. For example, an
asymptotic estimate of the moderate deviation probability P ( n'{’[T (F,)-T(F)l=(a logn)’/2 ) is
0 (n—2aK‘2). '
Proof. From Definition (ii), there are constants 8>0 and K >0 such that

IT(G)-TF)I <KIG-FI, when IG-FI_<38.

From Dvoretzky, Kiefer and Wolfowitz inequality, P(K IF,—F Il ,>t ) < Ce_z"K_Z‘2 and

P( IF,—F II.>8) < Ce™*¥, Thus, the result follows from

P(IT(F,)-TF)I>t)<P(KIF,-Fli_>t)+P(IF,-FI_>§). 0O

It is well known that IF,—F ll,=0,(n"") and IF,—F Il = O[n *(loglogn)"] a.s.
Note that jq)F(x)d[F,,(x)—-F ®)] = n‘lzl."=1¢F(Xi) is an average of i.i.d. random wvariables.
Hence if T is differentiable at F w.r.t. Il I and
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0 < 6% = J02(x)dF (x) < oo, | e

then the asymptotic normality and LIL hold for T'(F,), i.e.,

n'P[T(F,)-TF) - N@©, 6% in distribution

and

. n'*[T (F,)-T (F)] | as
immsu = .
P o(2loglogn )"

(see Serfling, 1980). If T is locally Lipschitz differentiable, more asymptotic properties of

T (F,) can be obtained.

Theorem 2.2. (i) Bahadur representation. Suppose that T is locally Lipschitz differentiable at

F wrt. Il ... Then

TF,)-TF)- n"lzi”=1¢F(X,-) =0 (n_lloglogn) a.s. (2.2)

and
TF,)-TF)=—n"'L" 6:(X;) = 0,(n ™). (23)
(i) Convergence rate. Suppose that T is locally Lipschitz differentiable at F w.r.t. Il 1,

02>0 and f1,(x)13dF (x) < o. Then

sup, |P(nP[T(F,) - TF)Noc <x)—dx)l =0®n "ogn),
where @ is the standard normal distribution function. ,

Proof. From the Lipschitz differentiability of T at F and I|F,—F i, — 0 a.s., almost surely,

IT(F,)-TF)-n""T" 6,(X;)| <KIF,-F 2

for sufficiently large »n, where K is a constant. Thus, (2.2) follows from

\F,-F I1I2=0 (n Yoglogn) a.s. The proof for (2.3) is similar.

For (ii), using Dvoretzky, Kiefer and Wolfowitz inequality, we obtain

P(UF,~F I2>nYogn )= 0(n7>.
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Let RF,F)=TF,)-TF) - n‘lzi';lq)F(X,-). From the Lipschitz differentiability of T at
F, there is a >0 such that
P(IR(F,F)I>Knogn )=P( IF,—F I2>n"0gn )

+P(INF,~Fll.>8)=0@®n™>.

Note that (see Serfling, 1980, p.229)
sup, 1P ( nl/’[T(Fn) -TF)l/o <x )= D) <P( IR(Fn,F)I>Kn"110gn )

+0(n""ogn) + sup, IP(n""F" 6, (X))o < x ) - D).

The result follows from Berry-Esséen theorem for n'lzl.';l(])p(X,-). o

Under more smoothness conditions on T (e.g., T is second order differentiable), we can

obtain the best convergence rate O (n~"). See Serfling (1980, Theorem 6.4.3).
Let X7,..., X, be iid. samples from F, and F,(x) = n"'3" I ye.,). X; are bootstrap
samples (see Efron, 1979) and T(F,) is a bootstrap analog of T(F,). The following result

gives a representation for the bootstrap statistic T (F,;) — T (F,,).

Theorem 2.3. If T is locally Lipschitz differentiable at F w.r.t. I Il then
TED = TEF,) ~ n [T 0,31 0,X)] = O (nMogn) as. (24)
and
T(Fp) = T(F,) = n [T 0:X)-T 1 0,X)] = 0, (n ™). 2.5)

Proof. For the first assertion, it suffices to show that

R(F,F)=TE)-TEF)-n""T" 6,X) =0 "ogn) as.

Let P« be the probability corresponding to the bootstrap sampling. From Dvoretzky, Kiefer
and Woifowitz inequality,

P( WF,=F, i ,>n""(ogn)" )= E[P«( WF<F, Il .>n""(ogn)" ) < Cn2
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Hence IF; ~F,12=0(n"ogn) as. and IF!-F, I, — 0 as. Then from the Lipschitz
differentiability of T at F, almost surely,

IR(FF) <KIF~F 12
for sufficiently large n. The result follows from IF,—F |2 < 2(1F}~F, 12+ IF,~F 112).

From Dvoretzky, Kiefer and Wolfowitz inequality, I F,’,"—F,, IIO% = Op (n‘l). Hence the

proof of the second assertion is similar, O

A direct application of the representation (2.4) gives
sup, |P(n " [TEN-TFN <x)-P(n'"[TEFE)TE)] <x)l -0 as. (2.6
under (2.1). That is, the bootstrap estimator of the. sampling distribution of T (F,)-T (F) is
strongly consistent.

It is possible to establish some of the preceding results using other metrics. For example,
the L, distance given by
r(G,F) = IG=F Il = {JIG (x)-F (x)]%dx }*

(assume that F = { G: I |x 1dG(x) < o } and FeF). We prove the following results for L,

distance. They will be applied to L-estimation problems in Section 4.

Theorem 2.4. Suppose that E |X ;| < e and T is locally Lipschitz differentiable at F w.r.t.
I I, Then

(i) (2.3) holds;
(ii) (2.2) holds if E 1X,11*3 < o for a $>0;

(iif) if £ 1X, 1¥ < oo for a positive integer k&,

sup; |P(n"[T(F,) - T(F)l/c < x ) - dx)l = 0n"*,



where ©=1/2(k+1).

Proof. From the proof of Theorem 2.2, (2.3) follows since
EF,~F 12 = n"YfF ()[1-F ()]dx = O (n ™).
If E 1X, 1™ < oo for a §>0, then there is an £>0 such that J[F (x)(1-F (x)]'"2%dx < e. From
James (1975), W,, = I(F,~F)/[F (1-F )" &I, = O[n""(loglogn)”] a.s. Then (2.2) follows
from
IF,—F ll, < W2J[F (0)(1—F ()] Zdx = O (n"Yoglogn) a.s.
If E1X 1% < oo, then from Lemma 8.2.5B in Serfling (1980), E IF,—F 12*= 0 (n™*). Then

the result in part (iii) follows from

P(IF,~FI2>n ")y <nk* o™ y=00™*)=0@n"". O

For the bootstrap statistic T (F,;)-T (F,,), (2.5) still holds if T is locally Lipschitz differen-
tiable w.r.t. I Il,. It is not clear whether (2.4) holds in this case. However, we establish (2.6)

under some moment condition. -

Theorem 2.5. Suppose that E 1X,| < e and T is locally Lipschitz differentiable at F w.r.t.

Il lt,. Then (2.5) holds. If in addition, E X, 128 < oo for a 6>0, then (2.6) holds.

Proof. Let E« be the expectation taken under the bootstrap probability P«. Then

E[E«IF* = F 3 = nE[JF, (x)(1=F, (x))dx] = n~Y(1-n"1[F (0)(1-F (x ))dx.

Hence (2.5) follows since | F;—F, 12 = 0, (n~!) under E 1X,| < oo. For the second assertion,
let X5y = min;¢,X; and X,y = max;¢,X;. Then WF,—F, I < IF;~F, 12X (X 4. From
the proof of Theorem 2.3, IF~F, 12 =0(n ogn) a.s. Then n *IF~F, 1} - 0 a.s. fol-

lows from (X (,,y~X (;))/n U2+ 50 g.5. Hence (2.6) holds. O



3. M-estimators

We apply the results in Section 2 to robust M-estimation problems. Let p(x,?) be a

real-valued function on R2. For GeF, define T (G) to be a solution of
Jotx, T@)4G @) = min, Jox, 1)4G ).

T is called the M-functional and T(F,) is the M-estimator of T(F). Examples of M-
estimators can be found in Serfling (1980) and Lehmann (1983). Assume that for each ¢,
y(x, t) =dp(x, t)/ot exists ae. Lebesgue and dfp(x, 1)dG (x)/dr = fy(x, 1)dG (x). Thus,
J‘\y(x? T(G))dGx)=0. Assume also that the function A.(z) =_[w(x, t)dF (x) has positive
derivative at T (F), i.e., A;(T (F))>0. The continuity and differentiability of T are studied for a

class of M-functionals corresponding to robust M-estimators.

Theorem 3.1. Let T be an M-functional and assume T (F) is the unique minimum of
Joex, )P ).

(1) Assume that there is an o0 (may be infinity) such that oc>_[p(x, T(F))dF (x) and for any
¢ >0,

lim,_,.p(x, ) =0a uniformly in xe{ x: Ix1<c }. 3.1

Assume further that either p is bounded or y is bounded and continuous in # and A.(z) has a

unique root. Then T is continuous at F w.r.t. II Il_.

(ii) Let Il Iy, be the total variation norm (see Natanson, 1961). Assume the conditions in (i)
and there is a neighborhood N of T'(F) such that lly( -, t)ll}, < o for teN. Then T is locally
Lipschitz continuous at F w.r.t. Il 1.

(iii) Assume the conditions in (ii) and ly( -, ) —y( -, T(F)Iy —> 0 as t>T(F). Then T is
differentiable at F w.r.t. I| Il.. The influence function is ¢, = —y(x, T (F))/A (T (F)).

(iv) Assume the conditions in (ii) and {(x, t) = dy(x, ¢)/ot exists for reN and satisfies

NE(-, TEF)H Ny < oo and



I, )= L&x, TF) SMX)It=T(F)! for teN, (3.2)

where M (x) satisfies IM (x)dF (x) < oo. Then T is locally Lipschitz differentiable at F w.r.t.

I
Remark. If v is increasing in ¢, condition (3.1) is not required.
Proof. We only give partial proofs for (i) and (iv). Proofs for (i) and (iii) are similar,
Assume that y is bounded and continuous in ¢. Let G,eF be é sequence satisfying
IG,—F I, — 0. From Jennrich (1969), for any C >0,

Jy(x, 4G, (x) = Jy(x, 1)dF (x) uniformly in re{ ¢: 1£1<C }.
Let £ be a limit point of { T(Gy), n=12,.. }. Condition (3.1) implies 1&] < e, Let { n; } be
a subsequence such that T'(G,,) = &. Then

v, TG, 4G, @) = fux, TG, DAF () = ~fyx, T (G, )AF (x) = 0.
But [y(x, T(G,))AF (x) = Jy(x, &)AF (x) = A,(§). From the uniqueness of the root of Ax(t),
E=T(F). This proves T(G,) — T'(F) and therefore T is continuous at F.
Assume the conditions in (iv). Note that
TG)-TF)= J¢F(x)d[G(x)—F(x)] + R (G ,F) + Ry(G F),

where

R(GF)= j[\v(x, T(G)vw(x, TFENAIG (x)-F )V h(T(G)),

RyG F)=[UN(T F)-1/h(T(G ))],[W(x, T(F)H)AIG (x)-F (x)],
and h(t) = A (0)/(t=T(F)) if t#T(F) and =0 if t=T(F). Under the conditions in (ii),
T(G)-T(F) = O (IG—F II..). Then under (3.2),

I[W(x, T(G)—y(x, TF NG (x)-F x)] = O(IG-F %)
+[T(GTF )]f Cox, TFNALG (x)-F (x)].

Hence R (G ,F) = O (IG~F |l 2) since

Ik(x, TEHAGE-F@)] < W(-, TE)Iy NG-F I,
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Similarly, 1/A/(T (F)) — 1/h(T(G)) = O(IG-F 1,,). Hence R,(G,F)=O(IG-F I 2) since

I.[‘V(x, TEMGE»-F] < lly(-, TENIIG=F I,

This completes the proof of (iv). O

Therefore, the results in Theorems 2.1-2.3 apply to M-estimators under appropriate condi-
tions. Carroll (1978) establishes Bahadur representation for location M-estimators with a
remainder term O(n'llogn) a.s. Under the conditions in Theorem 3.1(iv), our result (2.2)

gives a sharper bound on the remainder term.

4. L-estimators

Another class of commonly used estimators is the class of L-estimators T (F, ), where T is

defined to be
T(G)=Ix][G(x)]dG(x), GeF | 4.1
with a function J(t) defined on [0,1]. Serfling (1980) and Lehmann (1983) provide many
examples of L-estimators. Let
06 (0) = ~JU ey F OV IF 0)1dy. “2)
and
R(GF) = [W[G ®)I[G x)-F (x)ldx, 3)

where W[G (x)] = [G (x)F (x)]-ljf(f‘))J(t)dt — JIF ()] if G (x)#F (x) and =0 if G (x)=F (x).
Then

TG)-T((F)= j(]),,.(x)d[G x)-Fx)]+R(G,F).

We first consider a class of trimmed L-functionals which corresponds to robust L-

estimation. An example of trimmed L-estimator is the trimmed mean (Serfling, 1980, p.236).
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Theorem 4.1. Let T be defined in (4.1) with a function J satisfying J(¢) = 0 for < or >,

where O<a<B<1.

(1) If J is bounded, continuous a.e. Lebesgue and a.e. F ~1 then T is differentiable and locally

Lipschitz continuous at F w.r.t. I ll,. The influence function is given by (4.2).

(i) If J is Lipschitz continuous, ie., 1J()-J(s)!<K lt—s | for ¢, se[o,B] and a constant

K >0, then T is locally Lipschitz differentiable at F w.r.t. Il Il

Proof. (i) The differentiability of T was shown in Boos (1979). We show that T is locally
Lipschitz continuous at F. Choose two constants ¢ and b such that @ and b are continuity
points of F and F (a)<o, and F (b)>B. Then |
1[0, 00)AIG x)-F ()11 = lIf[F(x)—G OV [F (x)]dx |
SG-a)iJi, IG-F 1.

The result follows since R (G ,F) = o (IG—F 1) by the differentiability of T at F.

(i) Choose an €;,>0 so that F(a)ytgp<a and F(b)—€;>B. Then for G satisfying
NG-F I, < &, R(G,F)= I:W [G (x)I[G (x)-F (x)ldx. From the Lipschitz continuity of J,

IW[G(x)]! <K IG(x)-F(x)!. Then |IR(G,F)l <K(b-a)IG-F 2 O

)

Hence the results in Theorems 2.1-2.3 hold for trimmed L-estimators. For general
untrimmed L-estimators, the following result shows that the corresponding L-functionals are
locally Lipschitz differentiable at F w.r.t. the L, distance. Therefore the results in Theorems

2.4 and 2.5 hold for untrimmed L-estimators.

Theorem 4.2. Assume E |X;| <oo. LetT bé given by (4.1) with J being Lipschitz continu-
ous on [0,1].

() T is locally Lipschitz differentiable at F w.r.t. Il I, and the influence function is given in
(4.2).
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(ii) If in addition, J‘J 2[F (x)Jdx < oo, then T is locally Lipschitz continuous w.r.t. I Il,.
Proof. (i) Let R (G ,F) be defined in (4.3). The result follows from
IR(G.F)| <KJ[G(x)-F@)Pdx =K IG-F I|2.
(i1) From Cauchy-Schwarz inequality,
o, ()G ()—F ()11 € 1G—F 1, JT2[F (c)dx } .

The result follows from part (i). O

An example of J satisfying the condition in Theorem 4.2(1) is J(z) =4t—2 (the |
corresponding L-estimator is the Gini’s mean difference). Examples of J satisfying
[J2F (0)]dx < oo are J satistying 1J ()| < M[t(1-t)]"* with a constant M >0. See Serfling

(1980, p.277).
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