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Abstract

In statistical applications the unknown parameter of interest can frequently be defined
as a functional § = T(F'), where F' is the unknown population. Large sample statistical
inference about # usually relies on the degree of smoothness of the functional T. This
paper studies the smoothness of T through the differentiability of T'. Several versions of
differential of T' are discussed. Asymptotic properties of the point estimator of # obtained
by evaluating T at the empirical distribution function and consistency of the jackknife
variance estimator, which provide procedures of making statistical inferences, are estab-
lished for differentiable functionals. The results are applied to some examples including
the situations where the point estimators are commonly used L- and M-estimators.
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1. Introduction

Statistical inferences about an unknown parameter 6 are usually based on a point estima-

tor § of 6 and the asymptotic behavior of 6-6. Frequently 6 can be considered as T (F ), where

F is the unknown population distribution and T is a functional on a space of distribution func-

tions containing F, and the estimate 6 is then obtained by evaluating T at the empirical distri-
bution function F, corresponding to ii.d. samples X;,..., X, from F. Often the statistical

functional T possesses differentiability properties which provide information about the asymp-

totic behavior of 6-0 = T(F,)-T(F) as well as methods for statistical inferences. These ideas
were first introduced by von Mises (1947) and studied by many other authors (e.g., Reeds,
1976; Boos, 1979; Boos and Serfling, 1980; Huber, 1981; Clarke, 1983, 1986). Serfling (1980,

Chapter 6) provides an excellent review for this approach.
When T has an appropriately defined differential at F, T (F,,) can be expressed as
TF,)=TF)+ n_lzi"zltbp(Xi) +R(F,, F),
where ¢, is a real-valued function defined on R and satisfies E¢.(X;) =0. Note that
nIYt 0.(X;) is a linear statistic. If E $2(X ;) = o2 is finite and
n*RF,, F) -,0,

then the asymptotic distribution of n'/z(é—e) is normal, i.e.,
n"P[T (F,)=T (F)] =4 N (O, &), EGR)

where —, and —, denote convergence in probability and in distribution, respectively. Since
o? is unknown in general, a consistent estimator of 62 is required for the purposes of statistical
inferences. The jackknife provides a nonparametric method of estimating 62 (see Tukey, 1958;
Shao and Wu, 1989). Let F,; be the empirical distribution corresponding to the samples |
X1se» X;_15 Xi 4155 X, . The jackknife estimator of o2 is
s} = (-DYLTF,) - n T T F,)2
One advantage of using s,2 is that it does not require knowing the form of the function ¢,

and therefore avoids the theoretical derivation of ¢.. It is desired to establish

s2 502 as. (1.2)



Under (1.1) and (1.2), statistical inferences can be made based on the result
n'"[T (F,)~T (F))/s, =4 N©O,1).

It was shown (el.g., Serfling, 1980) that (1.1) holds if T is I Il -Fréchet differentiable
(see Definition 2.1(i)). Parr (1985) proved (1.2) for uniformly Il |l -Fréchet differentiable T
(see Definition 2.1(ii)). However, I Il -Fréchet differentiability is too strong a requirement
since some frequently used statistical functionals are not | Il -Fréchet differentiable. The pur-
pose of this paper is to study weaker versions of differential of T and to establish (1.1)-(1.2)
using a unified approach. The results obtained are more general than the existing results in the

literature.

In Section 2, several versions of differential of T are studied. The p*-weak differentiabil-
ity of T (see Definition 2.2) seems to be a reasonably weak requirement, since commonly
encountered statistical functionals, including those corresponding to L- and M- estimators, are
shown to be p*-weakly differentiable. The results are applied to establishing the asymptotic
normality of the point estimators T (F,,) (e.g., L- and M-estimators and Cramér-von Mises test

statistic). The existence of a differential of T asserts more, for

(a) It provides the influence curve, a measure of "influence" toward the estimation error
T(F,)-TF) (Hampel, 1974). The influence curve is a useful tool of robust statistics and sen-
sitivity analysis (see Huber, 1981; Serfling, 1980, Section 6.6).

(b) The differential approach establishes the law of the iterated logarithm (LIL), i.e.,

n'""[T (F,)-T F) _
oQloglogn )2

limsup ,, _,.. as., (1.3)

which characterizes the extreme fluctuations of T (F,,)-T (F).

(c) It provides a powerful tool for studying the asymptotic behavior of the jackknife variance

estimator s,2 .

The consistency of the jackknife variance estimators is studied in Section 3.

2. Differentiability and asymptotic properties of T (F,,)

Let T be a functional defined on a metric space (F, p), where F is a convex set of distri-

bution functions containing the unknown population F and all degenerate distribution functions
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and p is a metric on F. Note that F, eF.

A functional T is said to be p-continuous at F if T(G)—>T (F) as p(G,F)—0 (GeF).
For the differentiability of T', we first consider the Fréchet differentiability.

Definition 2.1. (i) A functional T on (F, p) is p-Fréchet differentiable at F if there is a real-
valued function ¢, on R such that I(I)F x)dF(x)=0 and

IT(G) - T(F) = [0, (:)dIG (x)-F ()]
-0

(2.1)
PG, F)
as p(G, F)—0,GeF.
(ii) A functional T on (F', p) is uniformly p-Fréchet differentiable at F if
IT@) - TE) ~ o MGEIHEN 02

PG, H)

as p(G, F)+p(H, F)>0, G, HeF .

The function ¢, is the influence curve of T (Hampel, 1974). Throughout the paper we
assume that 0 < o2 = [¢2(x)dF (x) < eo. Jo,(x)d[G (x)—F (x)] is the differential of T at F and
is a linear functional presenting the linear component of T'(G )-T (F). Let

R(G,F)=T(G )T »Jo,()[G (x)-F (x)].
Then R(G,F) is the nonlinear component of T(G)-T(F) and (2.1) becomes
IR(G,F)I/p(G,F) —> 0. Note that a p-Fréchet differentiable T is not necessarily p-
continuous. Huber (1981) showed that for a p-Fréchet differentiable T, (1.1) holds if
P(F,, F)=0,(n ). It is also true that if p(F,, F)=0 (n""*(loglogn)”) a.., then (1.3)
holds for p-Fréchet differentiable T (Serfling, 1980, p.219).

The most commonly used metric on F is p(G, F) = IG—F ll_,, where Il ll_, is the sup
norm (lA(x)Il,, =sup, |h(x)] for any bounded function #). Hence T is Il Il_-Fréchet dif-
ferentiable at F if (2.1) holds with the metric corresponding to Il ll.. Since
IF,~F .= 0,(n"") and IF,—F Il,= O (n"(loglogn)™) as., Il Il -Fréchet differentiabil-
ity of T at F implies (1.1) and (1.3).



However, there are some commonly used statistical functionals which are not Il Il_-

Fréchet differentiable. For example, the variance functional
TF) = 27Jx—y)dF (x)dF ) 2.3)

is not I Il -Fréchet differentiable (Serfling, 1980, p.220). Hence we need to seek weaker ver-
sions of differential of T'.

Consider a subset of F': F1={GEF:j|xIdG(x) <é }, and the L; norm on F;
defined to be IG-F I, = le(x)—F (x)ldx. Then the variance functional (2.3) is uniformly
Il Il -Fréchet differentiable, since for the variance functional, R(G, H) = —d [G(x)-H (x)]dx )2
satisfies IR(G, H)I/WG-H1l; < IG-HIl; - 0as IG-F l;+IH-F II; = 0.

Note that if p; and p, are two metrics on F ; satisfying p,(G, H) < ¢p,(G, H) for a con-
stant ¢ and all G, HeF;, then (uniform) p,-Fréchet differentiability implies (uniform) p;-
Fréchet differentiability. This suggests the use of the metric

p*(G,H)=IG-HIll;+ IG-H I, G,HeF,.
Note that E [n" | F,,~F Il,] < [[F (¢)(1=F (x))]"dx. Hence p*(F,,, F) = 0,(n™ ") if
JiF @)(1-F ()T dx < oo, 2.4)

Thus, (1.1) holds if T is p* -Fréchet differentiable and (2.4) holds. The class of functionals dif-
ferentiable in the metric p* is substantially larger than the class of functionals differentiable in
the metric I Il.. However, for the asymptotic normality, we need to assume a moment condi-

tion (2.4), which is almost the same as EX 12 < oo (Serfling, 1980, p.276).

Example 2.1. L-estimators. Consider the functional
|
T(F) = [ Flev e, 2.5)

where F7Y(z) = inf { x: F(x)2t } and J(¢) is a function defined on [0,1]. Examples of T can
be found in Serfling (1980, Chapter 8). T (F,) is called the L-estimator of T(F). From Parr
(1985), for G, HeF ,

T(G) - T®H) = Jo,(0)d[G x)-H ()] + R(G, H)

with



0:(x) = =JlT y=x)—F 0V [F (»))dy

(2.6)
R(G, H) = [WIG®).H@)H x)-G ())dx,

where I(A) is the indicator function of the set A, W[G(x),H(x)] =0 if G(x)=H(x) and
=[G (x)-H (x)]'II:((;C))J @)dt=J[F(x)] if G(x)#H(x). Parr (1985) showed that if J is
bounded, continuous a.e. Lebesgue and a.e. F _1, and 0 outside of [o,1—a] for a constant a>0,
then T is uniformly Il Il -Fréchet differentiable. It is not clear whether T is still Il Il -
Fréchet differentiable if J is untrimmed. The following result (the proof is in Section 4) shows
that under weaker conditions on J, T is uniformly p*-Fréchet differentiable. Note that this
result holds, in particular, if J is continuous on [0,1]. Examples of continuous J include
(1) J(t) = 1 (the sample mean); (ii) J(¢) = 4t—2 (Gini’s mean difference); (iii) J (¢) = 6z (1—¢)
(the asymptotically efficient L-estimator for location for the logistic family). Boos (1979)
proved that T is g-norm-Fréchet differentiable at F. Compared with his Theorem 2, the fol-
lowing theorem requires slightly more on J but less on the tails of F and provides a stronger
result (the uniform Fréchet differentiability). Also, the g-norm is not easy to handle for estab-

lishing the consistency of the jackknife variance estimator (see Section 3).

Theorem 2.1. Let T be defined as in (2.5) and FeF ;. If J is bounded, continuous a.e.
Lebesgue and a.e. F ‘1, and continuous on [0,a)U(1-0a,1] for a constant oe>0, then T is uni-
formly p*-Fréchet differentiable.

However, p*-Fréchet differentiability is still somewhat too strong. The requirement (2.1)
or (2.2) can be relaxed. In fact, for statistical analysis, we only need (2.1) or (2.2) holds for
those sequences of G which satisfy T(G) — T(F) as p(G, F)—0. This leads to the following
weaker notion of differential of T'.

Definition 2.2. (i) A functional T on (F, p) is p-weakly differentiable at F if (2.1) holds as
p(G, F+IT(G)-TF)I = 0.

(ii) A functional T on (F, p) is uniformly p-weakly differentiable at F if (2.2) holds as
p(G, FypH, FFHITG)-TF)I+ITH)-TEF)l — 0.



Apparently, (uniform) p-Fréchet differentiability implies (uniform) p-weak differentiabil-
ity and they are equivalent if T is p-continuous. Note that many commonly used statistical
functionals are not p*-continuous (e.g., the variance functional (2.3)) but satisfy
T(F,) = T(F). Hence the p*-weak differentiability is a much weaker requirement than the

p* -Fréchet differentiability and provides a useful tool for statistical analysis.

The asymptotic normality and LIL for a p-weakly differentiable T can be established if
p(F,, F) has certain stochastic order. We show the following result for p*-weakly differenti-

able functional.

Theorem 2.2. Assume that T is p*-weakly differentiable at F.
(i) Asymptotic Normality. If (2.4) holds and T'(F,,) —, T (F), then (1.1) holds.
(ii) LIL. If there is a constant 8>0 such that

JIF &)1-F ce)18ax < oo @.7)
and T(F,) - T(F) a.s., then (1.3) holds.
Remarks. (i) Condition (2.7) is equivalent to that E |X;1%*¢ < oo for an £>0.
@) If T is Il Il .-weakly differentiable at F, conditions (2.4) in (i) and (2.7) in (ii) are not
required.
Proof. (i) It suffices to show that R (F,, F) = 0,(n~"). From the differentiability of T, for
- any ©>0 and €>0, there is a §;>0 such that

P{ n'*\RF,,F)I>t} <P{ nlp*(F,,F)>1le } + P{ p*(F,, F)*|IT(F,)-T(F)1>5, }.

The result follows from P*(Fp, F) = 0,(n") and p*(F,,, F)+IT(F, T (F)! —,0.
(ii) It suffices to show IIF L &)-F(x)ldx = O(n_llz(loglogn)llz) a.s. From the result in James
(1975), I[F,(x)-F ()Iw[F ()] ll.. = O (n~"(loglogn)™) a.s., where w (£)=[t (1-2)]1>""2. Then

the result follows from f[w (FE))Idx < . O

In statistical applications, often the parameter of interest is g [T (F)] with a real-valued

function g. Hence we need to consider the functional & °T .



Proposition 2.1. Suppose that T is p-weakly differentiable at F and g is a function on R and
differentiable at T (F). Then 8°T is p-weakly differentiable at F if the following regularity

condition holds:

TG)-TF)=0[p(G,F)] as IT(G)-T(F)I - 0. 2.8)

Proof. If T is p-weakly differentiable at F, T(G)-T ()= J¢FdG +R(G, F) with
R(G,F)p(G,F) = 0as p(G, F)+|T(G)»-T(F)l — 0. From the differentiability of g,
gIrG)—glir&F) = g'[T(F)]f¢pdG + ¢ [TEF)NR(G,F)+o(IT(G)-TF)).

From (2.8),

o(IT(G)-TF)) _o(IT(G)-T(F)I) IT(G)-T(F)I
p(G,F) -~ IT(G)>TF)I p(G, F)

as IT(G)-T(F)|l — 0. Hence 8°T is p-weakly differentiable at F. O

Remarks. (i) Condition (2.8) is weaker than T(G)-T(F)=O[p(G, F)] as p(G, F)—0. In
fact, (2.8) does not imply p-continuity of T at F. See Example 2.3.

(ii) If T is p-weakly differentiable at F with differential I¢FdG, (2.8) is equivalent to

[0,4(G—F) = 0[p@G, F)] as IT(G)-T(F)I — 0. 2.9)

We now study some examples of application of Theorem 2.2. First, consider the L-

estimator in Example 2.1.

Corollary 2.1. Let T be an L-functional and g be a real-valued function and differentiable at
t=T (F). Under the conditions in Theorem 2.1 and (2.4), we have

n'™{g[TF,)] - g[T(F)]} =4 NO, [g' ¢p)*cD), (2.10)
where 6% = E ¢F2(X 1) and ¢y is given in (2.6). If in addition, (2.7) holds and g’ (z4)=0, then

nPITF,)-TF)]
Ig’ (t) |o(loglogn)”*

limsup ,, .., as. (2.11)

Proof. From Theorem 2.1, T is p*-weakly differentiable at #. From (2.6),

1Jo,d(G—F)I = 1[G x)—F @)V IF )ldx | € 1T NG—F I,
7



which implies (2.9) and the p* -continuity of T. Hence T'(F,) = T(F) a.s. and the result fol-

lows from Proposition 2.1 and Theorem 2.2. O

Example 2.2. V-statistics. Let T be the functional
TE) =] [hOpx)dF (xy) - - - AF (xy)
with a symmetric kernel 4 (x,...,x;). A V-statistic is 7(F, ). For this functional, T(G) — T (F)

can be written as (e.g., Serfling, 1980, Chapter 6)

1
X1y Dy (G, F)

with
D,(G,F)=k(k-1) -+ (k=v+D)f - -+ [, (10t T AIG G )-F ()],
where
[NCIRNES T RERY | ToSNNENCNN ) y LI I Je)
Then I¢F(x)d[G x)~F(x)I=D(G, F). Suppose that q(xi,x5) = azhz(xl,xz)/axlaxz exists.
Under suitable conditions,
DG, F) = [IG (x)-F (xDIIG (x)-F (x)1g (61,x)dx,dx.
Then 1D,(G, F)| <[p*(G, F )]2 if g (x;,x5) is either bounded or integrable. The other terms

D, (G, F), v=3,...,k, can be handled similarly. Hence V-statistics are p*-Fréchet differentiable

at F under certain conditions.

Example 2.3. M-estimators. The M-functional T (F) is defined to be a solution of
Ir &, T(F)HAF x) = min,jr (x, t)dF (x), (2.12)

where 7 (x, t) is a real-valued function on RZ Examples of M-functionals can be found in
Serfling (1980, Chapter 7). Let t(=T (F). T(F,) is called the M-estimator of ¢;. Assume that
y(x, 1) =0r(x,t)/or exists and  Az(t) = fw(x, t)dG(x) is well defined. Consequently,
A(T(G)) =0. Assume further that A, is differentiable at t; with AJ(¢()#20. Define
he(s) = [Ae ()M (e )1/ (s —t4) if s#2y and = AJ(¢,) if s=t. Then

T(G) - T@H) = [6,(x)d[C x)-Hx)] + R (G, H)



with 0, () = —y(x, 19/A(¢0) and
R(G H) = (TG )M T HN/ BT GN] + Dgt MG QVA D). (2.13)

The following result shows that T is p* -differentiable under weak conditions. Its proof is given

in Section 4.

Theorem 2.3. Let T be an M-functional defined in (2.12).

(1) Assume that lly( -, tg)lly < eoand (-, ) —y(-, tQ) lyy — 0 as t—tg, where I Iy, is the
total variation norm (see Natanson, 1961). Then T is Il Il -weakly differentiable at F .

(i) Assume that there is a neighborhood N,  of ¢, such that for teN,, lly(-, £)lly < o and
Nx, t) = dy(x, t)/ot is bounded and continuous at #o. Assume further that either N(x, t) is
continuous in x or IN( -, tg)llyy < eo. Then T is Il Il _-weakly differentiable at F.

(iii) Assume that there is a neighborhood N, of ¢ such that for teN,, g(x, t) = dy(x, t)/ox
is bounded. Assume further that for each rte N,  there is a set D, such that as 1 —t¢, m(D,)—0
and sup,ep |g(x,2)—q(x,t9)! = 0 (m is the Lebesgue measure). Then T is p*-weakly
differentiable at F.

Under more conditions (e.g., T is continuous), one can show that T is Fréchet differenti-
able. Note that an M-functional may not be continuous. However, the consistency of T (F,)

can be established under weaker conditions (see Proposition 3.2 in Section 3).

Corollary 2.3. Let T be an M-functional and g be a real-valued function and differentiable at
to=T (F).

(i) Assume the condition in Theorem 2.3(i) or (ii). If T'(F,) —, 1o, then (2.10) holds with
6% = [y2(x, t)dF )2 ET(E,) =ty as. and g’ (15)#0, then (2.11) holds.

(ii) The same conclusions as in (i) hold if we assume the condition in Theorem 2.3(iii) and

condition (2.4) (for asymptotic normality) or (2.7) (for LIL).

Proof. From Theorems 2.2 and 2.3 and Proposition 2.1, it suffices to show (2.9). Since the
differential of T is —A;(zg)/AJ(2), (2.9) is implied by the condition in any of Theorem 2.3(i)-

9



(iii) (see the proof of Theorem 2.3). O

Example 2.4. Cramér-von Mises test statistic. Let F be a specified hypothetical distribution.

Define a functional
T(G) = J[G (x)=F o(x)PPdF o(x). | (2.14)

T(F,) is the Cramér-von Mises test statistic for the test problem: Hy: F=F  vs H: F#F,.

Consider the asymptotic distribution of T (F,,) under the alternative hypothesis H;.

Theorem 2.4. The functional defined by (2.14) is uniformly Il Il -Fréchet differentiable at F

with the influence function
0p(x) = 2[lI (x <y )-F 3)IIF & —F oy YJAF o).

If F is continuous, then T is Il Il _.-continuous.
The proof is in Section 4. A direct consequence of this result is the following.

Corollary 2.4. Under the alternative hypothesis F#F, the Cramér-von Mises test statistic
satisfies (1.1) and (1.3) with

02 = 4[[[F (min(y 2 ))F 0 )F (2 )IIF 0)-F g0)IIF (2)-F @ dF o )dF o(2).  (2.15)

Note that under the null hypothesis, F=F, T(F)>0 and ¢p(x)=0 and therefore
nl/’T(Fn) —,0. In fact, under the null hypothesis »T (F,) —, a weighted sum of chi-squared
variates (e.g., Serfling, 1980, Theorem 2.1.7B).

3. The jackknife

We now establish the consistency of the jackknife estimator s? defined in Section 1,

which is desired for making statistical inference. Let p be a metricon F or F ;.

10



Theorem 3.1. Assume that p satisfies
p(F,,F) =0 as. and @u-1)Y"[pF,, F)2=0(Q1) as. (3.1)

(i) If T is uniformly p-Fréchet differentiable at F (with 6?=[¢2dF), then

s,2 — o2 as.
(ii) The result in (i) holds if T is uniformly p-weakly differentiable at F and

max;, IT(F,)-TF) =0 a.s. (3.2)

Proof. Let Z;=¢,(X;) and Z=n"'3'2,Z;. From the differentiability of T,
T(Fy) - T(F,) = (m-1)"Y,;,Z; - Z + Ry,
where Rm—R( wi» Fn). Let R = n” 13" R,;. Then
7= - Z-Z) + (-DI Ry R + 200D R (1)1 Z-Z ],

From the strong law of large numbers (SLLN), (n -—1)“ YL 1(Z A )2—)0'2 a.s. It remains to
show that (n—1)3." ;R 2 50 as. From (3.1),

max;c, P(F,;, F) < p(F,, F) + max;., p(F,;, F,) > 0 as.
If T is uniformly p-Fréchet differentiable at F, then for any €>0,

ani < eZ[p(Fm-, Fn)]2 for all i<n and sufficiently large n.
Thus, (n-1)32,R2 < X (n-1)3 1, [p(F,;, F,)I? and (n—-1)Y " ,R2 — 0 a.s. follows from
(3.1). This proves (i). The proof for (ii) is similar by using (3.2). O

If p is the metric corresponding to Il I, then (3.1) is satisfied since WF,,—F, ., <n 1
for all i. For the metric p*, the following result shows that (3.1) holds (and therefore the
results in Theorem 3.1 hold) if the second moment of F exists. The proof of this result is in

Section 4.

Proposition 3.1. Assume that EX? < co. Then
IIFn(x)—F(x)Idx —0 as. and (n—l)E,-":ﬂJIFni(x)—Fn(x)Idx]2= o) as.

In some cases we need to consider a function of several functionals: £°T, where T is a

k-vector whose jth component is a functional 7;(F) on F and g is a real-valued function on
11



R*. Let Vg be the gradient of g. We have the following result.

Theorem 3.2. Let p be a metric satisfying (3.1). Assume that T; is uniformly p-weakly dif-
ferentiable at F with influence function ¢;, j=1,...,k, Vg is continuous at (=T (F) and (3.2)
holds for each T;. Then the jackknife estimator

Sgr = =DX ([T F)l-n T8 [T (F,)1)2 > [Ve ¢V Vg ()] ass.,
where V is a kxk matrix whose (p, ¢)th element is E [¢p X )b, X ]

Proof. Let t,=n"'Y 2 T(F,;). From the mean-value theorem,

sZ = (-DIVg(, ST (Fo )t JIT (F o1, TV (2,)] .
+ (=DY U= T Ui)? + 2(0=1)[Vg )" T Fri )2, J U= S Ui)s

where U,; = [T (F,;)-t,1[Vg (€;>-Vg (z,)] and &; is a point on the line segment between ¢,
and T(F,;). From the proof of Theorem 3.1 and the continuity of Vg at #, the first term on
the right hand side of (3.3) — [Vg (to)I'V[Vg (tp)] a.s. It remains to show that the second
term on the right hand side of (3.3) — 0 a.s. From (3.2) and the continuity of Vg at z(, for
any €>0 and almost all X, X,,..., there is an N such that max;, IVg(€;)-Vg (@) <,
where Il Il is the Euclidean norm. Hence

(- U2 < -1 NTF,) —t, 12

This completes the proof. I

Example 3.1. Functions of central moments. Let m; be positive integers, [=1,....L,
k=max,m,. Assume that EIX;1¥< c. Let $;(G)=Jlx—[xdGx)I"dG (x) (when m,=1,
$;(G) is defined to be deG (x)). Consider the functional T = h(S,...,S;, ) with a continuously
differentiable function 4. Note that for each / , 57 is a continuously differentiable function of
functionals T,....T,,, where Tp G) = fx” dG(x). Hence T = g(T;,...,Ty) with a continuously
differentiable g. For each p, Tp is Il Il..- Fréchet differentiable at F with the influence func-
tion ¢, (x) = xP —fx” dF (x). In this case, (3.2) can be established by using Lemma 3 of Ghosh
et al. (1984). Hence Theorem 3.2 applies. Special cases of this result include (1) functions of
mean (L=1, m;=1); and (2) functions of variance (L=1, m=2), which were treated by Miller

(1964, 68) who established weak consistency of the jackknife estimators.
12



Example 3.2. (Continuation of Example 2.4). Under the alternative hypothesis, the Cramér-
von Mises test statistic T (F,) is asymptotically normal with asymptotic variance 6%/n, where
o? is given in (2.15). Apply Theorems 2.4 and 3.1, the jackknife estimator s ,2 is consistent for
o%. In this case, another estimator of 62 can be obtained by replacing F in (2.15) by F,,. Itis
not hard to see that this estimator also satisfies (1.2). The jackknife method gives an alterna-

tive in this case.

For the L-estimators, a direct application of Theorems 2.1 and 3.1 and Proposition 3.1
gives the following result. Note that the conditions we assumed are weaker than those in Parr
and Schucany (1982, Theorem 2). These conditions are necessary for the consistency of s,2

when J=1 (T (F,) is the sample mean).

Corollary 3.1. Let T be an L-functional satisfying the conditions in Theorem 2.1. Assume
that EX 12 < oo, Then s ,2 — o? a.s., where 67 is given in (2.10).

The uniform p*-Fréchet differentiability of T plays an important role for the consistency
of s ,2 It is natural that the consistency of s,2 requires more smoothness condition on T than
the asymptotic normality of T (F,,), since variance estimation is a "second order" operation.
For the M-estimators, it was shown in Section 2 that the M-functionals are p* -weakly differen-
tiable. Unfortunately, it is not clear whether the M-functionals are uniformly p*-weakly dif-

ferentiable. We establish the consistency of s 2 by using the following resuls.

Theorem 3.3. Assume that p satisfies (3.1) and that T satisfies (3.2) and is p-weakly differen-
tiable at F and F,, for all n. If

T (F =T (F, »=Jbs (0)AF (1)1
max;

34
i<n SF ) -0 as. (3.4)

and

o —0ply — 0 as., (3.5)

then s ,2 - 62=f<|)p2(x)dF x) as.

13



Proof. Let W(F,;, F,) = T(F,; )T (F,)-Jo, (x)AF,;(x). Then
Ry = J10p, ()00 AL, (6 )—F, ()] + W (F 1, F).
From (3.1) and (3.4), (n—-1)X,W2(F,;, F,) = 0 a.s. Since
1, ~0p)AF—F )| € NE—Fy 1105~ lly,

we have (n—1)T",R,2 = 0 a.s. and thus the result. O

Proposition 3.2. Let T be an M-functional given in Example 2.3.

(@) If v is nondecreasing in ¢ and there is a neighborhood N, of #y=T (F) such that for each
fixed x, y(x, t) is continuous on N, , ly(x, t)| <M (x) for teN, and jM(x)dF(x) < oo, then
(3.2) holds.

(ii) Assume that (2.12) has a unique solution. Then (3.2) holds if Ir(x, t)| < M (x) for all ¢
with [M (x)dF (x) < o and for any a > 0,

lim, ,.r(x, t) =o uniformly for Ix| <a, (3.6)

where oc>fr (x, tg)dF (x) (o can be infinity). If in addition, r is bounded (or v is bounded and

continuous in ¢ and A,(z) has a unique root), then T is Il Il .-continuous.

This result implies the strong consistency of T (F,). Examples of functions satisfying
(3.6) include Huber’s (r(x, t)=(x~1)? if Ix—¢ 1<K and =K? if 1x—¢|>K) and those given in
Examples 7.1.2F and 7.1.2G in Serfling (1980). Note that the conditions in Proposition 3.2 do

not imply that T is p*-continuous. We now establish the consistency of s ,2 for M-estimators.

Theorem 3.4. Let T be an M-functional satisfying the conditions in either (i) or (ii) of Propo-
sition 3.2. Assume further that

(a) there is a neighborhood N,  of (=T (F) such that n(x, ¢)=dy(x, t)/0t exists and is continu-
ous on N; and In(x, £)1<M,(x), where M, satisfies JMl(x)dF(x) < oo

and either

(b) the conditions in Theorem 2.3(i) or (ii)

14



or
(b") EX 12 < oo and the conditions in Theorem 2.3(iii).

Then s ,2 — o2 as. , where o? is given in Corollary 2.3.

The proofs of Proposition 3.2 and Theorem 3.4 are in Section 4. Reeds (1978) proved the
consistency of s2 for M-estimators under his condition L. The conditions in our result and

Reeds’ condition L are not comparable.

4, Proofs

Proof of Theorem 2.1. letA ={ x: F(x)<c } and B ={ x: c<F (x)<1—-c } with c=0/2. If
F(x)eA and IG-F I +IH-F I < d, G(x), H(x)e[0,c+8]. Let d<ct/2. Since J(¢) is uni-
formly continuous on [0,c +9],

IIAW[G(x),H(x)][G(x)—H(x)]dx 1/p*(G, H) < sup e, IWIG(x), Hx)]l =0 (4.1)

as p*(G,F)+p*(H,F) —» 0. Similarly, (4.1) holds with A replaced by { x: F (x)21—c .
Note that there are constants a and b such that Bc[a,b]. Then

IJBW[G(x), HOIG (x)-H )dx |/p* G, H) < I:IW[G(x), H@)ldx = 0

as p*(G,F)+p*(H,F) > 0, since W[G(x), Hx)] = 0 if JoF is continuous at x and
IW(G, H)Il, <201, < . This completes the proof. &

Proof of Theorem 2.3. (i) From (2.13), R(G, F) =R (G, F)+ Ry(G, F), where
/ R\(G, F) = [lyx, T(G)) = w(x, 191d[G (x)~F ()/h [T (G)]
and
Ry(G, F) = A (t) {1/ tg) — /R [T (G)]).
Note that &[T (G )]=A.(t,) as T(G)—T (F) and
| lvee, TG)) — wix, t91AIG ()-F ()11 < Iy, TG)) = y( -, 1) Iy IG-F I,
Hence R (G, F)/ IG-Fli,—0as IG-F Il +IT(G)-T(F)| — 0. This is also true with R,

replaced by R, since
At < (-, t)lly IG-F Il ..
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(1) Assume T (G )—t,. From the proof of part (i), T (G)yty=0G-F ). Using this fact
and the continuity of n(x, ¢) at ty, we have

Jwex, T(G)) - wix, 19ldIG 6)F (0)] = [TG )-tglfncx, 1[G @)-F ()] + 0 (IGF 1.
The rest of the proof is similar to that of part (i).

(iii) Assume that T(G) — T (F). Let t=T(G). Under the conditions in part (ii), there is a con-
stant ¢ such that

(to)l < c IG—F I
and
(e, T(G)) = wix, t)IAIG x)-F x)]1 € ¢ IG-F Il m(D,)
+ IG—F Iy sup,cp, lg(x, T(G)~q (x, to)!.

Hence the result follows. O

Proof of Theorem 2.4. For G, HeF,
T (G)~T (H)~Jo (0)AIG (x)-H ()] = [([G 0)—F o0 )I*~H ()-F o )P }dF ()
~2[Ji1 ey »F 9)IF 9)-F o)1AIG (x)-H (:)1AF o)
= [[G 0)-H )G ¢ }+H )-2F ()IAF o) = 2J[G & »-H 0)IIF ¢)-F o)A F o)
= [IG)-H 0)I[G 0)+H (v )-2F (¢ )dF o).
Thus,
IR(G,H)| < IG-HN (IG-F I+ IH-F )

and T is uniformly Il I _-Fréchet differentiable at F. The continuity of T follows from the

fact that ¢5(x) is bounded and continuous if F is continuous.

Proof of Proposition 3.1. Let I;(x) be the indicator function of the set {X;<x} and
0 _
W; =] [I;)-F (x)ldx. Note that
EW;I SIE I[;(x)-F (x)ldx = ZIF(x)[l—F(x)]dx < oo,

Thus, from the SLLN,
0
I 1Fa)-F 00)1dx = n7 30, W, = EW, =0 as. 4.2)

Since [F, (¢)-F ()" < F () and [° F(x)dx < oo, we have
Ii[Fn x)>-Fx)dx =0 as.,
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0
which and (4.2) implies j \F,(x)-F(x)ldx —» 0 a.s. Similarly we can show that

j(:o |F, (x)=F (x)!dx — 0 a.s. Hence the first assertion follows.

For the second assertion, note that
(=D 1 Fi 0)—F, o) 1dx 2 = (n=1)13 0 (1B, ()1 () 1dix )2
< 2(1-n Y[ 1F, (0)—F () 1dx1? + 2(=1)" 13 11 o)-F () L dx 12

 Since E[f1,()~F (x)1dx]? € E(IX{1+E 1X{1)? < oo,
”_IZi';lL[”i(x)—F(x) 1dx]? — E[Illl(x)—F(x) ldx]? a.s.

by the SLLN. The result then follows from IIF LX)-F(x)ldx -0 as. O

Proof of Proposition 3.2. (i) Since A;(z0)#0, A-(¢) is strictly decreasing and continuous in a

neighborhood NN, . Assume that N = [75—T,2+1] with a T>0. An application of Theorem 2
of Jennrich (1969) yields that I\y(x, t)d[F, (x)-F (x)] > 0 a.s. uniformly in zeN. Since

max;.<, Sup ;N |y e, £)AIF,; (0 )F, ()11 < n~lmax; o, M(X;) = 0 a.s.
by Lemma 3 of Ghosh et al. (1984), we have
max;, sup ,on | WO, £)AIF,;(x)-F ()]l = 0 a.s. 43)
Since A.(z5—t) and A, (¢4+7) are nonzero and A, (¢) is decreasing in ¢, (4.3) implies
P{ T(F,;)eN, i=l,...,n, for sufficiently large n } = 1. 4.4
Then from (4.3) and fy(x, T(F,;))dF,;(x) = 0,
max;g, | Jy(x, T(F;)AF ()| = 0 a.s. (4.5)

Thus, (3.2) follows from the fact that the inverse function of A;(#) exists and is continuous at
fyex, t)dF (x) = 0.

(i) Under the conditions in (ii), (4.3) and (4.5) hold with y replaced by the function r. We

now show (4.4) also holds for a neighborhood N, . Suppose that there is a sequence { i, n; }
such that £;=T (F, ; )—ee. From (3.6),

Jr, )dF,; ) - o
since Jr (x, t)dF, ; (0x) = [r(x, 10)dF ®) < a,

[ra, 4)3dF,; 00) > Jrex, 10dF, () for large J,
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which is contrary to the definition of t;. Hence (4.4) holds. The rest of the proof is similar to

@. O

Proof of Theorem 3.4. From Proposition 3.2, T satisfies (3.2). Under condition (a), A/(¢) is
continuous at # and sup,cn, IA: (¢)-AJ ()| = 0 a.s. Then from the proof of Theorem 2.3,
(3.4) and (3.5) hold under (b) or (b”) and

. MAaX;<, SUP e, I Ap (1) Ay (1) | = MaX; 80P N, | (0~ 3 MK, £)-n7 I N(X;, )]

< nlmax; o, M,(X;) = 0 a.s.

Then the result follows from Theorem 3.3. O
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