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1. Introduction.

There has been a lot of interest in stochastic growth models in recent years. These
models, in discrete or continuous time, generally take the following form. At time 0, a
point on a lattice is filled or infected while other lattice points are not. A set of rules then
determines how the filled or infected points may fill or infect other points. In the model
of Richardson (1973), points become filled at a constant rate once one of the four nearest
neighbors is filled. One could also depict bond percolation, as defined in Kesten (1982),
in this fashion. At time 0, the origin is filled. At time 1, those nearest neighbors of the
origin with open bonds are filled. At the time n + 1, those points are filled which have
open bonds to a point filled at time n. Thus the question of the existence of an infinite
path is equivalent to asking when is there positive probability the process will continue
indefinitely to grow. Directed percolation is another such example. Some models also have
rules for unfilling or uninfecting points. In the model proposed in Williams and Bjerknes
(1972), unfilled points are filled at a rate proportional to the number of nearest neighbors
which are filled, while filled points become unfilled at a rate proportional to the number of
unfilled nearest neighbors. In contact processes, as found in Durrett and Griffeath (1982),
points are infected at a rate proportional to the number of infected nearest neighbors, but

become uninfected at a constant rate.

All of the above models were motivated by the desire to model some physical phenom-
ena. The self-avoid branching random walk, here-to-fore the SABRW, is also motivated by
the desire to model a physical growth phenomena. Consider the growth properties of the

branching fungus Aspergillus nidulans. A pellet sprouts hyphae which grow outwards, each



tip then branches sprouting new hyphae, which themselves grow and branch again. As-
suming that hyphae grow at constant rate, branch at regular intervals, and have a certain
distribution of the number of offspring (i.e. new hyphae), one would expect an exponen-
tial mass increase over time. However due to crowding and/or substrate limitations, the
number of branchings per unit area or volume is limited, so that the exponential phase
of growth soon ends and growth becomes linear (for background information see Trinci

(1969)).

The preceding life situation is certainly not unique. No population in nature can grow
exponentially for very long due to growth limiting factors. To account for this, a branching
random walk will be defined, but as opposed to treatments such as Biggins (1978), the
process will be restricted to the two-dimensional integer lattice and the paths made self-
avoiding. While motivated by a particular life situation, the SABRW is quite general,
and one can embed bond percolation and directed percolation in it, though not the other

models mentioned.

Section 2 contains definitions and notation for the SABRW. Section 3 contains some
basic results. In section 4, the notation of an ergodic random field and its distribution will
be defined. This leads to an identity concerning the distribution of an ergodic random field
and its “successor”. The identity has a non-trivial solution if and only if the probability
of non-extinction (i.e. an infinite path) is positive. Section 5 considers the special case of
directed percolation and contrasts results here with those of Durrett (1984) where random
fields are also used to obtain results, though in a different fashion. In addition it will be

pointed out how ergodic random fields may be used to study other processes and obtain



similar identities related to non-extinction, and which processes this is likely to work for.

2. Definitions and Notation.

Assume that for each point (z,y) in a Z?, the two-dimensional integer lattice, there
corresponds a random subset M, , contained in Z2. Furthermore, if M. ;,y —(z,y) denotes
the translate of the points in M, 4 by z and y units respectively (i.e. translate M, 4 to the

origin), then assume

(2.1) V(z,y) € Zza P(Mz,.'l —(z,y) = A) = P(M,, = A).

(2.2) For any sequence of points (zl,yi) — —(Zn,Yn), and sets
Ay, ——, A, the events {M;, 4, = A1},...,{Mz, 4, = An}

are independent.

Assumptions (2.1) and (2.2) amount to saying that the M, , suitably centered are inde-

pendent, identically distributed. Also assume there is a bounded subset A that

(2.3) P(M,, C A)=1.

Thus all points in M, , are within a bounded distance of (z,y).

Intuitively, one can describe the development of the process as follows. At time 0, the
origin is filled. At time (n + 1) those points first filled at time n fill other points. Filled
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points remain filled. More formally define

Z, = (o,0)

Zy = (0,0)UM,,

Zoy1 = UM, ,UZ,.

(z,y) € {Zn ~ Zn-1}

In order to study the process Zy, it is useful to consider the duel process Z,, which is
defined here as follows. Let
M.y = {(=",¥)(z,y) € Moy}
Z, = (0,0)

Zl = (O, O)UM0,0

Znt1=UM, UZ,.
(1’.7 y) € {Z~n - Zn—l}

nn

The almost sure density of points in Z% which satisfy condition will mean the

following. If A, denotes the set of lattice points (x,y) where |z| < n, |y| < n, and if the

nn

sample proportion of such points which satisfy the condition converges almost to a

constant, then this constant is the almost sure density referred to above.
The notation (z,y) — (z',y') means that the process begun at (z,y) eventually fills
(z',y"), intuitively, a path exists beginning at (z,y) to (z',y'). One writes (z,y) & (z',y')

iff (z,y) — (2'y') and (z',¢') — (2, ).



Growth is said to be mandatory for the process in the O direction if and only if for
H, the open half-plane whose edge contains (0,0) and is perpendicular to ©, we have

P(M,, N H # ¢) = 1. That is to say, there will always be growth in the © direction.

If growth is not mandatory, it is possible that it will cease or become “extinct”. The

event “the process becomes extinct” may be written | {Zp+1 = Z,}.
n

It is tacitly assumed that the process is “non-arithmetic”, that is to say the process
Z,, could not fit on a sub lattice. One could insure this by an assumption such as “for all

(z,y) € Z? there exists an n such that P((z,y) € Z,) > 0”.

A few comments are in order. Z, may be regarded as the set of points filled in < n
steps starting from the origin. %, are the points which would fill (0,0) in < n steps had
we started the process there. One might just as well choose any point in Z2 other than
the origin to define Z, and Zn. Clearly one can embed bond percolation in the SABRW
by putting the right distribution on the M, ,’s. Thus the probability of an infinite path is

the probability of non-extinction.

3. Basic Results.
Proposition 3.1 P(extinction) = 0 iff growth is mandatory in some direction.

Proof. One must only show there is positive probability of extinction if growth isn’t
mandatory in any direction. Since the M, , are bounded, there exists a constant r, > 0
such that points only within r, of (z,y) may be filled. Now let r; be same number greater
than o, and consider the event E,, = {no lattice point (z,y) such that r; < \/m <
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r1 + ro, will fill points in the open half-plane lying in the direction of the nearest point of
the circle of radius r, + r; about the origin}. P(E,,) > 0 for any r; > 0. Also it is clear
that most points in this annulus, on the event E,, , have no chance of filling points outside
the circle of radius r, + r; about the origin. However, lattice points near the edge of this
circle might possibly fill points on the outside, even if the edge of the circle is almost “flat”,
i.e. might approximate the edge of the half-plane. Clearly r; may be chosen large enough
so that only one or, at most, two points might be filled outside the circle from a bounded
number of points within the circle. If only one point is available outside, the half-plane
could be slightly turned to include it, and so there is still probability greater than zero
that it will not be filled. Now suppose two points outside could be filled. If, conditioned
on filling no points in the open half-plane, both points (or one fixed) point were filled with
probability one, this would imply growth would be mandatory in some direction. If only
one is filled, with probability greater than zero, it would only fill points already filled.

Thus a subset of E,, exists with positive probability where extinction must occur.

In addition to non-arithmetic, i.i.d., and boundedness for {M; 4}, we heretofore as-
sume symmetry, i.e. realizations of M,, are equiprobable when reflected about one or both

axes.

Proposition 3.2. If growth is mandatory, the conditional probability that (o,0) —

(z,y) given that the dual process begun at (z,y) is never extinct, is one.

Proof. The paths of Z,, and the dual process begun at (z,y) must cross infinitely often so

will eventually hit.



This suggests the following results for which we let = P(Z, never extinct).

Proposition 3.3. If growth is mandatory, the almost sure density of points is the plane

filled eventually by Z, is p.

Proof. In view of the previous proposition it suffices to show that the almost sure propor-
tion of points in the plane whose dual process never dies out is . By the ergodic theorem
in two-dimensions, the relative proportion of points whose dual process never dies has an
almost sure limit X. In addition, the proportion of points whose dual process lives at least
n steps has an almost sure limit equal to 5, = P(Zn not extinct). Clearly X < p, a.s. for

eachn and EX =p= lim p,so X =pa.s.
n—0o0

From this point on, consider the case where growth is not mandatory for which the
additional assumption is made that for any sequence (z1,¥1),...,(Zn,¥n) and any point
(z,9)

P{(xlayl)i cee >(xn,yn)}M$,y) = HP((-'Ei,yi) € Mz,y)

=1

that is, points are filled independently. In this case p = P(Z, never extinct) = p since
Z, and Z, will now have the same distribution. In this case proposition 3.3 becomes (for

roughly the same reasons).

Proposition 3.4. Assume o < p < 1. Then on the set of non-extinction, the almost

sure density of filled points is p.

For the last result of this section, we say a point is self-dual if and only if the SABRW

and its dual process are never extinct. Thus a point (z,y) may be self-dual on some
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realizations and not on others.

Corollary 3.1. The conditional probability that (z,y) < (z',3') given that (z,y) and

(z',y') are self-dual is one.

The analogous result for bond percolation is “there is one infinite path”. Self-dual
points are also interesting since they can provide a sub-additive sequence to show there is

an asymptotic shape. This will be studied in another publication.

4. Ergodic Random Fields

When will the process have positive probability of never dying out? In branching
processes a non-trivial fixed point of the generating function for the offspring distribution
guarantees this. For the SABRW, a non-trivial fixed point is also a necessary and suffi-
cient condition for positive probability of non-extinction. Here, however, the condition for
positive probability of non-extinction. Here, however, the condition is stated in terms of
distributional properties of certain random fields, for which some more notation must be

introduced.

On the integer lattice, points have three possible states: unfilled (type 0), filled and
ready to branch (type 1), filled, but cannot branch (type 2). Thus the set of functions
from Z? into {0,1,2} describes all possible configurations. A probability distribution on

this set yields a random measure, and let M denote the set of all such random measures.

As the process develops, the configuration of various types of points (filled or not)
about the filled points of type 1 determine the growth behavior. Suppose that the origin
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is filled (type 1) and consider the finite set of possible configurations of filled and unfilled
lattice points in the closed 2n X 2n square centered at the origin. Denote this set (2, and
its elements w,. Now for a particular random field M € M, it is of interest to know what
“proportion” of filled points of type 1 have configuartion w, when centered. Define, for

Am = 2m X 2m closed square

(W) = # filled points of type 1 with configuration wy,
Pmi&n) = # filled points of type 1 if defined,

=0 if not.

Now if for all n, and each w, € Q, the lim pp(wn) = Pym(wn) almost surely and Par(wn)
m—oo

is almost surely a constant, then the random field M is ergodic. If the almost sure limit

exists but is not a constant, then we say the random field is weakly ergodic. Clearly one

way to get weakly ergodic fields is by mixing ergodic fields.

Since the almost sure limit exists for each n, one can use Kolmogorov extension to
construct the “centered” or “averaged” random field, denoted A(M), at the origin, with
distribution function Pps( ) yielding probabilities of the individual w, € Q, for each n.
We say that two random fields M and M' are equal in law, denoted M £ M ) if A(M)

and A(M') have the same distribution function.

Given an ergodic random field M, one also can get its successor, i.e. the random field
defined by letting the type 1 particles branch. As long as the successor field has type 1
particles, it will also be ergodic (or weakly ergodic). Denote the successor of M by ¢(M).
In addition let X(w,) be number of type 1 points in configuration w, € Q,. Let ca be

defined by

E [, X(wn)dPy(wn
(4.1) cm = lim inf fﬂ" (n)dPrr( )

n—oo n




It turns out that the question “when does the process have positive probability of non-

extinction?” is equivalent to when does there exist a solution to

(4.2) S(M) £ M with cp > 07

There are certain powerful intuitive reasons for examining (4.2). On the set of non-
extinction, growth should occur at the edge, moving outward in some regular fashion as it
does in fact in nature. If so, the configurations about type 1 points and their density should
stabilize also. It may be, that even if there is probability one of extinction, (4.2) could
still be satisfied. However, from the last section one knows that an almost sure fraction of
points in the lattice will eventually be filled is equal to the probability of non-extinction.
Thus only “sparse” or “trivial” solutions with ¢js = 0 will exist in this case when extinction
is assured. Now in Markov Chain theory, one way to prove a stationary distribution exists
is to average the probabilities of being in a certain state over time, take a limit and show
that the limit is a solution. Here, we fill the left half-plane of lattice points, take mixtures

of the succession random fields, find a limit and show it satisfies equation (4.2).

Theorem 4.1: p > o if and only if a solution of (4.2) exists with cpr > o.

Proof: Let M denote the random field of filled lattice points in the left half-plane. Let
M, be a realization of A(M). Successively let M; be a realization of A(¢(M)), M, a
realization of A(#(6(M))), etc. Clearly M,, My,... are all ergodic. Let A;; j =1,2,...,1,
i =1,2,... be an array of events, independent of M,, Mj,..., such that P(4;;) =1/¢ and
for fixed i, P(A;jNAl;) = 0if j # j'. Now define a sequence M;, Mj, ... of weakly ergodic
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random measures by defining their distribution functions

Pu() = " Tay - Prc).

So the new sequence is a mixture of the old.

Clearly for each Qy, there is a subsequence for which the vector Py (wl), Py, (w2)
.oy P (w™n)), where wl,...,w™ are the m, elements of §),, converges in law and
by diagonalizing this will be so for all ,. So now it remains to show that this limiting
distribution, call it Pa(-) of the random field M, is a fixed point and that cpr > 0. To
do this a metric on the space of distribution functions will be constructed with respect to
which ¢( ) is continuous, where convergence is equivalent to convergence in law, and with

respect to which M and ¢(M) can be shown to be arbitrarily close.

Let, for a particular random field M, and vector ¢ = (z1,...,Zm, )Fn(z) = P(Pum(w},)
<z...,Py(wr) < zp,, ). Following an idea in Grandell (1977), let, for F,, defined by
Py, F! defined by Py, dist (Fn, Fy) = sgpir%f{t > 0|Fn(z—t)—t < Fl(z) < Fa(z+1)+t}.
Now let the metric ||, || be defined by~HPM,PM:|| = §1 27" dist (Fp,F}). It is not
difficult to show Pas — Py(ar) is a continuous mapping for_ergodic random fields, and then
extend to weakly ergodic fields. To simplify notation let the sequence of random fields
converging in law to M be denoted M,,. Clearly || M, ®(M))|| < ||M, My||+||Mn, Muy1||+
[|Mp+1, ®(M)||. Each of the three terms on the right hand side can be made arbitrarily
small for large n. The first term by convergence in law, the second by the way the M,

were constructed, the third by continuity of &(:).

Now for cpr > 0. It is clear from the previous section that in the right half-plane the
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almost sure proportion of points for which the dual process is never extinct is p > o. Since
the process grows in at least a linear fashion, the probability (on Z, > o0) that a point is
filled outside a circle of radius an, in n steps is bounded away from 0, for some constant
a > o. Thus the E (number of filled points in n steps ini A,) is at least a positive constant
times n. Since M, is a mixture of past steps, each filled point was counted as open at

some time. This bounds the right hand side at (4.3) from below for each n. Thus car > o.

Now suppose the probability of extinction is 1, and M is a solution of 4.2. In a
finite number of steps the expected number of type 1 offspring is less than one. Thus

H(S(&(... ¢(M))...)) has cy(. g(m)) < cum but M is a fixed point. Contradiction.

5. Comments

In Durrett (1984), the author considers directed percolation. It is shown that if one
fills the points of the horizontal axis to the left of the origin and considers the rightmost
filled point about to branch (type 1 in our notation), then the configurations converge in
law. Also it was shown that if the probabi].ity of extinction is one, the distance to filled
points directly the left is arbitrarily large, i.e. infinite in expected value. This corresponds
to solutions of the identity with cpr = 0. Also, if the probability of an infinite path is
greater than zero, one can find a fixed point to the identity by letting all points on the
horizontal axis which have a dual process which is never extinct be filled and type 1, all
points below the axis with this property be filled and type 2. Denoting this random field
M, M is an ergodic solution of the identity with cpr = P(infinite path). This is probably
true in the more general setting.
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Another area where an identity like (4.2) should hold is contact processes. If an in-
fection spreads throughout the plane then the configurations around the averaged infected
point should stabilize. In fact, the average infected point may be regarded as the average
point about to either infect a neighboring point or become uninfected. So there should be
a distribution Pas(-) which is fixed here also.
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